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Abstract

Background and Objective: Patient positioning is a crucial step in radiation therapy, for which non-invasive methods
have been developed based on surface reconstruction using optical 3D imaging. However, most solutions need expensive
specialized hardware and a careful calibration procedure that must be repeated over time.This paper proposes a fast
and cheap patient positioning method based on inexpensive consumer level RGB-D sensors.

Methods: The proposed method relies on a 3D reconstruction approach that fuses, in real-time, artificial and
natural visual landmarks recorded from a hand-held RGB-D sensor. The video sequence is transformed into a set of
keyframes with known poses, that are later refined to obtain a realistic 3D reconstruction of the patient. The use of
artificial landmarks allows our method to automatically align the reconstruction to a reference one, without the need of
calibrating the system with respect to the linear accelerator coordinate system.

Results: The experiments conducted show that our method obtains a median of 1 cm in translational error,
and 1° of rotational error with respect to reference pose. Additionally, the proposed method shows as visual output
overlayed poses (from the reference and the current scene) and an error map that can be used to correct the patient’s
current pose to match the reference pose.

Conclusions: A novel approach to obtain 3D body reconstructions for patient positioning without requiring ex-
pensive hardware or dedicated graphic cards is proposed. The method can be used to align in real time the patient’s
current pose to a preview pose, which is a relevant step in radiation therapy.

Keywords: Patient Positioning, 3D reconstructions, RGB-D Sensors, Fiducial Markers, Radiation Therapy, Surface
Guided Radiation Therapy (SGRT)

1. Introduction

The process of radiation therapy has two main phases.
The first phase is planning, where some type of computed
tomography (CT) is done to obtain a volumetric reconstruc-
tion of the patient’s body. This helps to find the exact
position of the tumor that needs to be treated in the pa-
tient’s body. Treatment is done in the second phase which
typically happens in several sessions. At each session, the
patient needs to be positioned in the same pose in which
the reference CT scan has been done and the exact posi-
tion of the tumor is calculated by aligning the CT scan with
patient’s body. The most common way to perform this is
by taking X-ray image(s) and alignment of the obtained 2D
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information with the reference 3D model. This normally
needs to be done manually by a specialist. There are other
options such as applying cone beam CT (CBCT) to get a 3D
model in the treatment session and use that instead of the
2D imaging information. A drawback of these approaches
is exposing the healthy tissue of the patient to ionizing ra-
diations (e.g. X-ray) at each session of the therapy.

There are non-invasive methods for patient positioning
that do not need healthy tissue to be exposed to ionizing
radiation. An important subset of these methods are the
ones based on optical imaging that make use of visible light
and/or infrared sensors. One solution of this type is the
use of infrared cameras and reflective markers [1]. This
approach is similar to motion capture systems that are em-
ployed in the movie and gaming industry. The measure-
ments of this type of systems are accurate however they are
limited to the points on the patient’s body where the re-
flective infrared markers are attached to. Also, in the case
of attaching the markers on a cast [1], only the rigid pose
of the cast is estimated. There are also solutions that take
advantage of stereo reconstruction to make a 3D model of
the patient’s body surface. The reconstructed body sur-
face could then be aligned with the surface of the body
in the reference CT scan to align the patient in the right
position. This could be easily done with surface alignment
algorithms such as iterative closest point (ICP) without the
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need of known point-wise correspondences between the two
surfaces.

Currently, there are several commercial optical-based pa-
tient positioning systems that make use of 3D surface re-
construction such as AlignRT, Catalyst and IDENTIFY [2].
These are the so-called Surface Guided Radiation Therapy
(SGRT) systems. These methods might not be as good as
radiation based positioning methods in all cases [3], how-
ever, they are a very good alternative to reduce the num-
ber of times that radiation-based methods are done [4]. A
drawback of the current commercial SGRT solutions is their
high price and service costs which might not be affordable
for hospitals with limited budgets. Another disadvantage of
these systems is that they require their sensors to be fixed
in the environment. Therefore, they need to be periodically
calibrated with respect to the environment by specialized
staff to assure that they report accurate measurements.

In recent years, starting with the introduction of Mi-
crosoft Kinect, inexpensive RGB-D sensors have become
available for normal consumers. Starting with the Kinect-
Fusion [5] many 3D reconstruction algorithms were intro-
duced employing this type of affordable sensors. Neverthe-
less, there are very few works using these types of sensor
for patient positioning [6, 7, 8, 9] and their potential is not
properly explored despite the fact that these consumer sen-
sors are not as accurate as the ones used in commercial
patient positioning systems.

This paper proposes a novel patient positioning method
based on affordable consumer handheld RGB-D cameras
that employs a Simultaneous Localization and Mapping
(SLAM) approach that fuses natural features of the pa-
tient’s body with a set of artificial fiducial planar markers
in order to speed up the reconstruction and positioning pro-
cess.

The proposed method can be run in a regular computer
without special hardware or graphics card and create a com-
plete reconstruction and visualization within and average
of 31 seconds based on our experiment. Our experimen-
tal results show that the proposed method allows a median
accuracy of 1 cm in translational error and 1° of rotational
error for rigid transformation.

The rest of this article is organized as follows. First, we
explore the optical-based solutions to patient positioning
in radiation therapy in Section 2. Then, in Section 3, we
introduce our method. In Section 4, we present the results
obtained by our algorithm and discuss the results. Finally,
we present our conclusions in the last section.

2. Background and Objective

One of the first optical patient positioning systems was
[10], where infrared light emitting diodes were attached on
a bite plate and the head pose of the patient was inferred
from the 3D position of the diodes employing infrared cam-
era images. Another similar early example is [11] that also
uses infrared diodes and cameras. In this case, the system
automatically corrects the position of the head by a mo-
torized mechanism that corrects its position by translating
it so that the isocenter is focused on the correct position.
Later, Ploeger et. al. [12] used image matching between
a video recorded in the treatment phase and reference CT
scan using body contours. They concluded that the outline

of the patient’s body is a more accurate reference that the
markers put on their abdomen.

One of the first works investigating the use of 3D surface
imaging is by Bert et. al. [13]. They analyze the accuracy
of the commercially developed patient positioning system
AlignRT, which reconstructs the surface by projecting a
speckle pattern on the patient and using active stereo. It
needs to be calibrated by a special pattern to the coordinate
system of the linear accelerator. The system proves to be
of high accuracy in estimating rigid transformation. The
tests were done on a human phantom.

Around the same time, Bradly et. al. [14] use a station-
ary multi-line laser projector for 3D reconstruction. They
employ the iterative closest point (ICP) algorithm to align
the 3D surface obtained from a CT scan to the surface from
the optical 3D reconstruction. They employed the cast of
a human for evaluation. They concluded that their system
is good enough to be used for patient positioning. Bert et.
al. [15] compared the quality of calculating the displace-
ment by laser alignment, portal imaging and the AlignRT
surface imaging system for breast treatment. They found
that the 3D surface imaging system has superior results in
comparison to portal imaging and laser alignment.

Stieler et. al. [4] evaluated a commercial laser scanner
Sentinel (by C-Rad AB, Sweden). They found that it is a
good solution for the situations where cone beam CT scan
or ultrasound imaging are not used, to improve the accuracy
of patient positioning.

Desplanques et. al. [1] introduced a patient positioning
system using a pelvic cast or a face mask with reflective
markers attached to them. The cast (or mask) was tracked
using an infrared motion tracking system and the position-
ing corrections were compared to those of a patient veri-
fication system employing x-ray radiation. They conclude
that due to large uncertainty because of the relative motion
between the immobilization devices and the patient the sys-
tem cannot be used as a primary assessment for the quality
of patient positioning.

Gaisberger et. al. [16] proposed a non-commercial sur-
face scanning system for patient positioning using two opti-
cal projectors and two cameras. They concluded that their
3D surface scanning system is good enough to be a viable
alternative to the normal kV image-guided radiation ther-
apy.

Wiencierz et. at. [3] compared the performance of
AlignRT to another commercially available system named
Catalyst (from C-Rad, Sweden). The Catalyst system, sim-
ilar to AlignRT, has a depth sensor attached to the ceiling
of the radiation room. However, unlike AlignRT, it takes
advantage of structured lighting of a stripe pattern instead
of projecting a speckle pattern. Furthermore, the Catalyst
system has one unit instead of two units. The authors re-
port a better accuracy for AlignRT than for Catalyst. Ad-
ditionally, both of these systems were shown to have better
accuracy than using conventional skin markers. On top of
that, both of these solutions have an accurate enough mea-
surement in at least 75 percent of the time. However, they
both fail to meet the safe accuracy taking into account the
90 and 95 percentile of the errors.

With the advent of consumer-grade RGB-D sensors such
as Microsoft Kinect and Asus Xition, many authors have
proposed algorithms for three-dimensional reconstruction
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using this type of sensors [5, 17, 18, 19]. One disadvantage
of these methods is that, in general, they require specialized
hardware i.e. powerful graphics cards with high amount of
on board memory. On the other hand, few authors have
employed these sensors in the field of patient positioning
despite the detailed reconstructions that can be obtained
with such devices. Bauer et. al. [20] suggested a system
for coarse initial patient positioning by matching 3D fea-
tures from the surface data. They employed the original
Microsoft Kinect sensor to evaluate their algorithm. They
conclude that their method is feasible for coarse initial pa-
tient positioning before using a finer scale more accurate
positioning approach. An important disadvantage of their
approach is that the RGB-D sensor needs to be fixed in
the environment and calibrated with respect to it. Further-
more, it forces the sensor to be far from the patient (on the
ceiling) therefore the error of the sensor becomes too high
to obtain high precision. Additionally, extrinsic calibration
of the sensor unit has to be repeated in case of moving it.

The most similar approach to ours that we found is a
dissertation of Guillet [9], who tested the accuracy and re-
producibility the KinectFusion algorithm [5] for patient po-
sitioning using a couple of rigidly attached sensors. They
scanned the same phantom multiple times with the Mi-
crosoft Kinect and aligned the reconstruction manually on
the coarse level and then refined it using the ICP algorithm.
One downside of the KinectFusion algorithm is that it needs
GPU accelerated computing. Another disadvantage of [9] is
that its camera pose estimation is prone to drifting. To fix
this problem they proposed to attach the two Kinect sen-
sors on a camera rig and move the radiation therapy couch
instead of the sensors to have a better reconstruction. How-
ever, fixing the sensors limits the possible movements and
amount of details that can be captured from different parts
of the patient. It also makes the the process slow.

This work proposes a novel approach for patient position-
ing that overcomes the above mentioned problem. First,
our method does not need calibration, since obtains the
reference location from a set of planar markers placed in
the environment (that should not be moved from session to
session). Second, our approach works as a handheld scan-
ner instead of having the cameras fixed, which reduces the
required infrastructure and the scanning time. But also,
it allows to position the camera very close to the patients,
thus achieving the best accuracy that the sensor can pro-
vide. Finally, our method works in a normal CPU and does
not require any special graphic card. A complete recon-
struction and visualization using our approach can be done
in approximately 23 seconds on a laptop with Intel Core-i7
CPU.

3. Methods

3.1. Overview
Figure 1 shows a visual summary of our approach. First,

an RGB-D sequence is created by scanning the patient us-
ing the handheld RGB-D sensor. Then, tracking is done on
the RGB-D sequence using the UcoSLAM algorithm [21]
that can take advantage of visual keypoints and also ArUco
planar markers [22, 23]. The UcoSLAM algorithm gener-
ates keyframes and gives camera poses for each keyframe.
These are then used to generate registered point clouds for

the keyframes. This registration is then refined by a global
iterative closest point (ICP) algorithm and the point clouds
are converted to a single heightmap. Finally, the heightmap
from the current scene is compared to the heightmap from
the reference scene to generate an error map and a pose
overlay that could be used for the correction of patient’s
position with respect to the reference scene. Here the cur-
rent scene is a scene created in the treatment phase of the
radiation therapy and the reference scene is the one gener-
ated in the planning phase.

Our system takes as input a video sequence recorded
(with an RGB-D camera) of the patient from the head to
the feet. The video sequence is captured by holding the
sensor in hand and moving it over and close to the patient.
As already indicated, the environment must have a set of
markers placed in arbitrary positions, however they must
remain fixed from session to session. The input frames are
processed in real-time using a SLAM method able to fuse
natural landmarks (keypoints) and the artificial markers.
We employ the UcoSLAM system [21] developed by the au-
thors of this work. UcoSLAM simultaneously estimates the
camera location and creates a sparse 3D reconstruction of
keypoints and markers. In the process, a set of camera loca-
tions are stored, called keyframes, that are later employed
in the reconstruction process. After UcoSLAM has pro-
cessed the recorded sequence, a point cloud is generated for
each keyframe using the corresponding depth image from
the RGB-D sensor. Then, to refine the relative poses be-
tween the point clouds we apply a variant of global iterative
closest point (ICP) algorithm [24, 25] on all of the clouds.

One might ask why not using only the ArUco mark-
ers to align different point clouds instead of applying the
UcoSLAM algorithm. We have two reasons for this. First,
there are frames where no markers are visible. By taking
advantage of UcoSLAM, the information from these frames
can also be used for reconstruction using purely geometrical
information. Second, the color-to-depth registration of the
RGB-D camera is not perfect, which introduces errors in
the alignment process.

The second step of our algorithm is aligning the current
reconstructed scene to the reference scene which is created
in the planning phase of radiation therapy. For this part,
our method takes advantage of the fiducial markers which
we assume that have remained fixed from one recording
session to another. We would like to remind you that a
reference scan needs to be done in the planning phase and
markers needs to stay in the same place all through the
treatment as in the planning phase. This is done to be
able to align the scans in the treatment sessions to the one
from the planning session. It is worthy to note that if the
CT scan is done in the same room as radiation therapy
then it could be aligned to our planning phase surface scan
using a registration algorithm such as ICP. In case the CT
scan is done in a different room, we still need to make a
reference surface scan in the radiation room and align it to
the CT scan if we want to know the position of the body
internals with respect to the surface reconstruction. One
could even choose to do a traditional patient positioning in
the planning phase and use the surface scan of that session
as the reference. Please note that alignment of the CT scan
to the reference scan is not part of our algorithm and could
be done by rigid or non-rigid registration algorithms.
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Figure 1: Workflow of the proposed method for patient reconstruction and positioning using a hand-held RGB-D camera. See text for details.

After aligning the current scene to the reference scene,
a heightmap is obtained from the 3D body reconstruction
by averaging the height of the merged point clouds. This
process allows to reduce noise, obtaining a smoothed version
of the reconstructed surface.

Finally, when the scenes are aligned and the heightmaps
generated, they can be employed to visualize the patient’s
pose difference between the sessions. Since the heightmaps
are aligned together we can subtract them from each other
or overlay them on top of each other to create a visualization
of the error in positioning the patient.

The rest of the this section provides a formal description
of the proposed method.

3.2. 3D Reconstruction
Let us define a rigid pose, P , as the combination of a rota-
tion matrix, R, and a translation vector, t, in the 3D space,
i.e.:

P = (R, t). (1)
Now we take:

{P ji }, j ∈ {1, · · · , ni} (2)
as the set of all keyframe poses returned from the UcoSLAM
method for the scene i ∈ {0, · · · , n}. A pixel q in keyframe
j of scene i may or may not have a valid depth value dji (q).
Then, let Dj

i be the set of all pixel positions q = [qx, qy]> ∈
R2 with a valid depth value dji (q). Furthermore, let us
assume:

{Mk
ij}, k ∈ {1, . . . ,mij} (3)

is the set of markers detected in keyframe j of scene i and
cklij , l ∈ {1, . . . , 4} the l-th 2D-corner of the marker Mk

ij .

3.2.1. Keyframe Point Cloud Creation
We generate an initial point cloud Cj,0i for each keyframe

j of scene i as follows:

Cj,0i = {p ∈ R3|p = Ψj
i (q,K),q ∈ Dj

i }, (4)

Ψj
i (q,K) = K−1

[
q
1

]
dji (q) (5)

whereK the 3×3 camera matrix and Ψj
i the back projection

function for keyframe j of scene i.
In the next step we apply the transformations obtained

from the SLAM algorithm to our point clouds Cj,0i to obtain
new point clouds Cji :

Cji = Θ(Cj,0i , P ji ) (6)

where:
Θ(C, T ) = {θ(p, T )|p ∈ C} (7)

and:
θ(p, T ) = Rp + t for T = (R, t). (8)

Here R and t are, respectively, the 3D rotation matrix and
translation vector related to the transformation T . Further-
more, we define the operator · as the combination operator
of two transformations in the following way:

T · T ′ = (RR′, t+ t′) for T = (R, t), T ′ = (R′, t′). (9)

3.2.2. Global ICP
After obtaining the point clouds Cji related to each

keyframe j in the scene i, we apply our global ICP on all
clouds to refine their registration.
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Figure 2: A summary of our proposed algorithm’s steps. Please note that Scene Alignment and Pose Error Visualization are only done for
non-reference scenes.

You can find a formal description of our Global ICP pro-
cedure in Algorithm 1. As can be seen, in each iteration,
for each point of every cloud, we find a corresponding point
from a different cloud that has the closest distance to it than
any other point in any other cloud. Then we find standard
rigid registration for the correspondences found in that it-
eration step. This registration is denoted by the Find-
Transform(.) function in Algorithm 1 and is obtained by
the Horn’s algorithm [26] by fixing the scale parameter.

To speed up the process before applying the iterations we
randomly subsample the point clouds using a 3D version of
the Poisson-disk sampling algorithm. This is denoted by
the Subsample(.) function in Algorithm 1. Furthermore,
when finding correspondences we only select points that are
closer than a certain distance (r) because we assume that
the initial registration of our point clouds is roughly cor-
rect. We use a fixed number of iterations NI and start
with a predetermined maximum value for r, rmax, and lin-
early decrease it to a predetermined minimum value, rmin,
through the iterations. Now, we can write:

(T 1
i , . . . , T

ni
i ) =

GlobalICP(NG
I , (C

1
i , . . . , C

ni
i ), σG, rmin, rmax),

i = 1, . . . , n

(10)

which indicates that we obtain the transformations {T ji ,
j = 1 . . . ni}, corresponding to keyframe poses P ji , from
GlobalICP by giving the input point clouds {Cji , j =
1 . . . ni}. Here NG

I is the input number of iterations and
σG is the input Poisson subsampling radius and rmin and
rmax are the input values for the parameters with the same
name in Algorithm 1.

We apply the obtained transformations on their corre-
sponding point clouds Cji to update them to point clouds
Čji with refined poses:

Čji = Θ(Cji , T
j
i ), i = 0, . . . , n, j = 1, . . . , ni . (11)

3.2.3. 3D Marker Corner Positions
For each corner of each observed marker in a scene we

take the average of 3D positions of the detected corners
across all keyframes. We find the 3D position of the corners
of detected markers from the point clouds using the depth-
RGB registration (obviously we assume that this type of
correspondence is available for the RGB-D sensor). We take
the obtained mean values as the position of the marker cor-
ners in each scene. Then, these marker corners can be used
to align two reconstructed scenes together.

Let us take čklij as the 3D coordinates corresponding the
l-th 2D-corner cklij of detected markerMk

ij . If the corner has
a valid depth value dji (c

kl
ij ), we use that to back project the

point to get the 3D coordinates. If not, we take the average
of the back-projection of points with a valid depth value in
the neighbourhood of the corner:

čklij =

{
Ψj
i (c

kl
ij ,K) cklij ∈ D

j
i

〈Ψj
i (q,K)〉q∈W (ckl

ij ,D
j
i ,s)

cklij /∈ D
j
i
. (12)

whereW (cklij , D
j
i , s) is the set of all points with a valid depth

value within an s× s region centered at the cklij corner and
〈.〉 is the averaging operator. Please note that we need to
retrieve the depth value using a region because the valid
values of the depth maps could be sparse at times.

After assigning the 3D coordinates of the marker corners
čklij for each keyframe j, we calculate the coordinates of the
corners čkli for the whole scene i by taking their average:

čkli = 〈θ(čklij , T
j
i )〉j∈Ekl

i
(13)

Ekli = {j|W (cklji , D
j
i , s) 6= ∅} (14)

Here Ekli is the set of indices for all keyframes where čklij
has a valid value. Notice that if W (cklij , D

j
i , s) = ∅, it also

indicates that cklij /∈ D
j
i and that čklij does not have a valid

value.
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Algorithm 1 Global ICP

procedure GlobalICP(NI ,(C1, ..., CNC
),σ,rmin,rmax)

rstep ← (rmax−rmin)
NI

. NI : number of iterations
r ← rmax
for j = 1 to NC do . NC : number of point clouds

Tj ← (I3×3, [0, 0, 0]>) . I: the identity matrix
C̃j ←Subsample(Cj , σ)

end for

for i = 1 to NI do . Obtain the transformations
for j = 1 to NC do

Lj ← ∅
for p ∈ C̃j do

S ← ∪NC

k=1{q ∈ C̃k : k 6= j ∧ ||p− q||2 < r}
if S 6= ∅ then

p̂← argminq∈S ||p− q||2
Lj ← Lj ∪ {(p, p̂)}

end if
end for

end for
for j = 1 to NC do
T ← FindTransfrom(Lj)
Tj ← T · Tj
C̃j ← Θ(C̃j , T )

end for
r ← r − rstep

end for

return (T1, T2, ..., TNC
)

end procedure

3.3. Scene Alignment
Let us say that we want to register a current scene (e.g.

scene reconstructed in the treatment phase of radiation
therapy) to a reference scene (e.g. scene reconstructed in
the planning phase of radiation therapy) which we assume
has index 0, using the corner positions. When all valid 3D
corner positions of markers are determined for the scene
i, we find the rigid transformation that transforms each
marker corner in the current scene to its corresponding
marker corner in the reference scene. We find this transfor-
mation using the algorithm by Horn [26].

Let NMi
represent the number of different markers in

every scene i. Because the number of marker corners in
each marker is four, then

Li = {(čkli , čkl0 )|i 6= 0, k = 1, . . . , NMi
, l = 1, . . . , 4},

i = 1, . . . , n,
(15)

where Li is the set of point correspondences we use to find
the transformation aligning scene i to the reference scene.
This transformation, denoted by Ti is calculated by:

Ti = FindTransform(Li) (16)

Finally, the point cloud of each keyframe aligned to the
reference scene can be obtained by:

Ĉji = Θ(Čji ,Ti), j = 1, . . . , ni, i 6= 0 (17)

For the reference scene, however, this step is not necessary,
therefore we can write:

Ĉj0 = Čj0 , j = 1, . . . , n0, (18)

3.4. Height Map Creation

In order to create a height map we need to have a plane to
create the height map grid. Therefore, a marker is chosen
as the reference marker and its plane is taken as the grid
plane.

For each scene, we take all of the points from all
keyframes and move them to the coordinate system the ref-
erence marker. To do so, a transformation is found to take
the points from the reference scene’s coordinate system to
the one of the reference marker in the reference scene.

Assuming the reference marker has index 0 we have:

L = {(č0l0 , cl)|l = 1 . . . 4} (19)

Since we are using ArUco markers, the position of the
marker corners in the coordinate system of the marker are
set to:

c1 = (− l

2
,− l

2
, 0), c2 = (

l

2
,− l

2
, 0),

c3 = (
l

2
,

l

2
, 0), c4 = (− l

2
,

l

2
, 0),

(20)

where l is the length of the side of the square marker.
Now we can calculate the transformation to the reference

marker coordinate system and apply it to the point clouds:

Cji = Θ(Ĉji ,FindTransform(L)), (21)

for i = 0 . . . n and j = 1 . . . ni.
Subsequently, we create a grid on the marker plane and

to get the height value for each pixel in this grid we take the
average height of the points that project to that pixel. Since
there might be several surfaces on the line that projects to
a pixel we take only the points that are within a certain
distance from the point with maximum height and keep
their average as the height value.

We define the height map grid corresponding to Cji as
follows:

Hj
i =

(⌊x−xmin

δ

⌋
,
⌊y−ymin

δ

⌋) ∣∣∣∣∣∣
(x, y, z) ∈ Cji ∧
xmin ≤ x ≤ xmax ∧
ymin ≤ y ≤ ymax


(22)

where δ is the constant step to create the grid, and xmin,
xmax, ymin, and ymax are constant minimum and maximum
values for x and y, respectively. The boundaries help to
trim the height map to our region of interest. Finally the
height value in each cell of the height map related to Hj

i is
defined as:

hij(x, y) = 〈z〉z∈bij(x,y)∧(Zmax
ij (x,y)−z)<t (23)

where t is a threshold to discard the points tha do not be-
long to the top surface. Also:

bij(x, y) =

z
∣∣∣∣∣∣

(x, y, z) ∈ Cji ∧
(bxc, byc) ∈ Hj

i ∧
(bxc, byc) = (x, y)

 (24)

and
Zmax
ij (x, y) = max

z∈bij(x,y)
z. (25)
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Now to get a single height map for each scene we merge the
height maps of that scene in this manner:

Hi =
⋃

j=1...ni

Hj
i (26)

hi(x, y) = 〈hij(x, y)〉j=1...ni
(27)

where Hi is the height map grid related to the scene i and
hi(x, y) is the height value at grid point (x, y) in scene i.

Height maps let us merge the keyframe clouds in the scene
in a fast manner and just by averaging the height values in
the corresponding grid positions. One might argue that
some information is lost in the process of converting the
point cloud to the height maps. However, we would argue
that since the point clouds are generally created by using
the depth sensor held above the patient, the information
loss is not very high. Furthermore, the averaging operator
creates a smooth surface when converting a point cloud to
a height map which reduces the noise on the surface.

4. Results

This section explains the experiments conducted to val-
idate our proposal. To record RGB-D sequences we used
the Asus Xtion Pro Live sensor employing the OpenNI2 5

Linux driver. We choose this sensor because is it cheap,
lightweight and does not need an external power supply, it
just needs to be connected to the USB port.

We evaluated our method both qualitatively and quan-
titatively. The quantitative evaluation (Sect. 4.1) aims at
analyzing the accuracy of the proposed method in estimat-
ing the pose of patients with such an inexpensive RGB-D
sensor. To do so, we used a mannequin of the human torso
and a commercial motion capture system from OptiTrack6.

Our system provides a visual output that can be em-
ployed to easily position the patient from one session to
another which is based on our 3D reconstruction. Thus,
Sect. 4.2 provides a qualitative evaluation of the system
outputs and 3D reconstruction provided by our method.

Finally, Sect. 4.3 provides an analysis of the computing
times required by our proposal. As will be explained, our
method produces its output within 31 seconds for the hu-
man subjects once the video has been recorded, which takes
only 10 seconds.

4.1. Quantitative evaluation
This section analyzes the precision of our method in esti-

mating the displacement of a 3D body reconstruction with
respect to a reference one. For that purpose, a mannequin
of the human torso has been placed and scanned at nine dif-
ferent positions on the floor, where multiple ArUco markers
were fixed and visible next to the mannequin (see Fig. 3).
The parameter values employed for our method are shown
in Table 1.

The method’s precision has been measured as the error
in estimating the rigid transformation between two scans of
the mannequin. In order to obtain the ground truth, a com-
mercial motion capture system (OptiTrack) has been em-
ployed, which requires to attach several spherical infrared

5structure.io/openni
6www.optitrack.com

ArUco 
Markers

Reflective 
Markers

Mannequin

Figure 3: Example of our simulated patient setup.

reflective markers on the mannequin surface. The ground
truth displacement of the mannequin is calculated by find-
ing the rigid transformation that moves the reflective mark-
ers from one scene to another one using Horn’s algorithm
[26] by fixing the scale parameter.

The same rationale is employed to calculate the rigid
transformation with our 3D reconstruction. To do so, the
3D location of the reflective markers is manually extracted
from the 3D reconstruction obtained with our method.

Table 2 shows error in estimating the rigid 3D transfor-
mation of the mannequin from each scene to every other
scene. In other words, each time one scene is taken as the
reference scene and the transformation error is calculated
with respect to the reference scene from every other scene.
Then the mean and median of the rotational and transla-
tional errors are calculated for all these other scenes. Also
the rotational and translational mean and medians are re-
ported when taking into account all of the data together.

4.2. Qualitative evaluation

Since the output of our system is a visual aid for patient
positioning, this section presents some qualitative results
from the reconstructions obtained with our method. These
results are made by calculating normals for each point in
the heightmap, converting it to a point cloud, and finally
applying the Poisson surface reconstruction algorithm done
in the CloudCompare 7 software. The images are obtained
by rendering the mesh in the MeshLab 8 software. These
results can be seen in Figure 4.

The figure presents a different scenarios in each row, first
the mannequin used in our quantitative evaluation and then
three different human subjects. In every row, first, the ren-
dered reconstructed meshes for the reference scene and the
new scene are displayed. For each scene the left image is
rendered only using the mesh geometry and lighting, and
the right image is the same mesh rendered with interpo-
lated colors from the point cloud and no shading. After
that, segmented heightmaps for the reference scene and the

7cloudcompare.org
8www.meshlab.net
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Parameter Value Description
NG
I 20 Number of iterations in Algorithm 1 (Section 3.2.2)

rmin 0.5 cm Minimum radius for correspondence association in Algorithm 1. (Section 3.2.2)
rmax 5 cm Maximum radius for correspondence association in Algorithm 1. (Section 3.2.2)
σG 2 cm Radius for Poisson subsampling the pointcloud.(Section 3.2.2)
s 11 pixels Region length to calculate depth value where there is not a valid value (Section

3.2.3)
l 0.104 m Side length of each square marker (Section 3.4)

xmin −0.1 m Cropping parameter relative to the reference marker to for creating the height
map(Section 3.4)

xmax 2 m Cropping parameter relative to the reference marker to for creating the height
map(Section 3.4)

ymin −0.2 m Cropping parameter relative to the reference marker to for creating the height
map(Section 3.4)

ymax 1 m Cropping parameter relative to the reference marker to for creating the height
map(Section 3.4)

δ 1.5 mm Grid step for creating the heightmaps. (Equation 22)
t 3 cm Threshold for picking the top points in a grid cell for creating the heightmaps.

(Equation 23)

Table 1: Parameters values used in the quantitative evaluation of our algorithm.

Reference Scene#
Rotation
Error (°)

Translation
Error (mm)

mean median mean median
0 1.180 0.792 8.716 8.507
1 1.655 1.173 11.681 9.168
2 1.305 1.073 10.704 11.169
3 1.970 1.917 11.950 10.114
4 1.255 0.664 10.112 10.222
5 1.330 1.005 10.783 9.063
6 1.354 0.896 14.250 13.959
7 3.008 3.121 11.792 10.534
8 1.348 1.103 13.135 12.610

Total 1.600 1.196 11.458 10.497

Table 2: Errors in estimation of the rigid transform for the mannequin
from each scene to the reference scene for the dataset captured by the
Xtion Pro Live sensor.

new scene could be observed. Finally, the error map and
the image of overlayed heightmaps in different colors are
presented. In the error map, blue shows an error of zero
and red presents an error of 10 cm or higher. The errors in
between are shown by linearly interpolated colors between
red and blue. In the image of overlayed heightmaps, the ref-
erence scene is colored in blue and the new scene is colored
in red.

More reconstructions could be seen in Figure 5. Here
the subject takes different poses similar to those that are
commonly used in radiation therapy. Sequences related to
this sequence were captured with half the resolution of the
ones in Figure 4.

4.3. Computing time
The proposed method is suitable for its integration in

realistic environments using consumer grade equipment
within a reasonable computing time, and without requir-
ing dedicated graphic cards.

Table 3 shows the average computing times required by
the different steps of our algorithm for the human sequences

Algorithm Step Time (s)
Extracting Pointclouds 3.121
Global ICP 23.083
Finding 3D Corner Positions 0.003
Scene Alignment* 0.312
Heightmap Creation 3.903
Error Map and Overlay Creation* 0.256
Total 30.679

Table 3: Average computing time of our algorithm for different steps
and in total.
*These steps are reported only including non-reference scenes because
they do not apply to reference scenes in our algorithm.

visualized in Figure 4. The computation time were calcu-
lated on a laptop with with the Intel Core i7-4700HQ pro-
cessor and 50 iterations of global ICP. The Table does not
include the computing time needed by the UcoSLAM algo-
rithm for tracking because this method runs in real time
while the RGB-D video is being recorded. On average the
sequences had 15 keyframes produced by the UcoSLAM
algorithm. The average length of recording for these se-
quences was only 10 seconds.

5. Discussion

5.1. Quantitative evaluation
As could be seen (Table 2), in total, the average positional

error in estimating the pose of the mannequin is around
11 mm. However, the median of the error is even lower at
around 10 mm. This suggests that for most of the scenes
the positional error is lower than the average. The same
could be seen as true for rotational error where a median of
around 1° is achieved.

5.2. Qualitative evaluation
As can be observed in Figure 4, the human subjects are

reconstructed with a considerable details. The same can
be said for the shape of the mannequin; even the small IR
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(a) Reference Scene (b) New Scene
(c) Heightmaps (d) Error Heat Map and Overlay

Figure 4: Reconstructions made from our algorithm’s output of the human subject in two difference scenes: a reference scene (a) and a new
scene (b). The mesh reconstructions are done by applying the Poisson surface reconstruction algorithm on the point clouds made from the
heightmap of the scene. Each mesh is presented twice first rendered with no color but with shading and second with color and no shading.
The heightmaps from the two scenes can be seen in column (c). Finally, the error map of the second scene and overlay of the height maps are
presented in column (d). Please note that in the heightmaps and their overlay, the patient is segmented for better visualization.

reflective markers attached on the mannequin are clearly
reconstructed. Please note that the artifacts on the edge
of the person and the mannequin are due to the lack of
captured points in those areas and not low quality of the
point clouds. Furthermore, the last two images (in the far
right) for each subject can clearly display the amount of
error and how the patient needs to be moved to correct the
pose. This is a desired feature since these images are shown
to the person in charge of patient positioning as a guide for
pose correction.

However as can bee seen in Figure 5 the reconstructions
are still robust. Again, please note that the artifacts on
the edge of the subject are due to lack of the captured 3D
points and not the quality of the reconstruction.

5.3. Computing time
As can be observed (Table 3), the most time consuming

part of our implementation is the Global ICP. Nevertheless,

in less than half a minute, our method is able to produce its
results. We find this suitable for its use in real radiotherapy
sessions.

6. Conclusion

This paper has proposed a novel approach to obtain 3D
body reconstructions for patient positioning using inexpen-
sive consumer RGB-D cameras. The main novelty of our
approach is the use of a novel SLAM technique that com-
bines natural and artificial landmarks in order to obtain
a coarse 3D reconstruction that is later improved without
requiring expensive hardware or dedicated graphic cards.

By placing a set of squared markers in the environment,
that should remain fixed from one session to another, the
proposed method is able to align the reconstructions achiev-
ing a median translation error of 1 cm and a rotational error
of 1°.
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Figure 5: In the images above you can see reconstructions from the subject in different scenes taking different poses. Reconstructed meshes
are created from the point clouds obtained from the output heightmaps of our algorithm. To do so, we have employed the Poisson surface
reconstruction algorithm. You can see two renders of the mesh at each scene, using only lighting or using only shading. The other one using
only the interpolated colors when reconstructing the mesh. Please note that the artifacts around the subject’s body are due to lack of captured
points in the point cloud and not the quality of the reconstruction.

The use of markers also allows us to employ the RGB-D
camera as a hand-held scanner. Thus, the recording dis-
tance to the patient is reduced contributing to improve the
reconstruction quality for that type of sensors. Our method
generates as output a visual superimposition of the patient
both in its current position, and in the reference position,
along with an error map. These pieces of information allow
us to easily check how the pose of the patient needs to be
corrected.

We have created a robust framework that can produce
results of decent quality and could be improved by enhanc-
ing different parts of it. We suggest that this method could
be extended for non-rigid surface registration which is left
to be done in future works.

Our method in this paper is focused on using a single
CPU so that it is usable in most of the situations. However
with the help of GPU accelerated computing it is possible to
speed up our method and also include non-rigid registration
with a reasonable computation time. Furthermore it is also
possible to use multiple consumer level RGB-D sensor on
a camera rig to improve the quality of the scan. This can
give the opportunity of fixing the camera rig in the room
and have a live view of the patient which could be valuable
in monitoring breath and live registration of the CT scan
on the patient’s body.
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