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Abstract

Background and Objectives: Recently, longitudinal studies of Alzheimer’s

disease have gathered a substantial amount of neuroimaging data. New meth-

ods are needed to successfully leverage and distill meaningful information on the

progression of the disease from the deluge of available data. Machine learning

has been used successfully for many different tasks, including neuroimaging re-

lated problems. In this paper, we review recent statistical and machine learning

applications in Alzheimer’s disease using longitudinal neuroimaging. Methods:

We search for papers using longitudinal imaging data, focused on Alzheimer’s

Disease and published between 2007 and 2019 on four different search engines.

Results: After the search, we obtain 104 relevant papers. We analyze their

approach to typical challenges in longitudinal data analysis, such as missing

data and variability in the number and extent of acquisitions. Conclusions:

Reviewed works show that machine learning methods using longitudinal data

have potential for disease progression modelling and computer-aided diagnosis.

We compare results and models, and propose future research directions in the

field.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, is an incur-

able neurodegenerative disease that affects millions of elderly people worldwide

[1, 2]. It is characterized by an accumulation of amyloid-beta (Aβ) proteins in

the brain and the formation of tau plaques, which gradually impair cognition,5

leading to death [3]. Cognitively normal (CN) subjects affected with the disease

start to show progressive loss of memory and cognition [4], entering a mild cog-

nitive impairment (MCI) stage, before developing to full-blown AD. Detecting

the disease in its early stages is key for a more effective treatment aimed at

preventing the degenerative process.10

A better understanding of the disease progression is crucial for early diag-

nosis and personalized therapy. AD is described as a multifactorial disease [5],

where several markers represent different pathophysiological processes in the

brain, with distinct progression paths. Examples of such markers are brain Aβ15

deposition, tau injury and neurodegeneration, and they can be used to analyze

the disease progression from different perspectives. Appendix A and Appendix

B give more details on these markers and their dynamics.

Due to the widespread use and availability of medical devices during the past20

decades, we now have access to electronic medical records containing a varied

set of clinical data coming from multiple sources, including brain imaging scans

from different modalities, acquired over time in a longitudinal fashion [6]. Con-

trary to cross-sectional studies, longitudinal studies allow us to measure the

evolution and effects of phenotypic characteristics over time caused by disease25

progression [7].

Traditional methods of data analysis for extracting knowledge rely on search-

ing relationships among measured quantities (variables). In statistical inference,

2



we start from a hypothesis of the effect of potential independent (input) vari-30

ables on the dependent (output or outcome) variables, and look for above-chance

associations that confirm or refute the hypothesized relation. Statistical model-

ing caters for prediction, but predictive accuracy is not its primary goal. From

another perspective, machine learning (ML) allows us to accurately model the

relationship between input and output that generalize to unseen data. ML is35

particularly helpful when dealing with complex and unwieldy data, and when

the number of input variables is large. One application of ML is prediction (e.g.,

diagnosis), but such techniques are also useful to find patterns or relationships

in the data. Methodologically, the boundary between ML and statistical meth-

ods is fuzzy. We refer the reader to [8, 9] for a more in-depth discussion.40

Progression of the disease using cross-sectional information has been exam-

ined by many ML studies [10, 11]. Fewer have used a sequence of acquisitions

and assessed longitudinal changes directly. Although working with longitudinal

data can improve our knowledge of the disease [12], adding a temporal dimension45

entails difficulties and data analysis problems, such as data imbalance or time

alignment, that need to be addressed [13, 14] (see Appendix C for more details).

In this survey, we review current machine and statistical learning studies and

identify trends for longitudinal medical imaging analysis, current gaps in the lit-50

erature and possible future directions. We divide the reviewed studies in two

large groups: computer-aided diagnosis (CAD) and progression modelling. We

exclude purely statistical inference studies, as our focus is on general-purpose

learning techniques. We believe such techniques can leverage longitudinal in-

formation and give new insight into AD and dementia progression, due to their55

ability to manage and explore growing volumes of diverse available data in an

exploratory hypothesis-free setting.

This paper is organized as follows: in Section 2, we describe the search crite-

ria used to gather the reviewed works. In Section 3 we discuss their data usage,60
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focusing on the type of longitudinal data and measured markers. Next, we talk

about the tasks addressed by the reviewed works: in Section 4 we analyze works

that model the progression of the disease, categorizing by the main method

used, and detailing advantages and disadvantages of the reviewed approaches.

Then, in Section 5, we analyze papers focused on computer-aided diagnosis of65

the disease, describing both the methods and the data used, as well as their

performance. We then discuss specific aspects: in Section 6, we explain how re-

searchers handle certain problems such as temporal alignment and missing data

approaches. In Section 7 we discuss about the reproducibility and interpretabil-

ity of the reviewed works. Finally, based on our analysis, in Section 8 we discuss70

the overall results, draw conclusions and suggest possible further research paths.

2. Search methods

We reviewed works that 1) focus on AD or dementia, 2) use medical imaging

derived markers, 3) use longitudinal data, and 4) use ML methods. We created75

four groups of keywords for the search:

• Keywords related to the disease: Dementia, Alzheimer’s disease, Mild

Cognitive Impairment, AD

• Keywords related to markers of the disease: MRI, PET, medi-

cal imaging, Magnetic resonance imaging, Positron emission tomography,80

fMRI, T1 MRI, T2 MRI, FLAIR, DWI

• Keywords related to longitudinal data analysis: longitudinal, spa-

tiotemporal, temporal, long-term, follow-up, progression

• Keywords related to machine learning and statistical learning

methods: classification, learning, prediction, data-driven, precision medicine,85

pattern recognition, artificial intelligence, AI, ML
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The keywords were chosen to be general terms for each concept but specific

enough to discard unrelated papers. We used the search engines of PubMed,

ScienceDirect, Scopus, arXiv and bioRxiv. In each website we retrieved papers

that had at least one keyword from each group. Depending on the website, its90

search engine did not allow to use the full search: that was the case in Sci-

enceDirect, Scopus and bioRxiv, where we had to reduce the number of terms.

In these cases, we only used the first two words of each category, which we

consider to be the most representative.

95

We excluded papers that were not related to AD or that did not use longi-

tudinal imaging data in their experiments or models. We also excluded papers

that did not use a general-purpose learning approach, as mentioned in the in-

troduction. For example, statistical reports whose goal was to test a specific

hypothesis.100

Search was done over a time period going from January 1st, 2007 to July

31st, 2019. We obtained a total of 1404 different papers. Then, we removed

papers that were out of scope (1300). These include papers that did not use

learning methods, that used only cross-sectional data, or that focused on other105

diseases, but had appeared in our search. After that, we removed duplicates

from the remaining papers (44), leaving us with a total of 60 papers. Finally,

we did a search on the references and citations of the selected papers to include

relevant works that could have been missed by our initial search, adding up to

105 selected works. Figure 1 shows a diagram of the selection process.110
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Figure 1: Paper selection pipeline.
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3. Data and methods usage

We analyzed the data and methods in the final selection of papers to gain an

initial understanding of the reviewed works. We focused on several key aspects:

follow-up length, measured markers, database and main methods used.

115

3.1. Follow-up length

Figure 2: Reviewed papers according to their reporting of follow-up length.

To assess the impact of longitudinal data used in a paper, we analyzed the

number of follow-ups per subject and the follow-up length. Figure 2 shows

how this information was reported in the reviewed articles. Most of them re-

port enough information on the longitudinal data selection, with the majority of120

articles reporting both the maximum number of follow-ups and the average num-

ber of follow-ups, but a sizeable amount of articles did not report information

about the years of follow-up. This can raise some concerns about reproducibility

(see Section 7, and it affects the comparison with other works and the correct

assessment of the methodology used.125

Figure 3 shows the distribution of the (maximum and/or average) number

of follow-ups reported in the selected papers. We observe that the distribution

is skewed to low number of follow-ups, in both maximum- and average-number
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graphs. This is an expected result due to the limited availability of adequate130

long-term data: subjects having large number of follow ups are sparse in avail-

able longitudinal datasets [6]. A substantial percentage of works (39%, not

counting those that did not report the information) use only one or two follow-

ups in addition to the baseline.

135

Figure 3: Distribution of the number of follow-ups (maximum and average) used in the re-

viewed papers. Rounded average values. N: not reported.

Figure 4 shows the distribution of the (maximum and/or average) number of

years of follow-up reported. In average, studies follow the patients for between

1 to 3 years, and for a maximum of 2 to 4 years. There is a small subset of

papers that are very long term, following the patient from 8 to 12 years [15–20].

Depending on the follow up length, we distinguish between two groups:140

• Short-term longitudinal works, including follow-ups up to, at maximum,

two years. These papers tend to select a subset of available data, avoiding

missing data and unbalanced data problems [21–27] (see Appendix C for

an outline of main challenges in longitudinal data). Papers based on short-

term brain atrophy [28–32], where usually only one follow-up is needed to145

calculate tissue loss, and those using several modalities that want to avoid

missing data problems [33–35] tend to be short-term.
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Figure 4: Distribution of the years of follow-up (maximum and average) used in the reviewed

papers.

• Long-term longitudinal works, including follow-ups of three years or more.

These papers need to deal with missing data, as long-term data tend to be

sparse. However, long-term data give an additional insight of the whole150

progression of the disease that short-term longitudinal data cannot pro-

vide. There are many disease progression studies using long-term longi-

tudinal data [17, 19, 20, 36–40], whereas computer-aided diagnosis works

using long-term longitudinal data are less common [41, 42]. Some works

use longer-term longitudinal data for model validation after training on a155

short-term subset [43].

As mentioned before, subjects with large number of follow-ups are limited

[6]. This is due to various reasons: dropout from the study, missing data due to

faulty screenings, and short follow-up time, among others. Even if the number

and length of follow-up measures may increase over time, dropout of patients160

and missing data are phenomena that are present in longitudinal studies. In

Section 6 we give examples of methods used by researchers to overcome those

problems.
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3.2. Data sources165

Longitudinal data used in the reviewed papers come from diverse studies.

An in-depth review of available longitudinal studies that measure AD markers

can be found in [6]. Appendix A gives additional information about studies and

initiatives. Figure 5 shows the distribution of databases used in the reviewed

papers.170

Figure 5: Distribution of longitudinal studies used in the reviewed papers. Graphic

is truncated to represent higher counts. ADNI: Alzheimer’s Disease Neuroimaging

Initiative, BLSA: Baltimore Longitudinal Study of Aging, own: own datasets, not

public and/or gathered inhouse, IXI: Information eXtraction from Images, MIRIAD:

Minimal Interval Resonance Imaging in Alzheimer’s Disease, HNRS: Heinz Nixdorf

Recall Study, OASIS: Open Access Series of Imaging Studies, DRC: Dementia Research

Centre, DIAN: Dominantly Inherited Alzheimer Network, AIBL: Australian Imaging,

Biomarker & Lifestyle Study of Ageing, WHIMS: Women’s Health Initiative Memory

Study, MAS: Sydney Memory and Aging Study

ADNI [44] is the most used database, being the largest public longitudinal

database for AD patients in the world. It has well organized and processed data,
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and it has many different modalities and long follow-up times. In addition, ob-

taining access to ADNI data is easy and fast. With all these characteristics,175

it is not surprising that ADNI is the most widely published dataset. Other

databases are less popular due to their lower amount of data, limited/smaller

number of modalities, or difficulty to access them, and often they are used to-

gether with ADNI [45–47] as a separate testing set. Some datasets are more

specific, regarding, for example, the type of patients they have (Sidney MAS,180

DIAN, WHIMS) or their follow-up criteria. Interestingly, the Rotterdam elderly

study [48] was not used in our reviewed studies, given its size and popularity.

However, given that it is not specifically focused on AD and that it has a more

complicated access permission, it is reasonable to think that no studies done

with this dataset fit our criteria.185

Having a predominant database allows for more direct comparisons between

results obtained by different methods. However, this can also lead to a gener-

alization problem, where methods would be specific to ADNI’s dataset domain

but would not extrapolate to the general population. Using an independent190

(out-of-study) dataset to test the method is advisable to detect this problem,

but those are not always available. Data accessibility in medical imaging is a

complicated issue due to privacy concerns, which complicates the availability of

public datasets.

195

3.3. Markers

Many works use markers from different sources to characterize the different

AD processes. Figure 6 shows the distribution of markers used in the selected

papers. We observe that magnetic resonance imaging (MRI) is, by far, the most

used type of data. Other modalities, such as positron emission tomography200

(PET) images with different contrasts or cerebrospinal fluid (CSF) markers, re-

ceive low attention despite their importance for disease stratification and early

detection [49–51], and are often used in combination with other modalities. Due
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to their more invasive acquisition methods, they are not as widely available as

MRI in longitudinal studies, and are more prone to missing acquisitions.205

Figure 6: Distribution of measured markers, for single- and multimodality-based pa-

pers. MRI: magnetic resonance imaging. PET: positron emission tomography, PiB:

Pittsburgh compound B, FDG: fluorodeoxyglucose, AV45: Florbetapir AV-45, fMRI:

functional MRI, Cog: cognitive assessments, CSF: cerebrospinal fluid, Gene: genetic

markers, Plasma: plasma markers, DTI: diffusion tensor imaging.

3.4. Methods

Table 1 shows the main methods used by the articles reviewed in this paper.

Those methods can be categorized into two groups according to the task they

aim: progression models, which seek to quantify the evolution of the disease,210

and classification models, which predicts diagnosis labels of patients. Some of

the methods, such as deep learning or multi-task learning, are flexible and can

be used for both tasks. Moreover, some works use several different methods for

their objectives. The list of methods is not exhaustive, and provides a general

picture of the current approaches in the field. For classification, support vector215

machines (SVM) are the most used method, whereas for progression, a wider
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variety of methods are emplyed. In the next sections (Section 4 and 5) we

discuss and compare the aforementioned methods.

Method References

Multi-task learning [52–58]

Deep Learning [15, 40, 59–62]

Event-based models [63, 64]

Manifold learning [65–67]

Mixed-effect models [18, 20, 38, 39, 68–72]

Shape analysis models [46, 73–77]

Gaussian processes [29, 78–80]

Data-based progression scores [19, 47, 81–83]

Support Vector Machine [24, 25, 27, 33, 45, 84–97]

Multiple Kernel learning [34, 98, 99]

Logistic Regression [22, 23, 31, 32]

Random Forests [21, 100, 101]

Table 1: Main methods used in the reviewed papers.

4. Progression models

Models of disease progression can be used to quantify the evolution, deter-220

mine temporal trajectories and detect different paths of degeneration, among

other sub-tasks. In this section we comment on approaches that build dis-

ease progression models from longitudinal data, grouping them by their general

methodology.

225
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4.1. Multi-task learning for cognitive prediction

Predicting the rate of cognitive decline from imaging markers can be useful

to detect brain regions that directly affect cognitive evolution. Also cognitive

performance can provide a continuous measure related to disease progression

that may complement the categorical information about diagnostic. Since sev-230

eral cognitive scores of the patient are often available, multi-task learning is a

popular approach for cognitive prediction. Defining cognitive scores as sepa-

rate prediction tasks and training them jointly creates a more robust predic-

tive model. Such models have shown to have many advantages: they can use

a variable number of follow-ups [55, 58, 90] and can provide direct informa-235

tion between cognitive scores and imaging markers [90, 99, 102–104]. Apart

from multi-task learning, other methods have been used for this task, such as

probabilistic models [105], regression models [106], or learning ensemble models

[41, 100, 107], which combine different, smaller models, and can be defined in

flexible ways to integrate missing follow-ups into the model.240

4.2. Deep learning

Deep learning is a powerful representation technique that is state of the art

in many ML problems. A deep learning model is a neural network with many

layers, which is able to learn from large amounts of data to do specific tasks.245

For a comprehensive review of deep learning techniques in medical imaging, we

refer the reader to [108].

Convolutional neural networks (CNN), which are commonly applied with

images, have been used for cognitive score prediction [54, 59]. In [54], they com-250

bined CNN and MTL, using CNN-based features to train a MTL-based model.

In a different approach, [59] proposed a CNN architecture that can predict the

cognitive score of the patient at any time, not being restricted to existing follow-

ups.

255
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Recurrent neural networks (RNN) are networks where previous outputs are

used as inputs while having hidden states. Due to this, they are said to have

memory and are able to model sequential data. Consequently, RNN have po-

tential to be able to learn from longitudinal data. They have already been used

to predict progression of AD using diverse cognitive scores [109], but without260

imaging information. [15, 40, 61] all used RNN with imaging markers, although

not to quantify progression but for computer-aided diagnosis. Despite their

popularity in other fields, RNN are still not widely used for modelling disease

progression using medical imaging. A reason could be that deep learning meth-

ods are mostly non-interpretable, and any performance gains do not usually265

compensate the loss in interpretability.

4.3. Event based models

Event based models (EBM) [63] are a modelling approach that describe a

neurodegenerative disease by an ordered series of events, such as a new symptom270

appearing on the patient. EBM define a fixed number of markers, modelling

each of them separately to obtain a distribution of abnormal and normal val-

ues (indicating the presence of the disease or not) and to generate an ordering

of events. We can use this ordered sequence of events to assess the disease stage.

275

In their initial formulation, EBM were not well-suited to accommodate lon-

gitudinal data. There are several studies based on EBM for modelling disease

progression that use longitudinal data, either by using markers derived from

brain atrophy rate [28, 63, 110] or because they validated their results using

the available longitudinal information [64, 110]. Given the potential and strong280

results they show, integrating longitudinal data in such models is a promising

research direction.
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4.4. Manifold learning

Manifold learning is an approach to dimensionality reduction. It assumes285

that the high-dimensional data lie (at least approximately) on a manifold of

much lower dimension. Applied to disease progression modelling, manifold

learning can be used to estimate an underlying subspace where longitudinal

patient trajectories can be better represented. These are directly learnt from

the data, and typical problems such as temporal alignment and unbalanced290

datasets are solved in the subspace learning process. [66] used Laplacian eigen-

maps to build a longitudinal manifold, where AD and CN subjects are well

differentiated. [65, 67] also proposed a method based on Laplacian eigenmaps,

adding a constraint to limit connections between scans from the same subject,

to create a temporal embedding that shows the progression of the patient.295

These methods are not as popular as other types of models for progression:

they are not as directly interpretable as other models such as EBM or multi-

task learning, and can be much more complex to implement. However, one can

introduce interpretability by effectively embedding the progression in a relevant300

low dimensional manifold. This, together with their potential to integrate con-

textual information (e.g. constraints for longitudinal data [67]), make manifold

learning an underrated approach for disease progression.

4.5. Mixed effect models

Mixed effect models are widely used due to their flexibility to deal with un-305

balanced data, and their ability to naturally model average disease progression

(fixed effects) and inter-subject variability (random effects). They are commonly

considered a classical statistical technique, but we decided to include works that

used such models to observe and quantify progression, due to their importance

in longitudinal analysis. [111] presented an overview of these methods for MRI,310

suggesting that linear mixed effect models detect MRI longitudinal group differ-

ences with more sensitivity and specificity than other methods such as ANOVA
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or general linear models, specially with unbalanced datasets.

Mixed effect models have been extensively used in longitudinal progression315

models for AD [19, 20, 45, 69–72, 112, 113], as they can be directly adapted

to unbalanced longitudinal datasets [69], extended by adding priors such as

genetic markers [72] or different progression speeds and disease onsets [71], or

used to derive new data-based markers that reflect the progression of the disease

[19, 20, 45, 112]. Apart from MRI, linear mixed models have also been applied320

to other markers, such as PET-based markers [20, 68].

Mixed effect models are easily adapted to more than one modality of data.

For this reason, they have also been used extensively in longitudinal multimodal

analysis. The easiest way to use them on multiple modalities is to define a325

different model for each modality [18, 38, 68], allowing us to draw comparisons

between markers [82] or to combine them to show the overall progression of

the patient [19, 20, 82, 114, 115]. This combination usually needs some kind of

temporal alignment of the markers (see Section 6.1 prior to fitting the model

[38], by using a defined scale such as cognitive scores [116], or directly in the330

fitting model [115]. [39] applied a multifactorial mixed model to one of the

largest patient cohort in the field, with more than 7700 images and markers

from 1100 patients at various stages of the disease, to model and explore the

evolution of different markers. Their results suggest that vascular dysregulation

might be the earliest factor associated with AD development.335

4.6. Shape analysis models

Some methods focus on modelling shape changes of certain brain regions

during the disease. This allows capturing subtle variations between or within

subjects, which would be lost just by looking at flat imaging markers such as

volume or voxel intensities. Current research shows longitudinal changes in340

shape in key structures of the brain (such as lateral ventricles or hippocampus)

that are strongly related to cognitive degeneration [73, 74] and can reveal differ-
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ences between groups of patients [75–77]. Mixed effect models are often used for

modelling shape changes [73–76], with [46] proposing a novel vertex clustering

method to model shape changes over time, using a similar mixed effect model345

already proposed in other reviewed works [71, 82, 114].

4.7. Other models

Besides the methods discussed so far, other types of models for disease pro-

gression are also used. Generalized estimation equations for longitudinal anal-

ysis [117] model both the mean response of a population and the covariance of350

repeated measures [118], and deal with unbalanced datasets [37, 119]. Gaus-

sian processes are also used to model spatio-temporal changes and dependen-

cies [29, 78, 79] and to integrate different modalities [80]. Some methods focus

on specific tasks, such as finding hidden latent temporal factors of the disease

[16, 120], or are specifically designed to tackle problems such as unbalanced data355

or patient alignment [119, 121–123]. In [124] they used a non-linear atlas-based

model to simulate future MRI scans from previous follow-ups, similar to [79].

Other papers focus on specific data or markers, such as brain connectivity [125]

or functional data [17].

360

[47, 81, 126] defined a method that aggregates the aging change over time on

a single marker, and compared it to the real age of the patient and its evolution

across time. Atrophy of the brain due to dementia can be similar to the atrophy

due to normal aging: brain atrophy can occur because of both normal aging and

pathological reasons. Disentangling those two sources can be useful to discover365

the disease earlier. In the same line, [127] proposed a non-rigid registration

method to disentangle the contributions of normal atrophy and disease atrophy,

and observed their relation to AD progression. This age-based approach allows

us to introduce prior knowledge about healthy subjects in the model and then

study the deviations that appear. Such idea has been used in computer-aided370

diagnosis with remarkable results [89].
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For multimodal data, we find works combining genetic information with

imaging markers, using regression based models [32, 128], which are useful to

discover longitudinal interactions between imaging markers and genetic factors375

that could go unseen in cross-sectional analysis [12]. Creating data-based pro-

gression scores [45, 82, 83, 87, 129] is also a recurrent approach to quantify

progression, independently of the method chosen, because such scores are easy

to interpret and compare against. [130] applied hidden Markov models, using

different markers, to characterize the progression of the disease into stages, and380

discovered two different paths of AD progression. Recently, [131] proposed a

vertex-wise progression model over cortical surface which can be used in dif-

ferent diseases and with different markers to recover and estimate patterns of

brain pathology. Their test the model on real and simulated data and is shown

to have potential clinical relevancy. Using multimodal data can also be useful385

to find subtypes of the disease, given its heterogeneity [132]. Thus, combining

longitudinal multimodal data is effective to discover hidden AD factors unseen

in cross-sectional or single-modal data.

5. Computer-aided diagnosis390

Many ML approaches on AD focus on computer-aided diagnosis (CAD):

given data about patients, the objective is to classify them depending on their

diagnosis (CN, MCI or AD). An extension of this task is to distinguish between

MCI patients that will convert to AD (MCIc), and those that will not convert

and remain stable (MCInc), which is useful for early detection of the disease.395

Cross-sectional imaging data have been used extensively for this task, and we

refer the reader to [133] for an in-depth review. In this section we study works

dealing with this problem using novel methods to process and interpret longitu-

dinal data. We present first the papers using exclusively structural MRI (which

are the majority), and then those using other modalities. Finally, we comment400

on the general performance of the methods.
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5.1. Computer-aided diagnosis - structural MRI

A large percentage of the reviewed works use structural MRI as their main

source of data, and CAD focused works are no exception, given that structural405

MRI is considered a clinical predictor of AD [96]. Table 2 shows the perfor-

mance and principal characteristics of the reviewed works using (exclusively)

MRI on CAD. We have divided them by their use of MRI data to build their

model: voxel-wise methods and region of interest (ROI) based methods. Some

of the works focus only on the hippocampus.410

Whole brain voxel-wise analysis allows detecting relations across the whole

brain, not being restricted to parcellations. However, this results in high-

dimensional input data, which often required feature selection and/or dimen-

sionality reduction. One way to do it is to detect landmarks across the brain415

and extract features around those marks [88, 94]. Other methods are principal

components analysis (PCA) [84, 88, 93], regularization [60] or metric learning

[26]. All these methods need to capture the differences/changes in voxels across

time, and use them as features. This can be done by computing some difference

between the images, such as brain volume changes [88], or deformation maps420

across follow-ups [45, 92, 93]. In [134], they used a hierarchical regression classi-

fier on longitudinal voxel selection features that solves both problems: selecting

the voxels using an individual classifier for each single voxel on the brain, and

training the classifiers with the longitudinal data. In a more recent study, [61]

used two different neural networks (multi-layer perceptrons and gated recurrent425

units) to extract spatial and longitudinal features from MRI images.

ROI-based methods use a parcellation of the brain to extract features, limit-

ing their amount and avoiding the curse of dimensionality. Studies use a variety

of popular methods, such as support vector machines (SVM) [89, 91, 95, 97],430

multi-task learning [52], or RNN [15], extending them to account for longitudi-
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nal data. For example, [95] defined a stratified SVM method to enforce temporal

consistency across follow-ups, and [89] created null models of normal aging us-

ing non-demented subjects, and training an SVM with the residuals. Those two

methods illustrate how prior knowledge of the dynamics of the disease (non-435

reversible nature of AD and deviation from normal aging, respectively) can be

incorporated into a ML model.

The hippocampus is one of the earliest affected brain regions in AD [3]. Con-

sequently, many works have focused on this region [27, 86], specially for MCIc440

vs MCInc classification [23, 31]. We observe a variety of methods to extract

meaningful features from the hippocampus: patch-based atrophy descriptors

[31], longitudinal segmentation methods [112], non-linear metric learning and

autoencoders [27], longitudinal deformation [22, 23] and hippocampus volume

change [86]. These last two articles also compare different processing methods445

and their performance to further validate their approach.

Among the reviewed papers, SVM is the most used classification method

(see Table 2 due to its simplicity, availability and strong performance. However,

deep learning is starting to take off, using CNN [60] and RNN [15, 61].450

5.2. Computer-aided diagnosis - other modalities

Some works use other types of modalities, such as fludeoxyglucose (FDG)-

PET, which can present early indicators of the disease [135], or use multimodal

approaches, with various types of data. Table 3 summarizes the performance455

and characteristics of such studies.

The importance of FDG-PET based markers in longitudinal analysis of AD

is shown in [85], where they tested the predictive capacity on MCI conversion

depending on the temporal distance to the conversion using longitudinal FDG-460

PET images. They showed that, although the performance decreases as the
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Table 2: Performance of reviewed computer-aided diagnosis papers using longitudinal struc-

tural MRI

Study Subjects Scans Type Algorithm Database Validation Classification results

CN sMCI pMCI AD AD/CN MCI/CN sMCI/pMCI

[92] - 76 27 - 3 V SVM ADNI LOOCV - - 81.5

[96] 83 61 142 83 7 V SVM ADNI BS - - 62

[88] 30 - - 30 3 V SVM ADNI LOOCV 91.7 - -

[26] 123 121 - 94 2 V SVM ADNI CV 88.4 86.5 -

[134] - 61 70 - 7 V LSR ADNI CV - - 79.4

[84] 148 148 - - 2 V SVM HNRS,OASIS CV - 74.3 -

[60] 68 - - 70 6 V DL ADNI CV 94 - -

[61] 229 - - 198 5 V RNN ADNI CV 89.69 - -

[93] - 47 63 - 5 V SVM ADNI CV - - 92

[94] 207 346 - 154 6 V SVM ADNI CV 88.3 79.02 -

[91] 40 36 39 37 5 ROI SVM ADNI LOOCV 96.1 - 81.7

[52] - 185 164 - 5 ROI MTL ADNI LOOCV - - 71.4

[53] - 53 60 - 4 ROI MKL ADNI CV - - 78.2

[95] - 81 70 - 5 ROI SVM ADNI CV - - 76.5

[89] 215 366 - 166 8 ROI SVM ADNI CV 94.1 83.8 76.7

[15] 742 12 ROI DL+LDA ADNI - 0.9b 0.59b 0.78b

[22] - 84 19 - 2 H LGR ADNI CV - - 0.65/0.62c

[23] - 84 19 - 2 H LGR ADNI CV - - 0.46/0.84c

[86] 148 95 121 96 3 H SVM ADNI CV - 0.88b -

[31] - 100 164 - 2 H LGR ADNI CV - - 76.6

[27] 123 121a - 94 2 H SVM ADNI CV 85.9 - 76.7

[112] 137 82 101 77 4 H LDA ADNI,MIRIAD BS 0.947b 0.805b -

SVM: Support vector machine, LSR: Least squares regression, LGR: Logistic regression, MTL:

Multi task learning, MKL: Multiple kernel learning, DL: Deep learning, LDA: Linear discrim-

inant analysis, V: Voxel-wise, ROI: Region of interest, H: Hippocampus, ADNI: Alzheimer’s

Disease Neuroimaging Initiative, HNRS: Heinz Nixdorf Recall Study, OASIS: Open Access Se-

ries of Imaging Studies. CV: k-fold cross validation. LOOCV: Leave one out cross-validation.

BS: Bootstrapping. If the number of scans is variable, the maximum is reported.
a MCI subjects
b AUC (area under the curve)
c Specificity and sensitivity
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distance to conversion increases, they were able to track AD progression for up

to two years before disease onset. Other studies use region-based [24, 33] and

voxel-based [25] analysis of FDG-PET imaging, and show that adding longitu-

dinal information to the problem improves classification accuracy, compared to465

only using cross-sectional data. Reviewed works show improvements in the lon-

gitudinal model with respect to the cross-sectional model. This suggests that,

at least for FDG-PET, longitudinal data are important to improve CAD models.

Many classification studies use data coming from various modalities. Com-470

parison studies [34, 99, 101] show that multimodality and longitudinal data

improve the performance of the model compared to baseline models using only

cross-sectional data or with a lower amount of longitudinal data. There are

diverse methods to combine the data, ranging from direct concatenation [40] to

more complex methods, such as multiple kernel learning (MKL) [136]. MKL475

allows us to directly combine different modalities and interpret the resulting

model as a weighted combination of kernels. Other methods such as linear re-

gression [42], SVM [137], random forests [21, 101], RNN [40] and MTL [56] have

also been used to combine and select features from different modalities of data.

480

5.3. Performance analysis

Using longitudinal data for CAD leads to better performance in hard prob-

lems such as early detection of MCI converters [21, 31, 53, 93], where cross-

sectional data could be insufficient to determine whether a patient will progress

to AD [138]. Tables 2 and 3 show the performances of the reviewed papers fo-485

cusing on CAD. Performance is reported using accuracy, unless otherwise stated.

For classification of CN vs AD, [26, 27, 60, 89, 91] reported the highest per-

formances, up to 96% accuracy [91]. For classification of CN vs MCI, a harder

problem, [89] showed strong results, with 82% accuracy. The hardest problem490

is distinguishing between converting and non-converting MCI patients, which is
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Table 3: Performance of reviewed computer-aided diagnosis papers using other imaging modal-

ities and data types.

Study Subjects Scans Modality Algorithm Database Validation Classification results

CN sMCI pMCI AD AD/CN MCI/CN sMCI/pMCI

[33] 40 - - 40 3 FDG-PET SVM ADNI LOOCV 78 - -

[24] 54 64 53 50 2 FDG-PET SVM ADNI - 88 - 63.1

[25] 66 109a - 48 2 FDG-PET SVM ADNI CV 91.2 70.2 -

[85] - 56 44 - 5 FDG-PET SVM ADNI CV - - 81

[42] - 100 200 - 4 MRI,Cog LSR ADNI LOOCV - - 89.7

[137] - 65 54 - 3 MRI,Cog SVM ADNI CV - - 84.3

[21] - 78 86 - 2 MRI,Cog RF ADNI OOB - - 82.3

[101] - 85 182 - 2 MRI,Cog RF ADNI OOB,CV - - 80.2

[34] 66 119a - 48 2 MRI,FDG-PET,CSF,Cog MKL ADNI CV 92.4 - 0.76 b

[99] - 50 38 - 5 MRI,FDG-PET MKL ADNI LOOCV - - 78.4

[98] 213 6 MRI,Gen,Cog MKL ADNI - 90c - -

[56] - 53 65 - 3 MRI,FDG-PET,Cog MTL ADNI CV - - 84

[57] 23 24a - - 6 MRI,fMRI MTL ADNI LOOCV 95c - -

[40] 521 864a - 336 23 MRI,PET,CSF,Cog RNN ADNI - 95.8 77.3 85.8c

SVM: Support vector machine, LSR: Least squares regression, RF: Random forest, MKL: Mul-

tiple kernel learning, MTL: Multi task learning, FDG-PET: Fludeoxyglucose positron emission

tomography, fMRI: functional MRI, Cog: Cognitive scores, CSF: Cerebrospinal fluid, Gen:

Genetic information. CV: k-fold cross validation. LOOCV: Leave one out cross-validation.

BS: Bootstrapping, OOB: Out of bag estimation.
a MCI subjects
b AUC (area under the curve)
c MCI vs AD performance
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also the task that has gathered more attention. Best reported performance is

92% accuracy [93], but with a small dataset of only 100 subjects. In general,

works that focus on this problem use low amounts of data, probably because

such diagnostic groups are more sparse in available public and private cohorts,495

since a long follow-up is needed to correctly assess whether the patient will

progress to AD.

We do not observe large differences in performance between modalities. Mul-

timodal studies obtain strong results [34, 42, 98, 137], but they do not excel in500

any of the problems. Even though some papers show better performance by

combining modalities [34], and others show good results [21, 41, 42, 137], they

only achieve marginal improvements compared to single modality works. This

could happen because 1) the models used do not completely leverage the data in

all the modalities, or 2) true comparisons between methods are not reliable due505

to disparity in test/training sets. Models that include cognitive assessments in

their analysis report strong results in detecting patients that will progress from

MCI to AD [21, 40, 42, 56, 98, 101, 137].

It is difficult to compare classification performance, since each paper uses510

different data for testing and different approaches to validate its results. Overfit-

ting is also a common problem [138, 139], where the methods presented perform

well for a specific dataset but do not generalize to unseen data. For example,

[57] performs the best in the MCI/CN classification task combining functional

and structural MRI, but it uses a low amount of data and it does an exhaustive515

search of parameters, so the results are probably overfitted to the dataset. In

our reviewed papers, the most used form of validation is cross-validation, and

some papers also use other external datasets to test their model [84, 112]. When

the amount of data is low, leave one out cross-validation is also an option. When

possible, it is recommended to use such techniques for features election and hy-520

perparameter optimization, as well as independent tests sets when comparing

methods or model architectures.
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Many studies suffer from reproducibility issues (Section 7, where experi-

ments, methodologies and data are not detailed enough for other researchers to525

reproduce the same results. Some researchers have argued for test data stan-

dardization [138, 140, 141], so that the obtained results can be directly compared

[31, 42, 137]. Sharing the code used for the experiments whenever possible and

providing the information to reconstruct the exact dataset used, even if data

itself are not public, should be a priority to tackle this problem.530

6. Methodology challenges

Longitudinal data studies pose methodology challenges in both data collec-

tion and analysis (see Appendix C. In this section, we focus on two data analysis

challenges: temporal alignment (i.e., baseline adjustment) and missing data; re-535

porting how the reviewed works have addressed these issues and discussing some

best practices to overcome them.

6.1. Temporal alignment

To consistently compare patients in a clinically meaningful way, the acquired

markers should be temporally aligned. However, different patients can be at dif-540

ferent stages of the disease at the same acquisition time, and data may not be

necessarily acquired at the same biological age (i.e. degradation due to disease)

for all subjects. Moreover, the gathered data only show a small snippet of the

full onset of the disease (which can be up to 20 years). This is an important

challenge that needs to be addressed, and it is especially critical in progression545

modelling and temporal prediction of the disease. Some of the reference vari-

ables used in the literature are time from baseline acquisition [47, 114], age of

the subject [142], normalized age (where age variation has been removed [127]),

cognitive scores [38, 116], data-driven progression scores [45, 82, 83, 87, 129] or

any other type of data-driven temporal alignment [123].550
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Methods that account for alignment provide a more complete interpretation

of the disease progression over time, as they allow studying between-subjects

differences and assessing the evolution of a given patient with respect to that of

the general population. Temporal alignment of patients could be tackled in two555

different ways: as a preprocessing step to a progression model or as a standalone

problem. Development of new data-driven alignment methods is key to advance

in this field. We believe that works such as [76, 123], or EBM related meth-

ods [28, 63, 110] show how useful data-driven approaches can be to this problem.

560

6.2. Missing data

Incomplete data are very common in longitudinal and/or multimodal clini-

cal studies. Methods must deal with missing data to avoid possible biases, fully

leverage available data, and be applicable to situations where some data could

not be available. Depending on the pattern of missingness, there are different565

types of missing data in longitudinal studies [143]. It is generally assumed that

data are missing at random, and most research has focused on strategies to

handle this type of data.

Figure 7: Distribution of papers by their approach to missing longitudinal data.

Figure 7 shows the distribution of the works according to the strategy used570

to deal with missing longitudinal data. We have divided the different approaches
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in five categories:

• Not mentioned: Papers in this category did not report their approach

to missing data. It is implied that they used a data cohort without missing575

entries. However, given the importance of this problem, it is concerning

that it was not even mentioned.

• Removing incomplete data: A solution is selecting only a balanced

subset of the available data, removing patients with missing longitudinal

acquisitions. This approach has two main problems: it reduces the amount580

of available data, discarding potentially relevant information, and it can

introduce biases in the data, especially if they are not missing at random

[144].

• Inferring from available data using existing methods: Some works

impute missing data from the available cohort, using simple methods such585

as average value [55] or direct completion from previous time points [134,

145], or more complex methods such as sparse regression [100] or low-rank

matrix completion [53]. These approaches can be useful to deal with small

amounts of random missing data, and they can be used as a preprocessing

step, but tend to not scale well and become imprecise with larger amounts590

[14].

• Using a method robust to missing data: In these papers, the method

itself accounts for unbalanced data [143]. For example, approaches based

on mixed effect models, which are robust to missing observations [114,

129], or approaches where each time point is processed separately [65].595

Some studies have adapted methods that were not initially flexible to un-

balanced datasets. For example, in [145] they proposed a loss function

for their model where only available data were used for its calculation,

and [95] defined a temporally-structured SVM where different amount of
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follow-ups could be used. This approach is more complex than just infer-600

ring the data, but can lead to more robust models and to the adaptation

of existing methods.

• Designing a novel approach: Some works propose novel approaches to

data missingness, making it a central point of their work [15, 102, 105, 122,

123]. Those that work with unbalanced data are more broadly applicable:605

a larger dataset can be used for training/validating the model, and it can

be transferred more easily on a clinical setting, where the available data

for a given subject may be sparse.

Although the majority of the reviewed papers address this important issue,

a sizeable proportion (42.8%) just focus on analyzing curated datasets. This can610

be useful to showcase new methods and concepts, but not for creating a model

that works in a real environment. Adapting existing (cross-sectional) models,

such as SVM or deep learning, to the longitudinal domain [15, 95, 102, 145]

could be a stepping stone to developing novel ML models.

615

Figure 8: Distribution of the reviewed papers (categorized by their main aplication) according

to whether they deal with longitudinal missing data.
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Figure 8 shows the proportion of reviewed papers that deal with missing

data (inferring it or using a novel approach or a method robust to it) according

to their main objective (either classification for CAD or modelling disease pro-

gression). Whereas methods for modelling disease progression can usually deal

with unbalanced longitudinal data, classification methods for CAD are more620

sensitive to missing data.

Multimodal studies need to deal with missing data across modalities, as

well as across time. Figure 9 shows the distribution of works according to the

strategy used to handle missing data in multimodal studies. Some of them625

also appeared in Figure 7, as they deal with both types of data imbalance

[39, 82, 123, 145]. Almost half of the studies chose not to use subjects with

incomplete data, whereas the other half used methods that were more flexible.

As before, progression models based on mixed effect models and other statistical

modelling approaches are robust [39, 82, 113, 129], whereas supervised learning630

approaches for classification are more rigid [32, 99, 110].

Figure 9: Distribution of papers by their approach to missing multimodal data. Only multi-

modal works were considered.

A considerable number of articles [16, 17, 29, 33, 46, 72, 118, 119] used simu-

lated data to test their algorithm for other types of data. This approach allows

researchers to create specific scenarios to evaluate the robustness of their algo-635

rithms; for example, with large amount of missing data, with only short-term

longitudinal data, or with additional imaging modalities.
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7. Reproducibility and interpretability

For all studies, results and methods should be reproducible to 1) ensure640

that the results are legitimate, 2) be able to directly apply the method to other

datasets and 3) facilitate dissemination and open science. Moreover, if the model

is to improve diagnosis or better understand the progression of the disease, it

needs to be open and interpretable, that is, able to identify the factors that are

responsible for triggering a concrete response.645

Some measures to ensure the reproducibility of the published results and

methods are:

• Using standardized datasets: some studies [31, 138, 141, 146] propose or

use a concrete set of patients so that anyone can work with the same data.650

However, such standardized datasets have yet to be widely adopted, as

the majority of the reviewed works either use private datasets, or do not

precise which data are used from public datasets.

• Using a standardized data management for neuroimage storing and shar-

ing, such as BIDS 1.655

• Using methods such as cross-validation to minimize overfitting [57].

• Reproducing the methods on a completely different cohort of patients to

test the robustness of the results [83].

• Making the code used to generate the code publicly available.

We studied the reproduciblity of the reviewed works by checking if the code660

and the data to generate the model and the reported results are available. We

1https://bids.neuroimaging.io/
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considered that data were reported if they were directly available, or they could

be obtained without ambiguity from a public dataset. As shown in Figure 10,

although some papers make their data available, very few (15.3%) include the

code. Most papers report neither data nor code.665

Figure 10: Distribution of the reviewed papers by their reproducibility. Vertical axis indicates

amount of papers.

Regarding interpretability, some ML methods, such as deep learning, have

been criticized for being a black box [147], not providing the underlying reason-

ing of the model. Interestingly, many of the reviewed works chose ML methods

allowing some level of interpretability, which is crucial for clinical use. Most of670

the disease progression models are interpretable since their underpinning aim is

to obtain a clinically interpretable representation of the disease pathophysiology.

Other examples are methods based on MKL [98, 99, 136], where markers are

assigned a weight according to their importance to the learned task, or manifold

learning methods [65–67], where patients can be embedded in a low-dimensional675

space to directly visualize relationships between them.
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8. Discussion

We have surveyed papers that use ML algorithms for longitudinal data anal-

ysis. Most of the works focus on neuroimaging, mainly MRI. A significant

percentage of the works (approximately 26%) use multimodal data. Although680

reviewed papers target various tasks, we can divide them in two groups: disease

progression modelling and CAD. Methods for disease progression modelling can

usually deal with unbalanced longitudinal data, whereas methods for CAD are

more sensitive to missing data.

685

For some specific problems, such as classification between converting and

non-converting MCI, longitudinal data showed a strong performance [52, 93],

compared to standard cross-sectional methods [138]. Better detection of MCI

converters could led to an improved early detection of the disease, through

development of novel methods that help prevention policies, and longitudinal690

epidemiological studies that focus on early stages and healthy subjects. Since

AD affects different biological processes, multimodal studies provide a more

comprehensive view of the disease. Studies using more than one modality are

gaining importance [34, 41, 42, 98, 99], and results in specific problems, such as

classification in CAD systems, have shown a slight improvement with respect695

to single modality studies. There is enough evidence from existing multimodal

studies [39, 64, 82] that integrating those different sources can boost perfor-

mance.

Based on our analysis, we argue that methods should aim for robustness700

to missing and unbalanced data, especially for CAD applications. Among the

different approaches to tackle this problem, a promising one is using simulated

data [16, 17, 29, 33, 46, 72, 118, 119]. This allows validating a model in differ-

ent settings and testing its robustness for different rates of unbalanced/missing

data, or setting baseline before using real data.705
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To improve understanding of the disease and make the methods rigorous

and applicable to a clinical setting, more effort towards reproducibility and in-

terpretability of the methods and results is needed. A more widespread use

of validation tools and cohorts would be desirable. Many papers do not use710

standardized datasets, nor share their data, so their results are hard to compare

against other works. Moreover, some of the papers rely on "hard-to-interpret"

ML techniques [54, 59].

Despite large advances on longitudinal data analysis, more research is nec-715

essary on methods that better process and interpret the huge influx of relevant

information that a longitudinal characterization of the disease can offer. Prior

knowledge or assumptions of the disease should be incorporated to naturally ac-

commodate longitudinal data [63, 89, 95]. In this context, the ATN biomarker

framework [148], which provides a biologically based definition of AD (see Ap-720

pendix B, opens up a new path to more accurately characterize the disease.

Regarding CAD applications, deep learning approaches have achieved great

success in medical imaging [108], in brain disease diagnosis [149, 150] and more

specifically, in AD [151, 152], using cross-sectional imaging data. However, our725

findings show that their application for longitudinal analysis is still low (only

6% of the reviewed articles used deep learning based techniques). Incorporate

longitudinal neuroimaging data to deep learning is challenging to classification

systems, due to the high dimensionality that a temporal dimension adds. More-

over, it is not straightforward to solve the problem of missing data and variable730

number of follow-ups in a multi-layer architecture, as several works addressing

this problem show [15, 59]. More work should be done to incorporate such

techniques to the study of longitudinal, high dimensional neuroimaging data,

where they hold promise for better understanding and treatment of the disease.

Given the aforementioned success and great performance of deep learning for735

cross-sectional studies, we encourage and expect advancements in deep learning

based systems using longitudinal data in the near future.
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Almost all reviewed papers use supervised methods. Unsupervised (or semi-

supervised) learning could be useful in dealing with longitudinal data, where740

data are usually unbalanced or not labelled in some of the modalities. Cluster-

ing or other unsupervised techniques, for example, could be used to study the

relationships between different trajectories of patients, without relying on labels

or on large amounts of data.

745

More research to overcome the described problems and challenges is key to

broaden our understanding about the progression of AD and other neurodegen-

erative diseases. These methodological advances would open the door to develop

applications that can be useful in clinical and epidemiological settings.
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Appendix A. Alzheimer’s Disease assessment and markers1345

Alzheimer’s Disease (AD) is characterized by a progressive degeneration of

the brain and cognitive functions [153]. In the literature, diagnosis of patients

is usually divided in three stages [154], although other classifications have been

recently proposed (Section Appendix B):

1. Healthy Control or Cognitively Normal (CN), when the patient shows1350

neither signs of the disease nor cognitive problems.

2. Mild Cognitive Impairment (MCI), when the patient shows signs of cog-

nitive impairment. It can be divided into two substages: early MCI and

late MCI, differentiating between patients by their degree of cognitive im-

pairment.1355

3. AD, when the patient is considered to have completely progressed into

full-blown dementia.

Figure A.1 shows an MRI axial view of two different patients: one healthy

control and the other with AD. We can appreciate the effects of the disease

directly on the reduction of cortical thickness, among other visual and physical1360

cues [155].

AD markers

To determine the stage of the disease, various markers describing key patho-

physiological processess of AD have been proposed over the years. Markers of1365

the brain provide information for the study of the disease and its screening.

AD is characterized by protein amyloid-beta (Aβ) deposition in the brain [156],

tau injury, and structural neurodegeneration [135]. Those three indicators pre-

cede cognitive impairment, leading to death. For the measurement of these

indicators, different markers have been proposed:1370

1. Brain Aβ deposition in the brain can be detected both in positron emission

tomography (PET) imaging [50], and in cerebrospinal fluid (CSF) [49].
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Figure A.1: Axial view of MRI scan for AD (left) and CN (right) patients. Images from ADNI

dataset, registered to a common template.

2. Tau injury and dysfunction caused by tau and p-tau plaques, found in

tau-PET imaging and CSF [49, 157].

3. Neurodegeneration provoked by tau injury. It can be observed in struc-1375

tural magnetic resonance imaging (MRI) [51] and in fludeoxyglucose (FDG)-

PET imaging [158].

4. Memory and cognition, measured by cognitive tests.

The main screening tool for clinical assessment of AD is the clinical interview

between the patient and the doctor, where the severity of the cognitive problems1380

of the patient can be assessed, followed by a cognitive physical examination to

capture the aforementioned markers and assess the presence of the disease [153].

Apart from the aforementioned markers and imaging techniques, resting-

state electroencephalography (EEG) signals have also been proposed for AD1385

assessment [159, 160]. However, they are not as widely used as image-based

examination, as EEG cannot be used to observe specific processes in the brain

and they only show changes in brain activity, which could be caused by other

pathologies. A review on EEG methods for AD can be found in [161].
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Longitudinal marker dynamics and disease model1390

The previous markers can be studied and modelled longitudinally. Mod-

elling their trajectories and progression can give us more insight on how they

change and interact. For example, longitudinal data analysis on MRI allows us

to calculate the rate of change of specific brain structures, such as the dynamics

of cortical and hippocampal atrophy.1395

A widely accepted progression model of AD was proposed by [5]. Their

model is based on marker evolution, where each marker progresses from normal

values to abnormal values differently. The order of the markers is the presented

above: Aβ deposition, followed by tau injury, neurodegeneration and cognition.1400

Empirical data and experiments reviewed in [135] confirm the validity of the

model, although other data-driven works do not fully agree with it [39]. Ana-

lyzing those markers longitudinally allows us to study both the individual and

whole population rate of change, and improve AD progression modelling.

1405

Studies and initiatives

There has been a remarkable number of initiatives to promote using lon-

gitudinal data on AD modelling. Availability of patients’ longitudinal data is

key to study the progression of the disease. [6] presented a review of available

longitudinal AD biomarker datasets, finding that more efforts are needed to in-1410

crease the follow-up duration, increase the population sizes and standardize the

acquisition methods. One of the largest studies is the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) [162], a multimodal, ongoing longitudinal study

with hundreds of enrolled subjects, gathering imaging data, cognitive scores,

blood and CSF markers. To unify and share the available data, the Alzheimer’s1415

Association has created The Global Alzheimer’s Association Interactive Network

(GAAIN) 2 to share data between independent studies and build collaborations

2http://www.gaain.org
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to create and explore large, heterogeneous cohorts.

Initiatives to stimulate research on the field have also been proposed, such1420

as the MIRIAD challenge [70], The Alzheimer’s Disease Prediction Of Longi-

tudinal Evolution (TADPOLE) Challenge3 or Quantitative Templates for the

Progression of Alzheimer’s disease (QT-PAD)4. These challenges define a fixed

subset of available data, making it easier to compare results, share methods and

ensure reproducibility.1425

Appendix B. NIA-AA research framework: new biological definition

on AD

A new unified research framework for a biological definition of the disease

was recently published by the National Institute on Aging and the Alzheimer’s1430

Association [148]. This approach defines AD as a biological construct based

on markers, rather than clinical symptoms of the disease such as cognitive im-

pairments. The framework is flexible enough for the introduction of additional

markers, if needed.

1435

The framework groups markers in three categories: Aβ deposition, patho-

logic tau, and neurodegeneration. This is represented as the AT(N) system,

where each category can be binarized using a cut point into normal/abnormal

(-/+). For each category:

• A: Aβ markers determine if a patient is in the Alzheimer’s continuum,1440

showing pathological changes but still not presenting the disease.

• T: tau deposition markers indicate whether a patient who is in the Alzheimer’s

continuum has the disease.

3https://tadpole.grand-challenge.org
4http://www.pi4cs.org/qt-pad-challenge
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• (N): Neurodegeneration markers show structural changes in the brain

that can be product of AD, but are not specific to the disease (and thus1445

is placed in parenthese).

The flexibility of the framework allows working with missing biomarker val-

ues, which is a valuable trait for a longitudinal study. We found no work (within

the scope of this review) using this new biological definition on AD. The rea-

sons could be the recentness of the framework’s publication, and the need for1450

multimodal data in a longitudinal setting, which is not as available as single

modality MRI. However, we expect future studies to use this framework, as it

offers clear advantages for longitudinal analysis: for example, being able to di-

rectly compare different stages of progression between patients, or extend the

framework with markers that capture longitudinal progression.1455

Appendix C. Challenges in longitudinal data

Longitudinal data are composed of sequential data acquisitions for subjects

over a period of time. This contrasts with cross-sectional studies, which focus on

single acquisitions per subject. Here, we describe the main characteristics and

analysis challenges that arise while dealing with longitudinal data. In Section 61460

we outline strategies to overcome some of them.

Two sources of variability can be defined for a longitudinal study in a cohort

of subjects: the inter-subject variability, i.e., the differences between observa-

tions of different subjects, and the intra-subject variability, i.e., the differences1465

between observations of a same subject, which tend to be highly correlated com-

pared to the former. Those two sources of variation give valuable information

about the progression of the disease between- and within- subjects. In cross-

sectional studies, those two variabilities are non-separable: given two samples

of different subjects, it is not possible to know to what extent their variation is1470

due to inter-subject variability or to the different stages of the disease. Adding

longitudinal samples for each subject allows us to distinguish between those two
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variabilities, improving our understanding of the disease [13].

Figure C.2: Longitudinal representation of data acquisitions for two patients.

Figure C.2 shows an example of a longitudinal study for two subjects, with1475

multiple data modalities, over a fixed span of time. It illustrates some of the

challenges that can appear in a longitudinal, multimodal data study:

1. Each subject can have a different number of acquisitions, leading to an

unbalanced data problem. In the figure, Patient B missed the 12th month1480

acquisition for some reasons.

2. There can be missing data due to missing acquisitions from some modal-

ities. In the figure, only patient A at the 6-months follow-up has all the

acquisitions.

3. Data are not necessarily acquired at the same time point for the different1485

subjects.

4. Time spacing between follow-ups can be variable, even within a single

subject.
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Another problem, not shown in the figure, is that different patients can be at

different stages of the disease at a given time point. Reference time to measure1490

progression remains an open issue in the field [163].

Protocols of data acquisition try to palliate these problems, but in a clinical

setting, this is very difficult to achieve: sometimes patients miss their scheduled

screening session and data cannot be gathered. Other patients might drop out1495

from the study for a variety of reasons, such as disease severity or moving out of

the city/country, and in other cases, data of a given time point could need to be

discarded because of quality problems. For these reasons, most of the available

longitudinal data is unbalanced.

1500

All studies should define their policy on this issue, either by selecting only

subjects with no missing data in their studies, or by defining a method to han-

dle the problem. Popular methods for missing data in longitudinal studies are

detailed in [14].

1505
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