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a b s t r a c t 

Mechanical ventilation (MV) is a core therapy in the intensive care unit (ICU). Some patients rely on 

MV to support breathing. However, it is a difficult therapy to optimise, where inter- and intra- patient 

variability leads to significantly increased risk of lung damage. Excessive volume and/or pressure can 

cause volutrauma or barotrauma, resulting in increased length of time on ventilation, length of stay, cost 

and mortality. Virtual patient modelling has changed care in other areas of ICU medicine, enabling more 

personalized and optimal care, and have emerged for volume-controlled MV. This research extends this 

MV virtual patient model into the increasingly more commonly used pressure-controlled MV mode. The 

simulation methods are extended to use pressure, instead of both volume and flow, as the known input, 

increasing the output variables to be predicted (flow and its integral, volume). The model and methods 

are validated using data from N = 14 pressure-control ventilated patients during recruitment maneuvers, 

with n = 558 prediction tests over changes of PEEP ranging from 2 to 16 cmH 2 O. Prediction errors for 

peak inspiratory volume for an increase of 16 cmH 2 O were 80 [30 - 140] mL (15.9 [8.4 - 31.0]%), with 

RMS fitting errors of 0.05 [0.03 - 0.12] L. These results show very good prediction accuracy able to guide 

personalised MV care. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Respiratory failure is a common primary or secondary presen-

ation in intensive care patients, in whom mechanical ventilation

MV) is required to maintain breathing and subsequent gas ex-

hange. MV delivers air under positive pressure to the lungs, with

he goal of maintaining open alveoli and hence allowing for O 2 ex-

hange and CO 2 removal. However, excessive or insufficient pres-

ure and/or volume can cause ventilator induced lung injury (VILI)

1–3] . These contrasting criteria require MV optimisation balanced

etween sufficient O 2 delivery and minimisation of injury. How-

ver, at the bedside, it can be difficult to achieve optimised and

atient-specific MV settings due to a lack of precise data for cur-

ent lung volume and/or clarity as to the mechanisms of injury,

specially in patients with ARDS where ventilation distribution is

ery heterogeneous. 
∗ Corresponding author. 

E-mail address: geoff.chase@canterbury.ac.nz (J.G. Chase). 
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A commonly used lung protective strategy is to titrate positive

nd expiratory pressure (PEEP) to minimum elastance through a

taircase recruitment manoeuvre (RM), recruiting additional alve-

li while ensuring open alveoli do not collapse [30–32] . However,

his process can expose a patient’s lungs to increased risk of baro-

rauma or volutrauma during the RM process if excessively high

ressures or volumes are used [30] . Hence, it is not as widely used

s increasing FiO 2 or other non-mechanical methods. 

Model-based methods can aid clinicians in RM design and PEEP

ptimisation by providing real-time insight into lung state and

issue behaviour, while improving patient oxygenation by provid-

ng real time information on lung behaviour [7] . There are many

ung models in the literature [4–6] , but very few [7,8] reviews,

hich are general and not clinically focused. However, relatively

ew models are personalisable due to identifiability issues and/or

omplexity [9–13] . Further, from those personalised models (e.g.

14–20] ) used for monitoring or assessing care or patient sta-

us, the authors found none predicting changes in mechanics, and

hus ventilator pressure and volume, in response to changes in

entilator settings. However, this prediction capability is the key

https://doi.org/10.1016/j.cmpb.2020.105696
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105696&domain=pdf
mailto:geoff.chase@canterbury.ac.nz
https://doi.org/10.1016/j.cmpb.2020.105696
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Table 1 

Demographic and diagnostic information for patients studied. CABG = Coronary Artery 

Bypass Grafting, AVR = Aortic Valve Replacement, SAB = Subarachnoid Haemorrhage, 

MVP + TVP = Mitral And Tricuspid Valve Replacement. 

Patient Number Sex Age Diagnosis 

Initial P/F Ratio 

(mmHg) 

Set PEEP 

(cmH 2 O) 

Patient 1 M 77 CABG 255 8 

Patient 2 F 85 CABG 308 8 

Patient 3 M 57 CABG 323 10 

Patient 4 M 47 CABG 233 5 

Patient 5 M 73 AVR 150 8 

Patient 6 M 75 CABG 383 5 

Patient 7 F 71 AVR 443 8 

Patient 8 M 76 CABG 398 8 

Patient 9 F 64 SAB 255 12 

Patient 10 F 68 Pneumonia 428 8 

Patient 11 F 78 Pneumonia 143 10 

Patient 12 F 18 MVP + TVP 83 14 

Patient 13 F 71 Pneumonia 443 8 

Patient 14 M 36 CABG 158 14 
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requirement in guiding care using virtual patients, where a model

is personalised to guide care via this prediction. 

Equally, several groups have developed methods to automate

MV within standard protocols or closed-loop feedback. However,

these works seem limited to animal studies at this time [21,22] .

Similarly, non-model-based studies have assessed the feasibility of

recommending optimal PEEP in small studies using EIT for exam-

ple [23] . These types of studies have shown the feasibility of clos-

ing the feedback loop to automate MV, but do not address virtual

patient prediction for personalising care. 

Personalizing MV accounting for inter- and intra-patient vari-

ability using computational modelling has been described in sim-

ulations [24] , retrospective comparison studies [25] or prospec-

tive feasibility/pilot studies aiming to provide recommendations

[15,26,27] . One group has recently commercialized a model-based

decision support system, which does not use prediction of out-

comes, but their published data is limited to small, feasibility stud-

ies [28,29] . To our knowledge, no large, outcome-focused trial as-

sessing the clinical utility and efficacy of model-based MV has

been published, with or without prediction of outcomes by the

model. Thus, despite the potential of model-based methods to

guide care, as seen in other areas [4] , there is a dearth of predic-

tive, model-based MV in the literature, where this research pro-

poses a modelling approach to fill this need. 

The predictive approach developed in this paper using virtual

patient models would reduce the risk in using RMs and in set-

ting PEEP in general [33] . Single-compartment elastance models

have been extended to provide accurate predictions on how an

individual patient will respond to a change in treatment [34,35] .

This model was originally developed to provide real-time clinical

information to reduce the risk of barotrauma-related VILI during

volume-controlled ventilation (VCV). However, pressure-controlled

ventilation (PCV) has seen an increase in use over the past few

decades such that it is now the more commonly used mode in in-

tensive care units [2] . 

Pressure-controlled ventilation does not reduce the risk of VILI,

and too much pressure is still a concern [36] . Equally, volutrauma

under pressure-controlled ventilation is an equally severe form of

VILI [37,38] . From a modelling perspective the difficulty increases

as the number of predicted variables changes from one in VCV

(pressure) to two related variables in PCV (flow and its integral,

volume), creating greater potential difficulty. There is thus no guar-

antee a virtual patient model and methods for VCV will extend,

with accuracy, to PCV. 

This paper provides an initial proof-of-concept analysis and val-

idation of whether predictive lung mechanics models can be ex-
ended to work accurately in pressure-controlled ventilation. The

im is to forward-predict volume and flow outcomes based on a

ontrolled pressure input. Accurate prediction of volume outcomes

ould help prevent or reduce the risk of volutrauma during an

M using pressure-controlled ventilation, as well as add significant

enerality to the underlying models and methods used. 

. Methods 

.1. Patients and data 

Data from fourteen ventilated patients in the ‘Automated Anal-

sis of EIT Data for PEEP Setting’ trial (Maastricht, Netherlands)

METC 17–4-053) between November 2017 and February 2018

ere used. All patients were treated with Bi-level Positive Airway

ressure (BIPAP) pressure-controlled ventilation, an increasingly

ommon mode of (of many) in pressure-controlled ventilation,

hich enables different pressures to be applied for inspiration and

xpiration. Patient demographic and diagnostic data are shown in

able 1 . Each patient received one full staircase recruitment man

anging at the onset of ventilation, comprising one upward and

ne downward arm of stepwise changing PEEP values ranging from

 cmH 2 O to around 22 cmH 2 O depending on patient response.

ach step was held for several breaths. Pressure and flow data

ere captured at 125 Hz from this manoeuvre. 

.2. Model 

The basis function model developed in [34,35] for volume-

ontrolled ventilation was rearranged to enable prediction of vol-

me outcomes under pressure-controlled ventilation inputs. The

nitial model used in [34,35] was defined: 

 ( t ) = 

(
E 1 ( max ( 0 , V − V m 

) ) 
2 + E 2 

P ( t ) 

60 

)
V ( t ) 

+ ( R 1 + R 2 | Q ( t ) | ) Q ( t ) + P E E P (1)

here P ( t ) is the airway pressure delivered by the ventilator

cmH 2 O), PEEP is the positive end-expiratory pressure (cmH 2 O),

(t) is the flow of air delivered by the ventilator (L/s), and V(t) is

he tidal volume of air delivered to the lungs (L). V(t) is the inte-

ral of Q(t), starting at t = 0 for each breath and ending at the end

f the breath, to reduce the impact of drift. V m 

is defined as 1 L

or this study [39] . The E 1 coefficient function ( V − V m 

) 2 is piece-

ise parabolic with respect to tidal volume above end-expiratory

olume at the current PEEP, and is defined as zero for V > V m 

. V m 

is

efined as 1 L for this study [39] . Pulmonary elastance, E and E ,
1 2 
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cmH 2 O/L) and pulmonary resistance, R 1 and R 2 , (cmH 2 O 

∗s/L) are

dentified from measured data using a linear least squares identifi-

ation method [35] . 

The model was rearranged to identify flow from measured

ressure data under pressure-controlled ventilation. This approach

s the reverse of that used for volume-controlled ventilation in

34,35] . As R 2 was often zero due to the laminar behaviour of most

echanical ventilation data [35] , this parameter was omitted from

he amended equation in this analysis as it did not improve model

utcomes, giving: 

 ( t ) = 

(
E 1 ( max ( 0 , V − V m 

) ) 
2 + E 2 

P ( t ) 

60 

)
V ( t ) + R 1 Q ( t ) + P E E P 

(2) 

.3. Model parameter fitting 

Inspiration onset was taken as the time for first positive flow

above 0 L/s), and end-expiration when flow returned to 0 L/s.

EEP was defined as the minimum pressure value for a given

reath, as the measured value sometimes differed from the actual

entilator setting for PEEP. The third breath at each PEEP level was

hosen as representative of the patient’s lung mechanics as it was

ssumed lung mechanics had stabilised from the PEEP change by

his point [40] . The value of parameters E 1, E 2 , R 1 were identified

sing a linear least squares fitting analysis on Eq. (2) . 

Parameter values were identified using data from the third

reath at given PEEP level, where this breath is representative of

ater breaths and all transient dynamics from a PEEP change have

ettled. The parabolic basis function for E 1 and linear function for

 2 are described in detail elsewhere [35] . The goal is to generalise

qs. (1) and (2) to pressure-controlled ventilation, where the input

s known pressure, and the output flow and its integral, volume,

re more complex to predict. 

Measured pressure-flow data was truncated to 60 data points

er breath, to ensure equal weighting of inspiration and expiration

30 points each). In the data studied, the median [IQR] of the end

f inspiration occurred at 27 [23–30] points, so this cut-off split

he data into approximately equal sections of inspiration and expi-

ation data. Truncation of data to 30 points also served to capture

he beginning of expiration mechanics while avoiding the end-

xpiratory pause plateau of near-zero flow, typically occurring at

he end of expiration, which creates identifiability issues and does

ot provide significant added information on dynamic behaviours. 

As flow and volume in Eq. (2) are non-unique, Newton’s

ethod was used for the forward simulation of flow from pres-

ure data. An initial guess of + 3 L/s flow over the entire breath

as used for all patients, and each iteration updated this flow

o be more physically realistic. Model optimisation and computa-

ional speed would be improved with use of a patient-specific ini-

ial guess. However, for clinical use, as the model runs until con-

ergence, the initial guess has little effect on the final volume and

ow fit. Volume was defined as the integral of flow with respect

o time. This process uses two equations: 

 i −1 ( t ) = ∫ Q i −1 ( t ) dt (3) 

nd 

 i ( t ) = 

(
P ( t ) − P E E P − ( E 1 ( V i −1 ( t ) − V m 

) 
2 
)
V i −1 ( t ) − ( E 2 

P ( t ) 
60 

) V i −1 ( t ) ) 

R 1 

(4) 

The process outlined for Eqs. (3) and (4) was repeated 500

imes or until convergence of < 0.1% change of maximum flow was

btained. The iterations were stabilised with a weighted update of

 as 20/80% updated/previous flow vector. 
i 
.4. Model prediction 

Predictions were performed for PEEP increases in the up-

ards RM arm. There was a focus on prediction with increasing

entilator-set PEEP as greater increases in pressure and volume in

n RM pose a greater immediate risk to patient safety. This choice

s thus based on how such a model might be used clinically. 

Prediction across PEEP levels also requires calculation of the

hange in V frc or the volume recruited by a PEEP step change rel-

tive to the current PEEP. Peak inspiratory volume (PIV) and the

ecruitment volume gained across a PEEP change ( �V frc ) also re-

ect the relative gains and risks of mechanical ventilation, for the

urpose of avoiding volutrauma, providing clinical relevance. The

hange in V frc was positive or zero when PEEP was increased, and

egative or zero when PEEP is decreased. The change in V frc across

 particular PEEP step ( n to n + 1 ) was assessed iteratively for the

ero-flow, end-expiratory condition [34,35] : 

V 

n 
f rc = 

( P E E P n +1 − P E E P n ) 

E 1 ( V f rc − V m 

) 
2 + E 2 P E E P n +1 / 60 

(5) 

.5. Comparing model �V frc estimation with clinical estimation of 

V frc 

To determine what could be key factors in improving predic-

ion accuracy, the error in �V frc estimation was determined by

omparing it to an estimation of gained volume from clinical data,

V frc,clin . Volume was calculated across the final breaths at PEEP n 
nd the initial 2 breaths at PEEP ( n + 1) by integrating clinical flow

ata with respect to time. �V frc,clin was determined to be the dif-

erence in end expiratory volume across this PEEP change. For mul-

iple steps up in PEEP, �V frc,clin across this larger PEEP change was

alculated as the sum of the �V frc,clin calculations for single steps

p in PEEP, to avoid flow sensor noise causing drift effects that

onfound volume estimation. 

A number of breaths with air leakage were noted in the data,

here for some patients at selected PEEP levels, end expiratory

idal volume never returned to zero, indicating air loss during in-

piration or expiration. Thus, a leak compensation adjustment was

dded to the final V frc,clin value. To estimate this leakage, the flow

cross five breaths in the middle of the PEEP level was integrated

gainst time to determine volume. The volume at the end of each

f the 5 breaths was noted, and the average of these values was

sed for leak compensation ( V leak ). If this V leak value was negative,

 was used instead. V leak was multiplied by three to account for

he 3 breaths used for the �V frc,clin value, and then used to adjust

he measured value of �V frc,clin obtained from the data, yielding a

evised value for these patients, defined: 

 f rc,clin = V f rc,clin − V leak (6) 

.6. Model validation 

This study uses data from pressure-controlled MV, and thus P(t)

s the controlled input used to identify E 1, E 2 and R 1, and simulate

odel-based V(t) and Q(t) outputs. Fit error describes the differ-

nce between measured and simulated volume from the identified

odel at the same PEEP, and prediction error describes the differ-

nce between measured and simulated volume at a higher PEEP

ncluding �V frc from Eq. (5) . Thus, fit error validates model struc-

ure, dynamics and methods, while prediction error flow and es-

ecially volume validates the clinical utility and accuracy of the

odel. 

Both fit and predict error were analysed using Root Mean

quare (RMS) error, and the percentage difference between mod-

lled and measured peak inspiratory volume (PIV). Root Mean

quare (RMS) indicates the average sum-squared error residuals
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Table 2 

Results for flow prediction, peak flow estimation and fitting error metrics (RMS, mean (signed) and mean (absolute) 

shown). 

Prediction 

Interval Size 

Peak Flow Estimation 

Error (L/s) RMS Error (L/s) Mean Error (signed) (L/s) 

Mean Error (absolute) 

(L/s) 

0 cmH 2 O 0.75 [0.55 - 0.99] 0.02 [0.01 - 0.03] −0.01 [ −0.02 - 0.01] 0.40 [0.31 - 0.51] 

4 cmH 2 O 0.76 [0.56 - 1.10] 0.03 [0.01 - 0.06] −0.02 [ −0.05 - 0.01] 0.47 [0.37 - 0.55] 

8 cmH 2 O 0.85 [0.64 - 1.31] 0.04 [0.01 - 0.09] −0.03 [ −0.07 - 0.00] 0.53 [0.45 - 0.63] 

12 cmH 2 O 0.94 [0.68 - 1.40] 0.04 [0.02 - 0.12] −0.03 [ −0.09 - −0.00] 0.57 [0.49 - 0.68] 

16 cmH 2 O 0.93 [0.51 - 1.26] 0.07 [0.03 - 0.11] −0.03 [ −0.08 - 0.03] 0.58 [0.54 - 0.79] 

Fig. 1. Typical error in volume fit and prediction, shown for Patient 1. 
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P 2 
throughout the breath. To ensure this value is normalised across

all PEEP levels the percentage RMS error is also calculated. 

PIV is used as a key clinical indicator of the risk of error are

calculated for identified model fit and prediction. In all cases mea-

sured volume is taken as the integral of measured flow on a

breath-by-breath basis. To assess the clinical relevance and safety

of the model, both the error in PIV and its percentage predictions

are made for 1 – 8 PEEP steps forward for all PEEP levels where

there was data covering �PEEP prediction ranges of 6 – 22 cmH 2 O.

In this data, there are typically 8 steps of 2 cmH 2 O for each patient

with a total of 558 prediction intervals studied over the fourteen

patients. 

As flow prediction accuracy is linked to volume prediction ac-

curacy, the accuracy of the model in predicting maximum flow was

assessed. The fit was analysed using RMS error along with the ab-

solute and signed mean values. 

To assess the accuracy of the model across the entire PEEP

range, model fit and prediction error are compared across the en-

tire range and for different prediction step sizes. Absolute PIV error

and percentage PIV error were both taken in their absolute forms.

Finally, the added lung volume gained in changing PEEP, �V frc , is

compared to an estimation of this value from the measured clini-

cal data based on calculating the lung volume gained across a PEEP

change, �V frc,clin . 
. Results 

.1. Flow fit 

Compiled peak flow prediction and fitting results are shown in

able 2 , where fit results are those with a PEEP Interval Size of 0

mH 2 O. Flow was fit with (median) RMS error of 0.02 L/s and peak

ow was fit with error of 0.75 L/s across all patients studied. Over

he prediction interval sizes ( �PEEP) studied, peak flow was de-

ermined with an (median) absolute error of 0.76 L/s ( �PEEP = 4

mH 2 O), 0.85 L/s ( �PEEP = 8 cmH 2 O), 0.94 L/s ( �PEEP = 12

mH 2 O), and 0.93 L/s ( �PEEP = 16 cmH 2 O). 

.2. Flow prediction 

The flow prediction results in Table 2 show increasing mean

nd RMS error with increasing �PEEP. Peak flow estimation is sim-

lar across all PEEP changes. The discrepancy between the RMS er-

or and mean (signed) error, and the mean (absolute) error indi-

ates the model captures the general shape of flow throughout the

reath. However, its timing sometimes does not reach the peaks or

roughs precisely, as can be seen in the top row of Fig. 1 which

hows typical flow predictions from a PEEP of 10 cmH 2 O up to a

EEP of 22 cmH O. 
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Table 3 

Specific error results for model prediction. Absolute error (L) in predicting peak in- 

spiratory volume across all peep interval sizes, absolute error (%) in predicting peak 

inspiratory volume across all peep interval sizes, and rms error (L) in predicting 

lung mechanics across all peep interval sizes. 

PIV Error RMS Error (L) 

PEEP Interval Size Error (L) Error (%) 

0 cmH 2 O 0.01 [0.00 - 0.01] 1.4 [0.8 - 2.0] 0.01 [0.01 - 0.02] 

4 cmH 2 O 0.03 [0.02 - 0.05] 7.1 [3.2 - 11.5] 0.03 [0.02 - 0.04] 

8 cmH 2 O 0.05 [0.02 - 0.09] 13.3 [5.2 - 20.0] 0.04 [0.03 - 0.07] 

12 cmH 2 O 0.07 [0.03 - 0.12] 15.4 [8.0 - 25.0] 0.05 [0.03 - 0.09] 

16 cmH 2 O 0.08 [0.03 - 0.14] 15.9 [8.4 - 31.0] 0.05 [0.03 - 0.12] 

Table 4 

Difference in Vfrc estimation between the modelled estimate and 

the clinical estimate. 

PEEP Interval Size V frc Error (L) PIV Error (L) 

4 cmH 2 O 0.19 [0.11 - 0.28] 0.03 [0.02 - 0.05] 

8 cmH 2 O 0.25 [0.12 - 0.38] 0.05 [0.02 - 0.09] 

12 cmH 2 O 0.22 [0.14 - 0.36] 0.07 [0.03 - 0.12] 

16 cmH 2 O 0.27 [0.12 - 0.46] 0.08 [0.03 - 0.14] 
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Fig. 2. Comparison of model estimate and clinical estimate of �Vfrc. Units are in 

L. The 1:1 line shows the desired direct match, PEEP intervals are colour coded, but 

larger intervals have larger �Vfrc. 
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.3. Volume fit 

Table 3 shows compiled volume fit and prediction results across

he fourteen patient data sets studied, where the fit results are

hose with a PEEP Interval Size of 0 cmH 2 O. The model fit of vol-

me was assessed across all PEEP levels for all fourteen data sets.

IV was modelled with absolute error (median) of 0.01 L, with an

MS fit error of 0.01 L. Timing errors that are evident in flow are

ess evident in volume, which is overall better simulated by the

odel. This reflects the fact that timing offsets are smoothed out

uring the integration calculation. The relatively low error and im-

roved timing accuracy of the volume prediction suggests that the

odel that was originally developed to capture lung mechanics

hroughout volume-controlled ventilation can also accurately cap-

ure mechanics throughout pressure-controlled ventilation. 

.4. Volume prediction 

Over the prediction interval sizes ( �PEEP) studied, PIV was de-

ermined with an (median) absolute error of 30 mL ( �PEEP = 4

mH 2 O), 50 mL ( �PEEP = 8 cmH 2 O), 70 mL ( �PEEP = 12 cmH 2 O),

nd 80 mL ( �PEEP = 16 cmH 2 O). It was noted that while there

as a direct relationship between PEEP interval size and prediction

ccuracy in volume-controlled ventilation work, this did not occur

n the pressure-controlled ventilation study. An example of typical

olume prediction error is shown in Fig. 1 for Patient 1, with pre-

ictions from an initial PEEP level of 10 cmH 2 O and until a PEEP

f 22 cmH 2 O. The volume fitting results for a PEEP of 10 cmH 2 O

re also included for clarity. 

.5. �V frc estimation 

Table 4 compares modelled �V frc estimation to an estimation

f this value from the measured clinical data based on calculating

he lung volume gained across a PEEP change. Table 4 also shows

ompiled results across all patients for each PEEP interval size. The

elatively high �V frc errors in Table 4 did not translate to particu-

arly high errors in PIV indicating the change in volume with an

ncrease in PEEP does not significantly affect the ability to pre-

ict tidal volumes at a given controlled pressure profile. The leak

ompensation of Eq. (6) reduced �V frc,clin for some patient data

ets to more realistic values. Fig. 2 shows a comparison between

linical and model �V frc results, showing better accuracy and con-

istency in V frc estimation over smaller PEEP interval sizes, with
ore variation for clinically unrealistic PEEP step sizes of 12 and

6 cmH 2 O. 

. Discussion 

The model fit both flow and volume in a recruitment manoeu-

re well with a maximum peak inspiratory volume error of 0.19 L

cross PEEP increases of up to 16 cmH 2 O. These results further

alidate the basis functions developed in [34,35] as capturing the

hysiological behaviour of recruitment and distension on elastance

ell. This outcome should be expected as fundamental lung me-

hanics should not be expected to be substantially different be-

ween ventilation modes. PIV was focussed on as the clinical out-

ome of the prediction model as maximum volume delivered is a

ey indicator of the risk of volutrauma [2,39,41] . While PIV cannot

e directly translated to volutrauma risk due to patient and lung

eterogeneity, when used in conjunction with information about

 frc it can be used to estimate and manage the risk. 

While Morton et al. [34,35] primarily focussed on patients with

RDS or who were ventilated due to acute respiratory failure, the

ajority of patient data studied in this study was from cardiac

urgery patients during recovery. Due to the difference in lung dis-

ase and pulmonary dysfunction in this cohort ( Table 1 ), the model

ay not capture as many of the lung mechanics in this cohort.

owever, the overall high accuracy in flow and volume prediction

ndicates the model can be used for a variety of ventilation cases,

nd is generalisable from volume control to pressure control ven-

ilation. 

The model predicted peak inspiratory volume with (median

IQR]) error of 0.08 [0.03 – 0.14] L across a PEEP interval of 16

mH 2 O. While the clinical use of a large prediction interval such as

6 cmH 2 O is limited, as a clinician would typically not use a single

rediction across the entirety of a recruitment manoeuvre to set

EEP, the relatively low PIV error in this case suggests the model

oes provide an idea of how a patients lungs may be anticipated

o respond throughout an entire recruitment manoeuvre. 

While the error metric of PIV prediction has relatively high per-

entage errors at ~15% over larger PEEP changes, this magnitude of

rror is due to the small volume increases being estimated making

hese errors seem larger than they are clinically. For example, the
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largest clinical tidal volume value in the data studied was 0.68 L

(median [IQR] of 0.42 [0.37 – 0.53] L), whereas the largest tidal

volume error was 0.08 L (80 mL). In comparison to these values,

the functional residual capacity of a healthy adult is around 1.8 L

for women and 2.4 L for men [42] . Thus, the tidal volumes are

measurable fractions but errors may appear large. 

It was anticipated that volume being the integral of flow with

respect to time, small errors in flow fit could lead to larger errors

in volume prediction. While there were relatively high maximum

flow prediction errors, this error did not consistently correspond

to poor PIV prediction. This result is due to errors in flow being

due to overall timing of flow being delayed, rather than stretched

or inaccurate. Essentially, the same flow but delayed led to larger

flow errors, but far lower volume errors when integrated. 

Previous work examined the relationship between error in

�V frc estimation and error in prediction of peak inspiratory pres-

sure in volume-controlled ventilation [43] . Often a lower error in

�V frc corresponded with lower error in pressure prediction and It

was anticipated this error would have a larger impact when vol-

ume is the output. However, while errors in �V frc were compar-

atively high, these errors had much less to very little impact on

the accuracy of predicting the clinically relevant PIV value, which

had very low errors. This perhaps indicates that the role of ad-

ditional gained volume in static (functional residual) vs. dynamic

(tidal) may be different. Overall, the prediction of volume gain over

a PEEP change appears to have lower impact on model prediction

results than the accuracy of lung mechanics estimation through-

out the breath. However, it is challenging to determine the spe-

cific level of impact each of these factors have on prediction accu-

racy. Regardless, improvements in estimating �V frc may result in

improved prediction in this mode, as well as an improved metric

of clinical relevance in decision-making for mechanical ventilation

in general. 

The scatter plot in Fig. 2 showed the model was effective at es-

timating �V frc across lower, clinically relevant and realistic PEEP

interval sizes. However, more variability and error was seen past

a PEEP interval step change size of 8 cmH 2 O, which already dou-

ble the typically largest PEEP step seen clinically of 4 cmH 2 O. It is

expected this increased error is caused by the model estimate pre-

dicting saturation of volume gains from recruitment. However, the

clinical data did not display this behaviour for these patients, and

investigating this difference is a means towards improving estima-

tion of this �V frc parameter. 

The leak compensation improved �V frc,clin for some patient

data. However, it had a minimal effect on the majority of patients.

It would be recommended to continue to use this new estimate to

cover cases where a patient’s expiratory outflow consistently falls

below inspiratory tidal volume, clinically indicating a breathing cir-

cuit leak. In this case, there was air loss either during inspiration,

where total airflow measured by the sensor does not represent air-

flow delivered to the lungs, or during expiration. It would require

further, more detailed measurements, not typically used clinically,

to determine where the loss occurs. 

Overall, the promising results from this proof of concept study

suggest the model presented readily extends to pressure-controlled

ventilation. It accurately captures lung mechanics and accurately

predicts patient-specific responses to changes in key mechani-

cal ventilation parameters. Clinically, it is very accurate over pre-

diction intervals used clinically, and remains reasonably accurate

well beyond these levels. It thus shows significant potential as a

general model-based virtual patient approach to guiding clinical

mechanical ventilation care to optimise and personalise care and

minimise the risk of unintended ventilator induced lung injury.

Prospective clinical studies should be undertaken to confirm these

results. 
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