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ABSTRACT 

Background and Objective: Soft tissue modelling is crucial to surgery simulation. This paper 

introduces an innovative approach to realistic simulation of nonlinear deformation behaviours of 

biological soft tissues in real time. 

Methods: This approach combines the traditional nonlinear finite-element method (NFEM) and 

nonlinear Kalman filtering to address both physical fidelity and real-time performance for soft tissue 

modelling. It defines tissue mechanical deformation as a nonlinear filtering process for dynamic 

estimation of nonlinear deformation behaviours of biological tissues. Tissue mechanical deformation 

is discretized in space using NFEM in accordance with nonlinear elastic theory and in time using the 

central difference scheme to establish the nonlinear state-space models for dynamic filtering. 

Results: An extended Kalman filter is established to dynamically estimate nonlinear mechanical 

deformation of biological tissues. Interactive deformation of biological soft tissues with haptic 

feedback is accomplished as well for surgery simulation. 

Conclusions: The proposed approach conquers the NFEM limitation of step computation but without 

trading off the modelling accuracy. It not only has a similar level of accuracy as NFEM, but also 

meets the real-time requirement for soft tissue modelling. 
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Modelling of biological tissue deformation is important to surgery simulation, which requires the soft 

tissue model to exhibit both physical fidelity and real-time performance under a mechanical load. 

Nevertheless, given the conflict of both requirements, modelling of mechanical deformation of 

biological tissues is a challenging research issue [1, 2]. 

Biological soft tissue modelling has received a great deal of attention in the past decades. The early 

work focused on geometrically based modelling to employ various geometrical tools such as spline 

surfaces [3] for tissue mechanical deformation. In spite of efficient computations, the approach of 

geometrically based modelling lacks the physical realism for tissue mechanical deformation, since 

the mechanical attributes of soft tissues are not considered. 

In the recent decade, research efforts have focused on physically based modelling to handle the 

physical realism of tissue mechanical deformation by incorporating mechanical properties of soft 

tissues and physically dynamic motions in the modelling process. The mass spring deformation is a 

traditional method for tissue mechanical deformation, where the tissue model is discretized into mass 

nodes interconnected via a network of springs. This method has a simple implementation and is 

capable of real-time modelling. However, its modelling accuracy is poor. The ChainMail model [4, 

5] is an alternative to MSM. It replaces the spring between mass nodes with the bounding region of 

a chain element to control element movement, where the movement of a chain element is occurred 

when this element is located out of its bounding region imposed by its neighbouring elements. In 

spite of its simple mechanism of element movement, the ChainMail model requires the selection of 

geometric limits to appropriately define the bounding region for deformation [6, 7]. Position-based 

dynamics is also an approach to dynamic deformation [8]. However, since the position-based dynamic 

process is fundamentally based on geometry, this method has limited accuracy. To address this issue, 

various physical constraints such as potential energy reduction [9] and energy balance [10] are 



incorporated in position-based dynamics, while only leading to a certain level of visual plausibility 

for tissue mechanical deformation. 

Modelling on the basis of continuum mechanics is an effective solution to address the accuracy for 

tissue mechanical deformation. The representative instance is the finite element method (FEM) [6], 

where rigorous continuum constitutive laws are employed to accurately account for mechanical 

deformation of biological tissues [11, 12]. However, FEM involves an expensive computational load 

[13, 14]. Accordingly, the current studies on using FEM for soft tissue deformation are mainly 

dominated by linear elasticity which permits reduced runtime computation since the global stiffness 

matrix is constant [13]. However, due to the assumption of small deformation within a short time 

period, linear elasticity cannot account for nonlinear and large-range deformation behaviours of soft 

tissues. To overcome this limitation, various techniques such as the co-rotational FEM to warp the 

global stiffness matrix via node rotations [15], the replacement of linear strains with quadric strains, 

and the incorporation of nonlinear items into linear material parameters [16], were studied to add 

nonlinearity into a linear FEM model. However, suffering from the limitation of linear elasticity, these 

improvements only exhibit geometrical rather than material nonlinearity. Although the nonlinear 

FEM (NFEM) can handle nonlinear material properties, due to the complexity in formulating and 

calculating nonlinear elasticity, it is extremely complicated to attain the dynamic performance for 

tissue mechanical deformation [13, 17]. 

Studies were devoted to improving the FEM computational performance. Matrix condensation 

simplifies FEM computations from 3D volume to 3D boundary surface, while leading to degraded 

modelling accuracy [18]. The pre-computation technique computes steady-state elementary 

deformations before the iterative procedure to reduce the FEM runtime cost [19]. However, it involves 

complex computations, which are time-consuming. The GPU (Graphics Processing Unit) acceleration 



improves the computational performance of FEM via GPU [20, 21]. Nevertheless, this technique 

relies on physical hardware. Adaptive remeshing reduces the FEM computational time using an 

automatic procedure of mesh refinement [22]. In addition to the additional work caused by the re-

meshing process, the improvement of computational performance is achieved at the cost of decreased 

accuracy. The technique of model order reduction [23-25] reduces the FEM runtime cost by 

approximating the FEM solution with a set of global basis functions. However, the modelling 

accuracy is degraded due to the error involved in the numerical approximation. Machine learning is 

also a technique to facilitate the FEM computations [26]. However, this technique involves a learning 

process whose accuracy depends on a large amount of samples, leading to an expensive computational 

cost. 

The tensor-mass model simplifies the complex FEM formulation by lumping masses and forces at 

node level for deformation computations [27]. In spite of reduced complexity in computation, this 

simplification method causes a significant degradation of accuracy. The strain-limiting FEM reduces 

the complexity of FEM computations by incorporating constraints in FEM to calculate the strain 

limits. However, this method requires constraint definition and solving to appropriately define the 

strain limits for the physical realism. The total Lagrangian formulation combines the lumped-mass 

and explicit time integration techniques to reduce the runtime computations of FEM [28, 29]. 

However, it has to recompute 3D partial derivatives at each time step, increasing the computational 

load. The meshless method [30] simplifies the complexity of FEM computations, since it constructs 

the basis function without the object mesh. However, it has to identify the node neighbourhood at 

each time step, resulting in additional computational burdens. It also lacks theoretical analysis on 

error boundness for numerical integration and is difficult to cope with sparsely sampled regions [31]. 

Generally, with the current methods, the FEM runtime cost is improved by sacrificing the modelling 



accuracy [28, 32]. The detailed literature survey on FEM-based soft tissue modelling can be found in 

[13, 28, 33]. 

Kalman filtering represents a classical method to estimate the dynamic state of a system from 

feedback measurement and has been applied in various biomedical applications [34-37]. Due to its 

elegant recursive characteristics, this method has the advantage of computational efficiency for 

achieving optimal estimations. However, Kalman filtering only conducts system state estimation in 

the temporal domain. Thus, combining Kalman filtering with FEM offers a resolution for system state 

estimation in both space and time. Currently, there are few studies on combination of Kalman filtering 

with FEM for dynamic modelling of tissue mechanical deformation. The authors recently studied a 

method by combination of Kalman filtering and FEM for online deformation prediction [38]. This 

method is based on the standard Kalman filter and linear FEM, as the standard Kalman filter is linear 

and can be used with linear systems only. However, due to the limitation of linear elasticity, it can 

only model linear small-range deformation, incapable of handling nonlinear large-range deformation 

of biological tissues. It is worth mentioning that the standard Kalman filter is not suitable for being 

used with NFEM for modelling of nonlinear soft tissue behaviours. 

The Extended Kalman filter (EKF) is a typical nonlinear Kalman filtering algorithm. This method is 

of simple implementation and can track the dynamic behaviours of a nonlinear system via current 

estimates of state mean and covariance. However, the research on combining EKF with NFEM for 

real-time soft tissue modelling is still limited. To combine with EKF with nonlinear FEM, the 

nonlinear FEM model has to be converted into a discrete state-space representation. Given both 

geometrical and material nonlinearities involved in the nonlinear FEM model, the stiffness function 

is not constant but depends on displacement, making the formulation of a discrete state-space 

representation from the nonlinear FEM model into is more complex than that from the linear FEM 



model [38]. 

This research work improves our previous work [38] from the linear Kalman filter and FEM for linear 

small-range deformation to the nonlinear Kalman filter and FEM for nonlinear large-range 

deformation of soft tissues. It presents an innovative extended Kalman filter nonlinear finite element 

method (EKF-NFEM) to dynamically predict nonlinear deformation of soft tissues by combination 

of EKF and NFEM. This method converts the deformation of tissue mechanical into nonlinear 

filtering to dynamically estimate nonlinear tissue deformation. It discretizes tissue mechanical 

deformation in the spatial domain via FEM on the basis of nonlinear elastic theory and in the temporal 

domain via the explicit integration of central difference. Subsequently, the discrete NFEM model is 

converted into the nonlinear system state models for nonlinear Kalman filtering. Based upon above, 

a new EKF is established for online estimation of nonlinear mechanical deformation of biological 

tissues. Haptic feedback in the process of tissue mechanical deformation is also accomplished for 

surgery simulation. The suggested EKF-NFEM drastically enhances the computational efficiency but 

without trading off the modelling precision of NFEM. Simulation and experimental analysis along 

with comparison analysis have been carried out to thoroughly examine the efficacy of the presented 

EKF-NFEM. 

 

2. Material and Method 

2.1. Nonlinear Elasticity 

The human tissues belong in the category of hyperelastic materials. The St. Venant–Kirchhoff model 

represents the most common hyperelastic materials [39]. It involves geometrical and material 

nonlinearities, where the former reflects the nonlinear relation between displacement-strain relation 

and the latter the nonlinear relation between stress and strain, both contributing to deformation. It 



extends the constitutive equations from linear to nonlinear elasticity based on the Lagrangian strain, 

which is defined by 

 𝐄 =
1

2
(C−𝐈)   (1) 

where C is the right relative Cauchy–Green strain tensor which is defined as 

 𝐂 = 𝐅T𝐅   (2) 

where F is the deformation gradient which is expressed by 

 
𝐅 = 𝐈 +

𝜕𝑼

𝜕𝐗
 

  (3) 

where 𝑼 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]  is the nodal displacement, and 𝐗 = [𝑥, 𝑦, 𝑧]  represents the position of a 

node. 

From (2) and (3), (1) can rewritten as 

 
𝐄 =

1

2
[
𝜕𝑼

𝜕𝐗
+

𝜕𝑼

𝜕𝐗

T

+
𝜕𝑼

𝜕𝐗

T 𝜕𝑼

𝜕𝐗
] 

  (4) 

In 4-node tetrahedral elements, the Jacobian matrix of the shape function with respect to nodal 

coordinates can be defined by 
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  (5) 

where NI represents the shape function. 

Thus, the Lagrangian strain tensor can be further expressed as 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
+

1

2
[(

𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑥
) + (

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑥
) + (

𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑥
)] 

 

𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
+

1

2
[(

𝜕𝑢𝑥

𝜕𝑦
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𝜕𝑢𝑦
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) + (
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𝜕𝑦
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𝜀𝑧𝑧 =
𝜕𝑢𝑧

𝜕𝑧
+

1

2
[(

𝜕𝑢𝑥

𝜕𝑧

𝜕𝑢𝑥

𝜕𝑧
) + (

𝜕𝑢𝑦
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𝜕𝑧
) + (

𝜕𝑢𝑧

𝜕𝑧

𝜕𝑢𝑧

𝜕𝑧
)] 

 

2𝜀𝑥𝑦 = (
𝜕𝑢𝑥

𝜕𝑦
+
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𝜕𝑦
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(6) 

2𝜀𝑦𝑧 = (
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The strain energy density function for the St. Venant–Kirchhoff model is defined as 

 W(𝐄) =
𝜆

2
(𝑡𝑟(𝐄))2 + 𝜇𝑡𝑟(𝐄2)      (7) 

where 𝜆 and 𝜇 are the Lame constants related to the material properties and are expressed as 

 𝜆 =
𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
      (8) 

and 

 𝜇 =
𝐸

2(1 + 𝑣)
      (9) 

where E is Young’s modulus and v is Poisson’s ratio. 

By differentiating (7) with respect to E, the 2nd Piola–Kirchhoff stress S for the St. Venant–Kirchhoff 

model is obtained as 

 
𝐒 =

𝜕W(𝐄)

𝜕𝐄
= 𝜆𝑡𝑟(𝐄)𝐈 + 2𝜇𝐄 

   (10) 

Subsequently, the nonlinear stiffness matrix can be defined as 

  𝐊(𝑼) = ∫[𝐁𝑵]T[𝐃][𝐁𝑵] + [𝐁𝑮]𝐓[𝚺][𝐁𝑮]
𝑉

𝑑𝑉      (11) 

where 𝐁𝑵 represented for the nonlinear strain-displacement matrix which contains the deformation 

gradient, 𝐁𝑮 is the linear strain displacement matrix, 𝐃 represented for the material matrix, and 𝚺 

represented for the matrix that contains the 2nd Piola–Kirchhoff stress S [39]. 

 

2.2. Dynamic Equilibrium System 



Applying the governing equation for the motion of the material points of a continuum [34] to each 

element, the dynamic deformation behaviours of biological tissues can be described as  

 𝑴𝑼̈ + 𝑪𝑼̇ + 𝑲(𝑼)𝑼 = 𝒇   (12) 

where 𝑼̇ and 𝑼̈ are the first- and second-order derivatives of 𝑼, which represent the nodal velocity 

and acceleration; the mass matrix M is related to material density; the damping matrix 𝑪 is determined 

by 𝑪=𝛼𝑴+𝛽𝑲(𝑼)  where 𝛼 and 𝛽 are the damping coefficients [34];  𝑲(𝑼)  represents the 

nonlinear stiffness function which depends on the deformation displacement due to both geometrical 

and material nonlinearities involved in the nonlinear St. Venant–Kirchhoff material model; and 𝒇 

represents the exerted mechanical force. 

The dynamic system (12) can be discretized by either explicit integration or implicit integration. The 

difference between the explicit and implicit integrations is that the implicit integration directly 

calculates the displacement, while the explicit integration indirectly calculates the displacement from 

the acceleration which has to be determined at first. The implicit time integration scheme is stable for 

large time steps under linear acceleration. However, it has to either solve a system of linear equations 

or compute the stiffness matrix inversion at each time step, causing a heavy computing cost. In 

contrast, the explicit time integration is efficient in computation and simple in implementation. In this 

paper, given its higher accuracy than the explicit Euler integration but still at a small computational 

cost, the explicit central difference scheme [40] is adopted to resolve unknown displacements at each 

iteration. 

With the explicit central difference scheme, the acceleration and velocity can be described by 

 

𝑼̈𝑡   =
1

∆𝑡
(
𝑼𝑡+∆𝑡 − 𝑼𝑡

∆𝑡
−

𝑼𝑡 − 𝑼𝑡−∆𝑡

∆𝑡
) 

=
1

∆𝑡2(𝑼𝑡−∆𝑡 − 2𝑼𝑡 + 𝑼𝑡+∆𝑡) 

  (13) 

 𝑼̇𝑡 =
1

2∆𝑡
(𝑼𝑡+∆𝑡 − 𝑼𝑡−∆𝑡)   (14) 



Substituting (13) and (14) into (12) and making simple arrangements yield 

 (
1

∆𝑡2M + 
1

2∆𝑡
𝑪 )𝑼𝑡+∆𝑡 = 𝒇𝒕 − (𝑲(𝑼𝑡)𝑼𝑡 −

2

∆𝑡2 M) 𝑼𝑡 – (
1

∆𝑡2 𝑴 −
𝟏

𝟐∆𝒕
𝑪)𝑼𝑡−∆𝑡  (15) 

Since the central difference method is conditionally stable, its time step ∆𝑡 is defined by 

  ∆𝑡 ≤ ∆𝑡𝑐𝑟 =
𝐿𝑒

𝑐
  (16) 

where 𝐿𝑒 denotes the smallest characteristic element length and 𝑐 the speed of a dilatational wave. 

 

2.3. Extended Kalman Filter Nonlinear Finite Element Method 

2.3.1. State Space Model 

Denote 

 𝑹𝑡 = 𝑲(𝑼𝑡)𝑼𝑡    (17) 

Apparently, 𝑹𝑡  is a nonlinear function of displacement 𝑼𝑡 , which represents the internal nodal 

reaction force. 

Then (15) can be rewritten as 

 (
1

∆𝑡2M + 
1

2∆𝑡
𝑪 )𝑼𝑡+∆𝑡 = 𝒇𝑡 − 𝑹𝑡 +

2

∆𝑡2 M 𝑼𝑡 – (
1

∆𝑡2 𝑴 −
𝟏

𝟐∆𝒕
𝑪)𝑼𝑡−∆𝑡    (18) 

By neglecting the damping matrix 𝑪 due to the small values of the damping coefficients for soft 

tissues [40], (18) can be rewritten as 

 
1

∆𝑡2M 𝑼𝑡+∆𝑡 = 𝑭𝑡 − 𝑹𝑡 +
2

∆𝑡2 M 𝑼𝑡 – 
1

∆𝑡2 𝑴𝑼𝑡−∆𝑡 (19) 

Rewrite (19) into state space form 

 𝑼𝑡+∆𝑡 = (2𝑼𝑡 − 𝑹𝑡

∆𝑡2

𝑴
 ) + (𝑭𝑡

∆𝑡2

𝑴
− 𝑼𝑡−∆𝑡 ) (20) 

Equation (20) can be further expressed as 

 𝑼𝑡+∆𝑡 = 𝑨(𝑼𝑡) + 𝑾𝑡 (21) 

where 



 𝑨(𝑼𝑡) = (2𝑼𝑡 − 𝑹𝑡

∆𝑡2

𝑴
 ) (22) 

 
𝑾𝑡 = (𝑭𝑡

∆𝑡2

𝑴
− 𝑼𝑡−∆𝑡 ) 

(23) 

 

2.3.2 Extended Kalman Filter 

Consider soft tissue deformation as a dynamic system. According to the state space model given by 

(21), the system state equation is described as 

 𝑼𝑡+∆𝑡 = 𝒛(𝑼𝑡,𝑾𝑡 , 𝒘𝑡+∆𝑡) = 𝑨(𝑼𝑡) + 𝑾𝑡 + 𝒘𝑡+∆𝑡 (24) 

where 𝑼𝑡 is the system state vector (the nodal displacement) at time 𝑡, 𝑾𝑡   is the control input at 

time 𝑡 , 𝑨  represents the system function transformed from time t to 𝑡 + ∆𝑡 , and 𝒘𝑡+∆𝑡   is the 

process noise, which is supposed as a zero-mean white Gaussian noise with covariance matrix 𝑸𝒑. 

The system measurement equation is defined as 

 𝒚𝑡+∆𝑡 = 𝑯(𝑼𝑡+∆𝑡, 𝒏𝑡+∆𝑡)   (25) 

where 𝒚𝑡+∆𝑡  denotes the measurement vector, 𝑯  denotes the measurement function which is 

represented as an identity matrix, and 𝒏𝑡+∆𝑡  denotes the measurement noise which is supposed as a 

zero-mean Gaussian white noise with covariance matrix 𝑸𝒎. 𝒘𝑡+∆𝑡 and 𝒏𝑡+∆𝑡 are assumed to be 

uncorrelated. 

The filtering process of EKF includes two stages. One is the state prediction described as 

 𝑼̅𝑡+∆𝑡 = 𝑨(𝑼𝑡) + 𝑾𝑡   (26) 

 𝑷̅𝑡+∆𝑡 = 𝑨𝒕+∆𝑡𝑷𝑡𝑨𝑡+∆𝑡
T + 𝑸𝒑   (27) 

where 𝑼̅𝑡+∆𝑡 and 𝑷̅𝑡+∆𝑡  are the priori estimated displacement and error covariance at time 𝑡 + ∆𝑡, 

and 𝑨𝒕+∆𝑡 is the Jacobian matrix of function 𝒇 in terms of 𝑼𝑡, which can be obtained as 

 𝑨𝑡+∆𝑡 =
𝜕𝒛

𝜕𝑼𝑡
(𝑼𝑡,𝑾𝑡 , 𝒘𝑡+∆𝑡)   (28) 



The other is the measurement update which is calculated by 

 𝑼𝑡+∆𝑡 = 𝑼̅𝑡+∆𝑡 + 𝑲𝑡+∆𝑡(𝒚𝑡+∆𝑡 − 𝑯𝑼̅𝑡+∆𝑡)   (29) 

 𝑷𝑡+∆𝑡 = 𝑷̅𝑡+∆𝑡 − 𝑲𝑡+∆𝑡𝑯𝑷̅𝑡+∆𝑡   (30) 

where 𝑼𝑡+∆𝑡 and 𝑷𝑡+∆𝑡 are the posteriori estimated displacement and its error covariance at time 

𝑡 + ∆𝑡. 

The Kalman gain is defined as 

 𝑲𝑡+∆𝑡 = 𝑷̅𝑡+∆𝑡𝑯
T(𝑯𝑷̅𝑡+∆𝑡𝑯

T + 𝑸𝒎 )−1     (31) 

Since the use of the explicit central difference integration enables the deformation calculations to be 

conducted at node level [40], there is no need to calculate and assembly the global stiffness matrix at 

each iteration. Define 𝑹𝑡 as 

 𝑹𝑡 = ∑𝑹𝑡
𝑒     (32) 

where 𝑹𝑡
𝑒 is the reaction force for element e, which is calculated from the 2nd Piola–Kirchhoff stress 

S and deformation gradient F as follows 

 𝑹𝑡
𝑒 = ∫ 𝐁𝐿

T
0
𝑡

𝑣

𝐒𝑑0𝑉0
𝑡      (33) 

and 

 𝐁𝐿
(𝑎)

0
𝑡 = 𝐁𝐿0

(𝑎)
𝐅T

0
𝑡      (34) 

where 𝐁𝐿
(𝑎)

0
𝑡  is the a-th sub-matrix of strain-displacement matrix 𝐁𝐿

T
0
𝑡  with a indicating the nodal 

number in each element; 𝐅T
0
𝑡  represents the deformation gradient from the initial time to the current 

time t; and 𝐁𝐿0
(𝑎)

 denotes the shape function derivatives in terms of nodal coordinates at the initial 

stage, and it can be pre-calculated at element level. 

As shown in Fig. 1, the EKF-NFEM algorithm involves the following steps: 

 

(i) Set the initial nodal displacements as 𝑼0 = 0 and 𝑼−∆𝑡 = 0. 

For each iteration 



{ 

(ii) For each element 

• Calculate 𝐁𝐿
T

0
𝑡 𝑒

 and 𝐒0
𝑡 𝑒 from nodal displacements at the pervious time step. 

• Calculate 𝐑𝑡
𝑒 by (33) and (34); 

(iii) Calculate the global nodal reaction force 𝐑𝑡 by (32). 

(iv) For each node 

• Conduct state prediction 

 

𝑼̅𝑡+∆𝑡
𝑖 = 𝑨(𝑼𝑡)

𝑖 + 𝑾𝑡
𝑖  

        = (2𝑼𝑡
𝑖 − 𝑹𝑡

𝑖
∆𝑡2

𝑴𝒊
 ) + (𝑭𝑡

𝑖
∆𝑡2

𝑴𝒊
− 𝑼𝑡−∆𝑡

𝑖  ) 

 

(35) 

 𝑷̅𝑡+∆𝑡
𝑖 = 𝑨𝑡+∆𝑡

𝑖 𝑷𝑡
𝑖𝑨𝑡+∆𝑡

𝑇 𝑖 + 𝑸𝒑 𝑖  (36) 

 𝑲𝑡+∆𝑡
𝑖 = 𝑷̅𝑡+∆𝑡

𝑖 𝑯𝑻 𝑖 (𝑯 𝑖𝑷̅𝑡+∆𝑡
𝑖 𝑯𝑻𝑖 + 𝑸𝒎 𝑖 )

−1
   (37) 

• Conduct measurement update 

 𝑼𝑡+∆𝑡
𝑖 = 𝑼̅𝑡+∆𝑡

𝑖 + 𝑲𝑡+∆𝑡
𝑖 (𝒚𝑡+∆𝑡

𝑖 − 𝑯 𝑖(𝑼̅𝑡+∆𝑡
𝑖 , 𝒏𝑡+∆𝑡

𝑖 ))   (38) 

 

 𝑷𝑡+∆𝑡
𝑖 = 𝑷̅𝑡+∆𝑡

𝑖 − 𝑲𝑡+∆𝑡
𝑖 𝑯 𝒊𝑷̅𝑡+∆𝑡

𝑖    (39) 

where i indicates the ith row entry of a matrix. 

• Calculate 𝑹𝑡+∆𝑡 from 𝑼𝑡+∆𝑡. 

} 

It can be seen that the above steps do not involve matrix computation, and thus the computational 

cost is significantly reduced. 



3. Performance Evaluation and Discussion 

Simulation and experimental analyses were performed to examine the effectiveness of the suggested 

EKF-NFEM in terms of soft tissue modelling. For comparison purpose, tests were also conducted 

under the same conditions by the traditional NFEM, and the resultant displacements were chosen as 

the reference values to calculate estimation error. Further, haptic feedback for interactive tissue 

deformation by the proposed EKF-NFEM was also examined. 

 

3.1. Cubic-shape Virtual Tissue Model 

Simulations were conducted on a cubic-shape virtual tissue model (see Fig. 2(a)). This cubic-shape 

tissue model was in the size of 100mm×100mm×100mm. It was meshed uniformly into 3760 

tetrahedrons with 839 nodes. The mass density of 1000𝑘𝑔/𝑚3 , Young’s module of 30𝑘𝑃𝑎  and 

Possion ratio of 0.49, which represent human liver’s mechanical attributes [41], were applied to the 

virtual cubic-shape tissue. A compression trial was performed on the virtual cubic-shape tissue with 

its bottom face constrained, where a linear compressive force of (0, 0.5N) was horizontally applied 

 

Figure 1. EKF-NFEM algorithm, where 𝑼0 and 𝑼−∆𝒕 represent the initial displacements, and 𝑷0 the initial error covariance.  



to the cube’s left face (see Fig. 2(a)). The initial state and error covariance were 0 and 0.001. The 

intensity of the process noise covariance was 0.1. The time step was 0.001s. 

To have a thorough analysis on the EKF-NFEM performance, two free nodes (i.e., inspection nodes 

A and B in Fig. 2(a)) in the cubic-shape tissue model were randomly chosen to track their 

displacements in the deformation process. Inspection node A was located at the center of the cube’s 

left face with the exerted force, where the measurements were obtained by embedding a random 

Gaussian white noise (Covariance intensity = 0.001 in this case) in the reference values (see Fig. 

2(d)). Inspection node B was located at the cube’s top face center without the exerted force. 

Figs. 2(b) and (c) illustrate the deformations generated by both NFEM and EKF-NFEM for the 

mechanical test of compression on the cubic-shape tissue model, which are nearly same. To further 

study the difference, Figs. 2(e) and (f) show the displacements at the two inspection nodes (i.e., 

inspection nodes A and B). It can be seen that the noise involved in the measurement data (see Fig. 

2(d)) is removed, and the displacements at both inspection nodes by EKF-NFEM closely approximate 

those by NFEM, respectively. Table 1 lists the statistical errors of EKF-NFEM, where the mean 

absolute error (MAE), root mean square error (RMSE) and standard deviation (SD) at inspection node 

A are 0.013177mm, 0.021447mm and 0.016978mm, and at inspection node B are 0.011962mm, 

0.023033mm and 0.019749mm. Thus, it is clear that the proposed EKF-NFEM has similar accuracy 

as the traditional NFEM. 



TABLE 1. MAEs, RMSEs and SDs at both inspection nodes for the simulation case with the cubic-shape model 

Inspection node MAE (mm) RMSE (mm) SD (mm) 

A 0.013177 0.021447 0.016978 

B 0.011962 0.023033 0.019749 

 

3.2. Virtual Human Liver Model 

Simulations were performed on a virtual computer model of human liver with 4941 tetrahedrons and 

1083 nodes (see Fig. 3(a)). A mechanical test of tensile was carried out on this virtual liver model 

provided that the nodes (highlighted in black) located on the left side of the top surface were 

constrained (see Fig. 3(a)). A linear tensile force (0, 0.5N) was exerted upwards to the right lobe of 

the liver, i.e., the nodes highlighted in red on both top and bottom surfaces of the liver (see Fig. 3(a)). 

 

(a)                            (b)                          (c) 

 

(d)                            (e)                          (f) 

Figure 2. Compression test on a virtual tissue model of cubic shape: (a) The undeformed cubic-shape model with two 

inspection nodes, where all nodes of the bottom face (highlighted in black) were constrained, and a linear compressive 

force (0, 0.5 N) was exerted horizontally to the nodes on the left face (highlighted in red). In addition to inspection node 

A with the exerted linear compressive force, one free node (inspection node B) in the cube model was also randomly 

chosen to analyze the deformations of NFEM and EKF-NFEM; (b) NFEM deformation; (c) EKF-NFEM deformation; (d) 

Measurements of displacement obtained at inspection node A; (e) Displacements at inspection node A; and (f) 

Displacements at inspection node B. 

 

 



The time step was 0.0001 s. The other simulation parameters were as identical as the simulation case 

in Section 3.1. In a similar way as the simulation case of Section 3.1, two inspection nodes (inspection 

nodes A and B) in the computer liver model were chosen for further investigation of the deformations 

(see Fig. 3(a)). Fig. 3(d) illustrates the measurements obtained at inspection node A. 

It can be seen from Figs. 3(b) and (c) that the deformations of both NFEM and EKF-NFEM for the 

tensile test are nearly same. Figs. 3(e) and (f) further compare the displacements of NFEM and EKF-

NFEM at the two inspection nodes, respectively. It is clear that the measurement noise in Fig. 3(d) is 

removed by EKF-NFEM and the displacements at both inspection nodes by EKF-NFEM closely 

approximate those by NFEM. Table 2 lists the statistical errors of EKF-NFEM, where the MAE, 

RMSE and SD at inspection node A are 0.02191mm, 0.03361mm and 0.02554mm, and at inspection 

node B are 0.02729mm, 0.03419mm and 0.02064mm. Thus, it is obvious that EKF-NFEM is in similar 

accuracy as NFEM 



TABLE 2. MAEs, RMSEs and SDs at both inspection nodes for the simulation case with the liver model 

Inspection node MAE (mm) RMSE (mm) SD (mm) 

A 0.02191 0.03361 0.02554 

B 0.02729 0.03419 0.02064 

 

 

3.3. Computational Performance 

The computational efficiencies of both EKF-FEM and NFEM were also studied and compared based 

on the above simulations, which were realized on a PC with Intel® Core™ i7-8750 2.20GHz CPU, 

16.00GB memory and GTX1070 graphics card. The visual fresh rate decreases with the increase of 

the number of tetrahedral elements, as shown in Fig. 4. For the cubic-shape simulation model of 3760 

tetrahedrons in Section 3.1, the visual update rate of NFEM is around 3.5Hz which is significantly 

 

(a)                            (b)                          (c) 

 

(d)                            (e)                          (f) 

Figure 3. Tensile test on a virtual computer model of human liver: (a) The undeformed model, where a linear tensile force 

(0, 0.5 N) was exerted upwards (in z axis) to the right lobe of the liver (highlighted by the red points), and the nodes 

(highlighted in black) on the left-top surface were assumed fixed. In addition to inspection node A, a free node (inspection 

node B) was also randomly chosen in the model to analyze the deformations of NFEM and EKF-FEM; (b) NFEM 

deformation with reference to the undeformed state (in shading); (c) EKF-NFEM deformation with reference to the 

undeformed state (in shading); (d) Measurements of displacement obtained at inspection node A; (e) Displacements at 

inspection node A; and (f) Displacements at inspection node B. 

 

 

 

 



smaller than the threshold 30Hz required by dynamic visual feedback, while the visual update rate of 

EKF-NFEM is around 75Hz which is much higher than the threshold. Similarly, for the liver 

simulation model of 4941 tetrahedrons in Section 3.2, the visual update rate of NFEM is around 2Hz, 

while that of EKF-NFEM is around 50Hz which is much higher than the threshold. Further, EKF-

NFEM reaches the threshold 30Hz at approximately 8500 tetrahedral elements, while NFEM at 

approximately 600 tetrahedral elements. Thus, it is clear that in addition to the similar level of 

accuracy as NFEM, the suggested EKF-NFEM can also achieve the dynamic performance for tissue 

mechanical deformation. 

 

Figure 4. Computational performances of both NFEM and EKF-NFEM. 

 

3.4. Experimental Analysis 

Experimental analysis was also performed to examine the effectiveness of the proposed EKF-NFEM 

for real-time tissue modelling from dynamic measurement of deformation displacement. A 



mechanical test of compression was performed on a phantom sample of biological deformable tissues 

using the Instron mechanical testing machine (see Fig. 5(d)). This phantom tissue was made up from 

Ecoflex 0030 silicone gel (the mass density = 1060kg/m3, are Shear modulus = 22.081kPa and 

Possion ratio = 0.5), which has the similar material properties as human tissues [42, 43]. It was in 

truncated-cone shape with the bottom diameter of 68 𝑚𝑚, the height of 28 𝑚𝑚 and the top diameter 

of 58 𝑚𝑚. It was anchored on a flat and rigid surface and compressed by the Instron machine 

vertically with a linear force of (0, 0.15 N) exerted at the sample’s top face. 

For comparison purpose, both NFEM and EKF-NFEM modellings were performed in accordance 

with the experimental conditions. A virtual sample of truncated-cone shape (see Fig. 5(a)) with a 

uniform mesh of 2349 tetrahedrons and 559 nodes was modelled in the same geometry, material 

parameters and loading conditions as the physical sample. Similar to the simulation case in Section 

3.1, two inspection nodes (inspection nodes A and B) were also chosen in the virtual sample of 

truncated-cone shape to analyze the deformations. From the measurements acquired at inspection 

node A, the phantom tissue’s deformations were estimated by EKF-NFEM and subsequently set 

against NFEM deformations. The initial state and its associated error covariance were 0 and 0.001. 

Figs. 5(b) and (c) show the deformations generated by EKF-NFEM are well in line with those by 

NFEM. Figs. 5(e) and (f) further compare the displacements at the two inspection nodes by both 

methods. It is evident that the measurement noise is removed and the estimated displacements by 

EKF-NFEM closely approximate those by NFEM. Table 3 lists the statistical errors of EKF-NFEM, 

where the MAE, RMSE and SD at inspection node A are 0.060494mm, 0.086648mm and 

0.062242mm, and at inspection node B are 0.007254mm, 0.009434mm and 0.006051mm. 

 

 



TABLE 3. MAEs, RMSEs and SDs at both inspection nodes by EKF-NFEM for the experimental case 

Inspection node MAE (mm) RMSE (mm) SD (mm) 

A 0.060494 0.086648 0.062242 

B 0.007254 0.009434 0.006051 

 

 

3.5. Haptic Feedback 

Interactive tissue deformation possessing haptic feedback was also achieved by the presented EKF-

NFEM via a PHANToM Omni haptic device. The deformation displacement was measured from the 

penetration depth of the PHANToM endpoint when contacting with the virtual computer model of 

 

(a)                            (b)                          (c) 

 

(d)                            (e)                          (f) 

                                                                                 

Figure 5. Estimation of tissue mechanical deformation from actual measurement: (a) The virtual cylinder-shape tissue 

model was in the same geometry, material properties and loading and boundary conditions as the phantom tissue sample, 

where the bottom face (highlighted by the black points) was fixed. In addition to inspection node A at the top face with 

the exerted force, one more free node (inspection node B) in the virtual tissue model was randomly chosen for comparison 

of the deformations between NFEM and EKF-NFEM; (b) NFEM deformation; (c) EKF-NFEM deformation; (d) 

Experimental setup; (e) Displacements at inspection node A; and (f) Displacements at inspection node B. 

 

 



biological tissues. The reaction force was calculated from (32) and transmitted to the PHANToM 

system to provide the force feedback. Fig. 6 illustrates the mechanical deformation of a virtual 

computer model of liver by the virtual haptic needle. 

 

      (a) The state before interactive deformation                    (b) Interactive deformation state 

 

Figure. 6. Haptic deformation of a computer model of human liver. 

 

 

Figure. 7. Haptic performances of both NFEM and EKF-NFEM. 

The PHANToM requires the force to be updated at 1,000Hz as a minimum for dynamic haptic 



feedback. As shown in Fig. 7, EKF-NFEM reaches the threshold 1,000Hz at approximately 400 

tetrahedral elements, but NFEM at approximately 30 tetrahedral elements. Thus, the haptic 

performance of the presented EKF-NFEM outperforms the traditional NFEM. When the threshold 

1,000 Hz cannot be reached, the force extrapolation technique [17] will be used to obtain force 

information from the previous time step for reliable haptic feedback. 

 

4. Conclusions 

This research work presents a new EKF-NFEM for dynamic modelling of nonlinear mechanical 

deformation of biological tissues. It formulates the soft tissue deformation problem as a nonlinear 

filtering problem to dynamically estimate tissue mechanical deformation. The contributions of this 

paper are that the nonlinear state-space equations for filtering estimation are formulated from NFEM 

to accurately characterize the dynamic behaviours of tissue mechanical deformation and a nonlinear 

estimation algorithm is further established to dynamically estimate nonlinear deformation of 

biological tissues. Mechanical deformation of biological tissues is discretized in space via NFEM and 

in time via the explicit central difference to formulate the state-space equation of the system for 

Kalman-based nonlinear filtering. On the basis of this, an EKF is developed to online generate 

posterior statistical estimation of tissue mechanical deformation from dynamic measurement of local 

displacement. The tissue mechanical deformation possessing haptic feedback is also achieved for 

surgery simulation. Simulations and experiments together with comparison analysis indicate that the 

proposed EKF-NFEM drastically enhances the NFEM runtime cost but without the trade-off of the 

NFEM precision for tissue mechanical deformation. 

Future studies will be dedicated to improving the presented EKF-NFEM in two aspects. One is to 

further improve the computational performance of the proposed EKF-NFEM. At present, the 



presented EKF-NFEM computes the system equations at node level in serialized, consuming the 

computational time. However, since the system equations at node level are independent of each other, 

they can be calculated in parallel. It is expected that advanced parallel computing algorithms will be 

developed to further improve the computational efficiency of the presented EKF-NFEM. The other 

is to consider unknown boundary conditions in the estimation of soft tissue deformation. Currently, 

the proposed EKF-NFEM estimates soft tissue deformation under the assumption that the boundary 

conditions are known, while the boundary conditions are unknown and variable in actual surgeries. 

It is expected that advanced algorithms will be developed based on the proposed EKF-NFEM by 

treating the boundary conditions as additional constraints to constrain the filtering process to achieve 

online estimation of soft tissue deformation under unknown boundary conditions. 
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