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Abstract 

Background and Objectives: Multilevel statistical models represent the existence of 

hierarchies or clustering within populations of subjects (or shapes in this work). This is a 

distinct advantage over single-level methods that do not. Multilevel partial-least squares 

regression (mPLSR) is used here to study facial shape changes with age during adolescence in 

Welsh and Finnish samples comprising males and females.  

Methods: 3D facial images were obtained for Welsh and Finnish male and female subjects at 

multiple ages from 12 to 17 years old. 1000 3D points were defined regularly for each shape 

by using “meshmonk” software. A three-level model was used here, including level 1 

(sex/ethnicity); level 2, all “subject” variations excluding sex, ethnicity, and age; and level 3, 

age. The mathematical formalism of mPLSR is given in an Appendix. 

Results: Differences in facial shape between the ages of 12 and 17 predicted by mPLSR agree 

well with previous results of multilevel principal components analysis (mPCA); buccal fat is 

reduced with increasing age and features such as the nose, brow, and chin become larger and 

more distinct. Differences due to ethnicity and sex are also observed. Plausible simulated faces 

are predicted from the model for different ages, sexes and ethnicities. Our models provide good 

representations of the shape data by consideration of appropriate measures of model fit (RMSE 

and R2).  

Conclusions: Repeat measures in our dataset for the same subject at different ages can only be 

modelled indirectly at the lowest level of the model at discrete ages via mPCA. By contrast, 

mPLSR models age explicitly as a continuous covariate, which is a strong advantage of mPLSR 

over mPCA. These investigations demonstrate that multivariate multilevel methods such as 

mPLSR can be used to describe such age-related changes for dense 3D point data. mPLSR 



3 
 

might be of much use in future for the prediction of facial shapes for missing persons at specific 

ages or for simulating shapes for syndromes that affect facial shape in new subject populations.  
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Multilevel partial least squares; 3D facial shape; adolescence 
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1 Introduction 

3D facial imaging [1] can be used to explore facial shape changes during adolescence. There 

are also many other applications of such 3D imaging, e.g., in orthodontics [2-7] or in 

investigating various syndromes [8-12] that can affect facial shape. Facial simulation is of 

much interest for human–computer interfaces [13–15] and 3D (computed tomography) images 

have been used in facial reconstructions [15,16]. There are many different factors that can affect 

facial shape, including both genetic [18-25] and environmental factors [26-31]. In order to 

understand the effects that such influences can have on facial shapes, sophisticated computer 

and statistical methods must be employed to analyse the 3D facials scans and / or any extracted 

Cartesian landmark point data. In particular, and as noted in [32]: “Two general classes of 

morphometric methods can be used to analyse landmark coordinate data: coordinate-based 

methods and coordinate-free methods.” Coordinate-based approaches use facial angles, 

distances between specific landmark points, and ratios of such distances in order to explore 

age-related changes in facial shape [32-37]. Multivariate statistics [38], multilevel univariate 

methods [39], and multivariate Bayesian-type methods [40] have been used to analyse such 

data. Incremental and positional changes over short- and long-term time periods have been 

explored [41].  

Prediction of changes in facial shapes with age are useful for orthodontics, as well as for 

forensic purposes. Applications include facial reconstruction and synthetic growth or ageing. 

Facial shape changes over time in syndromic patients is also an important area of research. 

Age-related changes in facial size and shape have been investigated by multivariate modelling 

techniques, applied to coordinate data directly. These approaches were: simple “centring” and 

/ or averaging techniques of facial shape at each age followed by a simple parametric model of 

growth [42], multivariate or kernel regression [43,44], principal components analysis (PCA) 
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based methods [45–47], clustering and discriminant function analysis [48], and autoregressive 

moving averaging methods [49].  

Multilevel principal components analysis (mPCA) [50-57] provides another multivariate 

method to fit multilevel models to shape coordinate data. mPCA has been used to investigate 

facial shape changes by ethnicity and sex [51,52], the act of smiling [53,54], maternal smoking 

and alcohol intake [55], and facial shape changes during adolescence [56,57]. Group centroids 

were found in [56,57] at (integer) ages 12 to 17 (i.e., 6 groups) in order to explore component 

scores at an appropriate level of the model. A limitation of this approach was that age was 

treated indirectly as a discrete rather continuous quantity.  

Here we extend and improve upon these mPCA calculations by using a technique called 

multilevel partial-least squares regression (mPLSR) [58]. Unlike mPCA, mPLSR treats age 

explicitly as a continuous covariate. We present a discussion of multi-level regression, although 

the specifics of the various models are deferred to Appendices. We use mPLSR to investigate 

changes in shape between the ages of 12 and 17 and compare the results with mPCA. We then 

consider results of mPLSR for four different populations (both male and females for Welsh 

and Finnish subjects) at ages 12 to 17 years old. Finally, we present results for measures of 

model fit for single-level PLSR [59] compared to mPLSR. 
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2  Materials and Methods 

 

Figure 1. Schematic of a multilevel model of the effects of sex and age on facial shape.  

729 3D facial images were collected for subjects aged 12 to 17 years old (5 to 10 shapes per 

subject at different ages). Sample sizes were: Welsh male = 28, Welsh female = 22, Finnish 

male = 25, Finnish female = 22.” “Meshmonk” software [60] generated 1000 3D points 

regularly on each shape by using a non-rigid template. All subjects were healthy and of 

European descent. The data is not publicly available. All shapes were subsequently 

superimposed and scaled with respect to the mean shape using a generalized Procrustes 

analysis. Ethical approval for this study was obtained from the director of education, head 

teachers, school committees, and the relevant ethics committees of Bro Taf and Cardiff 

University (reference 04/WSE/109) and the City of Oulu (reference 7728/2006).   

The mathematical formalisms of both mPCA and mPLSR are presented in Appendices A and 

B. However, underlying models used by mPCA and mPLSR are illustrated by Fig. 1. Sex and 

ethnicity are at level 1, all other differences between subjects except age, ethnicity and sex at 

level 2, and age at level 3. Note that no software exists specifically for mPCA and mPLSR 

applied to shapes and so an implementation in MATLAB was created by us. We calculate 

Level 1 • Sex / Ethnicity

Level 2 • All other "subject" variations

Level 3 • Age (repeated measures)



7 
 

measures of model fit for traditional single-level PLSR and also mPLSR. The root-mean-

squared error (RSME) is given by 

𝑅𝑀𝑆𝐸 = √∑ ∑ (𝑧𝑖𝑘−𝑧𝑖𝑘
model)2𝑑

𝑘
𝑛
𝑖

𝑛𝑑
  ,    

 

(1) 

where 𝑖 indicates a specific shape of 𝑛 (= 729 here), 𝑘 indicates an element of the shape vector 

of length 𝑑 (= 3000 here). The coefficient of multiple determination is given by 

𝑅2 = 1 −
∑ ∑ (𝑧𝑖𝑘−𝑧𝑖𝑘

model)2𝑑
𝑘

𝑛
𝑖

∑ ∑ (𝑧𝑖𝑘−𝑧̄𝑖𝑘)2𝑑
𝑘

𝑛
𝑖

  ,           

 

(2) 

where 𝑧̅ again indicates the mean shape vector over all shapes. A value of 𝑅2 near to zero 

indicates poor model fit and a 𝑅2 near to 1 indicates excellent to perfect model fit. Note finally 

quadratic models with age were tested here, although they did not provide very much additional 

accuracy in terms of model fit compared to a linear model. Results for the linear model with 

age that also contains terms for sex and ethnicity are therefore presented here only. Results for 

model fit for traditional single-level PLSR are presented here as a comparison to those results 

of mPLSR. Again, details for all of the models used here are presented in the Appendices.  
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3  Results 

 

Fig. 2: Colour map of the projection representing differences in shapes normal to the surface 

at each point (broadly: blue indicates inward changes in mm and yellow indicates outward 

changes in mm) going from ages 12 to 17 using mPCA [57] (upper figure) and mPLSR (lower 

figure). Excellent correspondence is seen between the two approaches, although changes via 

mPLSR appear to be slightly more distinct. 

Results of single-level PCA and mPCA (using the model shown in Fig. 1) for this dataset were 

presented previously in [57] and so we give a brief recap here only. For mPCA eigenvalues at 

level 1 (ethnicity/sex), level 2 (between-subjects) and level 3 (age) accounted for 7.9%, 71.5%, 

and 20.6% of shape variation in our dataset, respectively. Furthermore, results for modes of 

variation via mPCA demonstrated (correctly) changes in facial shape due to ethnicity and sex 
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at level 1 and changes due to age at level 3. Evidence of clustering by ethnicity and sex and 

(separately) by age group was seen in the standardised component scores at levels 1 and 3, 

respectively, of the mPCA model (and also in scores for single-level PCA). It was also noted 

that the “trajectories” of centroids of standardised component scores for males and females 

appeared to be different at level 3 of the mPCA model and via single-level PCA. No obvious 

evidence of differences in trajectories between Welsh and Finnish subjects with age was 

observed. All of these results were good tests that mPCA provided reasonable results. 

Facial shapes at ages 12 and 17 (independent of sex, ethnicity, and between subject variation) 

can be found via mPCA by using Eq. (A3) and then setting coefficients {𝑎𝑙
1} and {𝑎𝑙

2} to be 

zero at levels 1 and 2. Ref. [57] states that the centroid of component scores at level 3 (age) 

component 1 occurred at -√𝜆1
3 for age 12 and at +√𝜆1

3 for age 17. The difference perpendicular 

to the surface of the predicted shapes going from ages 12 to 17 via mPCA is shown in Fig. 2. 

As noted in Ref. [57], this mode of variation corresponds to an increase in the prominence of 

the chin and the size of the nose with increasing age, such that features become more strongly 

defined. Furthermore, the forehead also becomes slightly less prominent and cheeks also 

become less rounded with increasing age [57]. The difference perpendicular to the surface of 

the predicted shapes going from ages 12 to 17 via mPLSR of (e.g.) Eq. (B8) is also shown in 

Fig. 2. We see that results of mPCA and mPLSR are very similar quantitatively, which is an 

excellent first test of mPLSR. Unlike mPCA, mPLSR can be used to provide estimates of shape 

at any age readily because age is modelled as a continuous covariate. 
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Fig. 3: Colour map of the projection perpendicular to the surface at each point (broadly: blue 

indicates inward changes in mm and yellow indicates outward changes in mm) represents 

differences in shapes going from Welsh to Finnish (upper figure) and going from male to 

female (lower figure) via mPLSR. 

Differences in shapes between the two sexes and ethnicities predicted from mPLSR are shown 

as a colour map of the projections of the difference onto the surface normals, thus indicating 

change the locally inward-outward direction Fig. 3. Fig. 3 indicates that changes occur in the 

nose, chin, and cheeks between Finnish and Welsh subjects, whereas changes between sexes 

occur most prominently in the cheeks. Ref. [57] presents results for mean ± 2SDs via mPCA, 

and so the figures in Ref. [57] are “extreme” versions of shapes for the groupings by sex (male 

/ female) and ethnicity (Welsh / Finnish). Thus, the magnitude of changes due to sex and 
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ethnicity is smaller in Fig. 3 than in similar figures presented in Ref. [57], although the overall 

patterns are very similar, as expected.  

Colour maps are useful in visualising the location and magnitude of changes. In addition we 

visualise the changes as facial shapes directly in Fig. 4. We see again in Fig. 4 that the nose 

and chin become more prominent and features more distinct with increasing age. These 

differences are more noticeable in the profile rather than in the frontal images. We note that 

mPLSR treats age as a continuous variable, so it is possible to produce shapes at any ages. This 

was not the case in Ref. [57], where age was grouped according to specific (integer) years. 

Interpolation to intermediate ages is more difficult for mPCA than mPLSR. Again, this is a 

strong advantage of mPLSR. 

 

Fig. 4:  Predicted faces of the PLSR 2 model of Eq. (B7) at all ages from 12 to 17.  Facial 

features become more distinct, and the nose, forehead and chin become more prominent, with 

increasing age. 
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Results of the PLSR 3 model of Eq. (B9) are shown in Fig. 5. The effects of between-subject 

variation at level 2 can be illustrated by choosing coefficient {𝑎𝑙
2} randomly, where here we 

use: 𝑎𝑙
2 = 𝑁(0, √𝜆𝑙

2). Although changes with age still contribute to these facial shapes, the 

influence of shape variation at level 2 is clearly a much stronger influence. Indeed, we would 

expect level 2 variations to dominate because mPCA suggests that level 2 contributes 71.5% 

of shape variation, whereas level 3 contributes only 20.6%. Furthermore, all potential facial 

shapes are more varied than in Fig. 4, although all of them are still plausible. This is an excellent 

qualitative test of the model in Eq. (B9).  

Results for measures of model fit for the case where the test and training datasets are the same 

are shown in Table 1. Furthermore, generalizability of our findings was explored by using 

cross-validation, where the data was split randomly into training (80%) and test sets (20%), 

and the results are also shown in Table 1. The simplest models of single-level PLSR 1 of Eq. 

(B5) and mPLSR 1 of Eq. (B7) contain age only and so it is not surprisingly that these 

approximations demonstrate the largest RMSE and the lowest values for R2. This is improved 

somewhat by including sex and ethnicity in the model for single-level PLSR 2 of Eq. (B6). 

mPLSR 2 of Eq. (B8) gives very similar results to those of PLSR 2 of Eq. (B6), which is also 

not surprising as only age, sex, and ethnicity are included only in both models (albeit coded in 

slightly different ways). Clearly, results for RMSE and R2 in Tables 1and 2 indicate that PLSR 

4 of Eq. (B10) models the data accurately. Clearly, we wish to avoid both over- and under-

fitting in our models and we note again that cross-validation is carried out here. Measures of 

model fit can also be examined with respect to the number of components, 𝑝2, retained at level 

2 of the model; Table 2 shows that these measures of model fit improve with increasing values 

of 𝑝2. Results for measures of model fit were also found for models that included additional 

quadratic terms with age, although these analyses led to marginal improvements only in model 

fit and so they are not presented here. 
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Fig. 5:  Results of the PLSR 3 model of Eq. (B9) at all ages from 12 to 17. Contributions at 

level 2 sampled randomly for all shapes are used to give an idea how this level affects facial 

shape. All predicted facial results are plausible, which is a good qualitative test of this model. 
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Model 
PLSR 1 

(age only) 

PLSR 2 

(age, sex, 

ethnicity) 

mPLSR 1 

(age only) 

mPLSR 2 

(age, sex, 

ethnicity) 

mPLSR 4  

Data not 

split 

RMSE 72.53 70.30 72.56 70.15 12.56 

R2 0.036 0.094 0.035 0.098 0.971 

Data Split: 

80% 

training 

and 20% 

testing 

RMSE 73.14 72.59 73.16 70.84 13.79 

R2 0.032 0.046 0.031 0.092 0.966 

Table 1:  Results for measures of model fit for the RMSE and 𝑅2 for both single-level PLSR 

and mPLSR. As expected, model fits improve with increased model complexity. (Note that 𝑝2 

= 50 components are retained at level 2 of this model for mPLSR 4.) Results are presented for 

the cases where data was not split (i.e., the test and training datasets were one-and-the-same) 

and where the data was split into training (80% selected randomly; n = 583) and test sets 

(remaining 20%; n = 146). (R2 and RMSE are evaluated for the testing set only.)  
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𝑝2 1 2 5 10 50 

Data not 

split 

RMSE 60.88 53.18 43.47 33.20 12.56 

R2 0.320 0.481 0.654 0.798 0.971 

Data 

Split: 80% 

training 

and 20% 

testing 

RMSE 61.98 54.44 44.24 33.78 13.79 

R2 0.305 0.464 0.646 0.794 0.966 

Table 2:  Results for measures of model fit for the RMSE and 𝑅2 for mPLSR 4 given as 

function of the number of components, 𝑝2, retained at level 2 of the model. Results are 

presented for the cases where data was not split (i.e., the test and training datasets were one-

and-the-same) and where the data was split into training (80% selected randomly; n = 583) and 

test sets (remaining 20%; n = 146). (R2 and RMSE are evaluated for the testing set only.)  
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4 Discussion 

We have shown here that multilevel multivariate regression methods (mPLSR here) can be 

used to study age-related changes in adolescents in different populations (i.e., Finnish and 

Welsh populations containing both males and females). Excellent quantitative agreement was 

observed between mPLSR and mPCA for predicted differences in shape between the ages of 

12 and 17 (see Fig. 2). A detailed exploration of mPCA results for facial changes with age in 

adolescents is presented in the discussion section of [57]. However, we note here that results 

of mPLSR (and mPCA) also agree with the literature in this field, e.g. as stated in [61] that: “A 

chubby face turns into an elongated and more distinct face during the growth” and that “Facial 

features, such as the nose and the eyes, become more prominent and evolve to the main 

characteristics of a face.” Figs. 4 and 5 demonstrated that reasonable results were seen for the 

four sex / ethnicity groups, albeit by assuming a common ageing trajectory. However, the two 

sexes are known to exhibit different growth patterns during adolescence, e.g., that most changes 

occurred in the lower third of the face for males [26], and that surface changes are greater (with 

more changes occurring later) for boys compared girls [27]. In principle, multilevel 

multivariate regression models ought to be able to include such differences in growth 

trajectories by sex (etc.) and this will be carried out in future studies.  

A distinct advantage of direct regression models such as mPLSR compared to, say, mPCA is 

that age can be modelled explicitly as a continuous covariate. Note that ages must be “binned” 

together in some way for mPCA (to the nearest integer in [57]). Thus, interpolating shapes via 

mPCA at other intermediate ages is more difficult because we must carry out curve or surface 

fitting of component scores as a function of age in order to carry out this interpolation. 

Furthermore, models that reflect the structure of subject populations ought to perform better 

than those that do not and some early evidence for Monte Carlo simulated data [51] indicate 
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that this is indeed the case for mPCA compared to single-level PCA. Furthermore, eigenvectors 

obtained at different levels of the model in mPCA (or indeed mPLSR) do not necessarily have 

to be orthogonal, although they must be orthogonal within a given level. In principle, such 

approaches provide a route to overcoming the “orthogonality problem” of single-level PCA-

type methods that can mix different effects together. By explicitly modelling (e.g.) sex and 

ethnicity at specific levels of the model, we hope to improve generalizability compared to those 

methods that do not model the effects of these factors explicitly. Prediction of facial shapes to 

new scenarios is considered below. However, we note that a strong advantage of PCA-type 

methods in particular is that one can constrain the expansion coefficients so that the model is 

constrained to realistic solutions, within the modelled limits of variation within the training 

data when fitting new cases to the model  (e.g., |𝑎𝑙
2| ≤ 3√𝜆𝑙

2 at level 2 of the model presented 

here).  

The number of groups at a given level is often quite small (e.g., males & females at level 1 

here) and this will limit the complexity of the underlying model at this level. In some cases, 

this might lead to overly simplistic models. Furthermore, the rank of covariance matrices and 

so the number of non-zero eigenvalues is limited to the number of groups – 1 at that level. In 

turn, this will limit the number of non-zero eigenvalues at this level in PCA-type methods. 

Furthermore, another criticism that has been levelled against between-groups PCA [62] (a form 

of two-level mPCA) is that it can overestimate differences between groups because “between-

group” variation (level 1 in our terminology) is represented well by differences between mean 

shapes, whereas within-group variation (level 2) can be underestimated. The author [62] makes 

some excellent cautionary remarks about the validity of such techniques in the high p/n limit, 

where the number of parameters in the model far exceeds the sample size. 



18 
 

mPCA [57] suggests that only 7.9% and 20.6% of variation is explained by sex / ethnicity 

(level 1) and age (level 3), respectively, which helps us to explain why values for 𝑅2 for 

regression models that include sex, ethnicity, and age are relatively modest only in Tab. 1 (i.e., 

𝑅2 = 0.094 and 0.098). mPCA provides a complementary analysis to mPLSR therefore. Higher 

values of 𝑅2 were obtained in Tab. 1 by including contributions in the regression model at level 

2 (“between subject” variation). Caution should be exercised when interpreting 𝑅2 in this case 

though as this is somewhat of a false comparison: deviations at level 2 are modelled by a 

complete set of orthogonal vectors and so (e.g.) we would expect the model fit to be perfect if 

all possible (3000 here) eigenvectors were included in the model. Furthermore, here we wished 

only to observe how model fits changed with increasing complexity of model in these initial 

exploration of method. Despite these points, it is still encouraging that excellent model fits can 

be obtained for relatively modest numbers of eigenvectors at level 2, i.e., 𝑝2= 50 for this high 

dimensional data, as shown in Tab. 1. 

Indeed, we see from Fig. 5 that plausible shapes can be obtained via Eq. (B9) when 

contributions are level 2 (“between subjects”) are sampled randomly, which is another 

excellent (qualitative) test of this approach. A strength of such multilevel multivariate methods 

(illustrated schematically by Fig. 1) compared to single-level methods is that they are extremely 

flexible. For example, we can readily include such “between-subjects” variations within our 

multilevel model. In these initial calculations, we wish to explore how model fit changes in 

broad terms as we include different types of terms within the basic model.  

By fitting the model for mPLSR 4 of Eq. (B10) to a new facial shape, we can find the level 2 

(between-subject) parameters {𝑎𝑙
2}. We can then fix these parameters {𝑎𝑙

2} in order to 

extrapolate this shape to, say, older ages, given (e.g.) an appropriate model that takes into 

account “plateauing” after the adolescent growth spurt. Clearly, this could be of much use in 
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forensics for the identification of missing persons. Other parameters such as sex or ethnicity at 

level 1 can be changed also once {𝑎𝑙
2} are fixed. Facial shapes for syndromes such as Treacher 

Collins syndrome or foetal alcohol syndrome have been investigated previously (e.g.) in the 

UK. Rather less information is available in some countries or ethnicities. This approach could 

therefore also be of much use in simulating facial types for syndromes such as Treacher Collins 

syndrome or foetal alcohol syndrome in new populations where we have less information. In 

turn, this could be very useful for clinical diagnosis in that it can assist in delineating 

characteristic facial features, indicative of theses underlying disorders, in patients from these 

countries or ethnicities where less information is available. Finally, the methods presented here 

could have many other potential applications in future, including: 3D facial reconstruction, 

facial identification, human-computer interfaces, and computer-generated imagery.  
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5 Conclusions 

We have shown in this article that mPLSR can be applied to dense 3D point data representing 

facial shape. These calculations also demonstrate that this regression method can be used to 

describe such changes in facial shape due to age in adolescents. mPLSR models age as an 

explicit covariate, which is a strong advantage of mPLSR over mPCA because we can make a 

prediction of facial shape at any age. mPLSR might therefore be of much use in future for the 

prediction of facial shapes for missing persons at specific ages or for simulating shapes for 

syndromes that affect facial shape in new subject populations.   
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Appendix A: mPCA Mathematical Formalism 

An excellent review of PCA and PLSR methods is given in Ref. [63] and we adopt a broadly 

similar mathematical formalism here. To begin with, however, 3D landmark points are 

represented by a vector 𝑧 (length 3000 = number of points, 1000 × 3 dimensions) for each 

shape. Single-level PCA is carried out by finding the mean shape vector 𝑧̅ over all shapes and 

a covariance matrix  

𝐾𝑘1,𝑘2
=

1

𝑁−1
∑ (𝑧𝑖𝑘1

− 𝑧̄𝑖𝑘1
)𝑛

𝑖=1 (𝑧𝑖𝑘2
− 𝑧̄𝑖𝑘2

)  . (A1) 

𝑘1 and 𝑘2 indicate elements of this covariance matrix and 𝑖 refers to a given subject. The 

eigenvalues 𝜆𝑙 and (orthonormal) eigenvectors 𝑢𝑙 of this matrix are found readily. For PCA, 

one ranks all the eigenvalues into descending order, and one retains the first 𝑝1 components in 

the model. The shape 𝑧 is modeled by  

𝑧PCA = 𝑧̄ + ∑ 𝑎𝑙𝑢𝑙
𝑝1
𝑙=1   . (A2) 

The coefficients {𝑎𝑙} (also referred to as “component scores” here) are found readily by using 

a scalar product with respect to the set of orthonormal eigenvectors, i.e., 𝑎𝑙 = 𝑢𝑙 ∙ (𝑧 − 𝑧̅), for 

a fit of the model to a new shape vector 𝑧. Note that Eq. (A2) can be restated in a more general 

matrix form as 𝑧PCA = 𝑧̄ + 𝐴𝑢, where 𝑈 is formed of 𝑝1 column of orthogonal vectors 𝑢𝑙 of 

length 𝑑 (= 3000 here) and 𝐴 is formed of 𝑝1 row vectors of the component scores 𝑎𝑙 of length 

𝑛 (= 729 here).  

mPCA allows us to isolate the effects of various influences on shape at different levels of the 

model and this is illustrated schematically in Fig. 1 given above. The covariance matrix at level 

3 is formed with respect to all “repeated measurements” of 3D facial shape for each subject 

individually (at different ages) and then these covariance matrices are averaged over all 

subjects to give the level 3 covariance matrix, 𝐾3. The average shapes over all ages for each 
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subject 𝑙2 in each sex / ethnicity group 𝑙1 are found, such that each subject “forms their own 

group” at level 2. This covariance matrix 𝐾2 at level 2 is formed with respect to these shapes 

and they are averaged over all four sex / ethnicity groups (here) to give the level 2 covariance 

matrix, 𝐾2. Finally, the covariance matrix 𝐾1 at level 1 is formed with respect to these average 

shapes for the four sex / ethnicity groups. The overall “grand mean” shape is again denoted by 

𝑧̅. The l-th eigenvalue at level 1 is denoted by 𝜆𝑙
1, with associated eigenvector 𝑢𝑙

1, the l-th 

eigenvalue at level 2 is denoted by 𝜆𝑙
2, with associated eigenvector 𝑢𝑙

2, and the l-th eigenvalue 

at level 3 is denoted by 𝜆𝑙
3, with associated eigenvector 𝑢𝑙

3.  We rank the eigenvalues into 

descending order at each level of the model separately, and then we retain the first 𝑝1, 𝑝2 and 

𝑝3 eigenvectors of largest magnitude at the three levels. The shape 𝑧 is modeled by 

𝑧mPCA = 𝑧̄ + ∑ 𝑎𝑙
1𝑢𝑙

1𝑝1
𝑙=1 + ∑ 𝑎𝑙

2𝑢𝑙
2𝑝2

𝑙=1 + ∑ 𝑎𝑙
3𝑢𝑙

3𝑝3
𝑙=1  .        

 

(A3) 

The coefficients {𝑎𝑙
1}, {𝑎𝑙

2}, and {𝑎𝑙
3} (also referred to as “component scores” here) are 

determined for mPCA by using a global optimization procedure in MATLAB with respect to 

a “least-squares-type” cost function (i.e., 𝑐𝑜𝑠𝑡 = 𝜀2 = 𝜀 ∙ 𝜀, where 𝜀 is the residual error 

vector). Equation (A3) may be expressed in matrix form given by 

𝑍mPCA = 𝑍̄ + 𝐴1𝑈1 + 𝐴2𝑈2 + 𝐴3𝑈3  ,        

 

(A4) 

where 𝑈1 is formed of 𝑝1 column of orthogonal vectors 𝑢𝑙
1 of length 𝑑 (= 3000 here) and 𝐴1 

is formed of 𝑝1 row vectors of the component scores 𝑎𝑙
1 of length 𝑛 (= 729 here), etc.  
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Appendix B: mPLSR Mathematical Formalism 

Here we use Partial Least-Squares Regression (PLSR) in order to carry out multivariate 

regression. PLSR is a method that uses a weight matrix 𝑊 that aims to reflect the covariance 

structure between a response (dependent) Z (i.e., a matrix containing shape vectors for all 

subjects) and predictor (independent) variables X (such as sex, ethnicity, and age here). (Z and 

X are assumed to have means of zero.) Ultimately, PLSR aims to model 

𝑍 = 𝑋𝐵  .     

 

(B1) 

However, we define firstly a “factor score” matrix 𝑇, which is given by 

𝑇 = 𝑋𝑊  ,     

 

(B2) 

where 𝑊 is an appropriate matrix of weights (mentioned above). Linear regression of 𝑍 on 𝑇 

produces regression coefficients 𝑄, such that 

𝑍 = 𝑇𝑄  .     

 

(B3) 

Equations (B1) to (B3) imply that  

𝐵 = 𝑊𝑄  .    

 

(B4) 

There are different ways of defining the weight matrix 𝑊 and here we use the MATLAB 

“plsregress” command, which uses the SIMPLS algorithm [68]. The first single-level PSLR 

model of shape vector 𝑧 with respect to age only is therefore given by 

𝑧𝑃𝐿𝑆𝑅 1 = 𝐵𝑎𝑔𝑒 × 𝑎𝑔𝑒   

 

(B5) 

where age is the age of subject for shape vector 𝑧. (Lower case 𝑧 used here as this is a single 

shape.) The second single-level PSLR model including age, sex, and ethnicity is therefore 

given by 
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𝑧𝑃𝐿𝑆𝑅 2 = 𝐵𝑎𝑔𝑒 × 𝑎𝑔𝑒 + 𝐵𝑠𝑒𝑥 × 𝑠𝑒𝑥 + 𝐵𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 × 𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦.    

 

(B6) 

where sex (0 = male; 1 = female) and ethnicity (0 = Welsh; 1 = Finnish). Equations (B5) and 

(B6) are fixed-effects models. (A quadratic form with age can be formulated readily also, 

although only marginal gains were found here.) 

A simple form of mPLSR [58] is carried out here by performing PLSR at level 3 for data 𝑍′ 

given by shape vectors 𝑧𝑖
′ = 𝑧𝑖 − 𝛾𝑖. The index 𝑖 indicates a specific subject here. The vector  

𝛾𝑖 indicates the mean shape over facial shapes at different ages for this subject 𝑖. Hence, we 

have “re-centred” the data at level 3 with respect to the “group mean shape” for each subject. 

We have therefore removed much of the between-subject variations, including variation 

between sexes and ethnicities. We now find the “gradients” 𝐵3 via PLSR at level 3 for 

dependent variables 𝑍′ with respect to the independent variables 𝑋 used at this level (here age 

only). A first (very simple) mPLSR model of shape vector 𝑧 that is linear with age is therefore 

given by 

𝑧𝑚𝑃𝐿𝑆𝑅 1 = 𝑧̅ + 𝐵3 × 𝑎𝑔𝑒  .

 

(B7) 

Note that age in Eq. (B7) again indicates the age of subject for a shape vector 𝑧. A slightly 

more complicated model includes also the effects of sex and ethnicity at level 1 and the simplest 

method of achieving this is to use the mean shapes 𝜇𝑙 for the given sex / ethnicity group 𝑙 for 

this subject (level 1), such that 

𝑧𝑚𝑃𝐿𝑆𝑅 2 = 𝜇𝑙 + 𝐵3 × 𝑎𝑔𝑒  .

 

(B8)

 

An extension of this equation is to include terms that account for “between-subject variations” 

at level 2. Here we use the principal components obtain at level 2 presented above to represent 

this source of variation. The final mPLSR models are now given by 

𝑧𝑚𝑃𝐿𝑆𝑅 3 = 𝑧̅ + 𝐴2𝑈2 + 𝐵3 × 𝑎𝑔𝑒  ,

 

(B9) 
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and 

𝑧𝑚𝑃𝐿𝑆𝑅 4 = 𝜇𝑙 + 𝐴2𝑈2 + 𝐵3 × 𝑎𝑔𝑒  .  

 

(B10) 

Arguably, this approach is analogous to a (multivariate multilevel) mixed-effects model. It is 

straightforward to demonstrate that the coefficients {𝑎𝑙
2}, e.g., for a specific shape 𝑧 with 

respect to Eq. (B10), are given by 

𝑎𝑙
2 = 𝑢𝑙

2 ⋅ (𝑧 − 𝜇𝑙 − 𝐵3 × 𝑎𝑔𝑒)  .    

 

(B11) 

As in active shape models (ASMs) and active appearance models (AAMs), one can constrain 

the expansion coefficients (e.g., |𝑎𝑙
2| ≤ 3√𝜆𝑙

2) so that the model never “strays too far” from a 

sensible solution. (Note that this is used here when finding measures of model fit.) Indeed, this 

approach could be used in both ASMs and AAMs to account for continuous covariates (etc.) 

when segmenting features in images, although this lies beyond the scope of this paper. 

Quadratic forms with age in Eqs. (B7) to (B10) can also be formulated readily also, although 

again this process only yielded marginal gains and so this is not discussed here further here. 
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