
Bone mineral density modeling via random field: normality, stationarity, sex and age
dependence
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Abstract

Background and Objective: Capturing the population variability of bone properties is of paramount importance to biomedical
engineering. The aim of the present paper is to describe variability and correlations in bone mineral density with a spatial
random field inferred from routine computed tomography data.
Methods: Random fields were simulated by transforming pairwise uncorrelated Gaussian random variables into correlated
variables through the spectral decomposition of an age-detrended correlation matrix. The validity of the random field model
was demonstrated in the spatiotemporal analysis of bone mineral density. The similarity between the computed tomography
samples and those generated via random fields was analyzed with the energy distance metric.
Results: The random field of bone mineral density was found to be approximately Gaussian/slightly left-skewed/strongly
right-skewed at various locations. However, average bone density could be simulated well with the proposed Gaussian ran-
dom field for which the energy distance, i.e., a measure that quantifies discrepancies between two distribution functions, is
convergent with respect to the number of correlation eigenpairs.
Conclusions: The proposed random field model allows the enhancement of computational biomechanical models with vari-
ability in bone mineral density, which could increase the usability of the model and provides a step forward in in-silico medicine.
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Introduction1

The structural and intrinsic properties of bone are inho-2

mogeneous, and vary across the multiple spatial and tem-3

poral scales and population. It has been documented that4

bone properties vary at the collagen fibrils level as well as5

the lamellae level, and naturally vary across anatomical sites6

[1]. Structural inhomogeneities are related to bone fragility7

and toughness [2, 3, 4, 5]. Bone mineral density (BMD) is8

widely used to study bone properties. BMD is remarkably in-9

homogeneous [2, 6], and is connected to bone elasticity and10

fracture risk [7, 8, 9].11

The spatial variation of BMD has previously been analyzed12

through variograms [10, 11], where the authors attempted to13

enhance the fracture risk prediction ability related to BMD.14

Other studies have demonstrated significant correlations be-15

tween the parameters of BMD variograms and both trabecu-16

lar bone morphological measures and bone strength [12, 13].17

On the other hand, no significant correlation was found be-18

tween vertebrae strength and variogram parameters [14].19

Dong et al. [15] demonstrated that bone elasticity variation20
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at the nano scale can be described as a random field. Due21

to the remodeling process in bone, stationarity and isotrop-22

icity assumptions are likely to be violated, but to the authors’23

knowledge, this has never been investigated. Recent studies24

have emerged describing bone properties as a random field.25

Desceliers et al. [16] introduced a simplified random field26

model of cortical bone, but it has not yet been calibrated27

using clinical data. Another study showed that trabecular28

structure can be generated by an inverse Monte Carlo simu-29

lation on Voronoï cells, which exhibited a good match with30

trabecular morphology [17]. In the study by Luque et al.31

[18], a density random field of a trabecular region of interest32

(ROI) was modeled with directionally separable autocorrela-33

tion functions based on computer tomography (CT). So far,34

this study by Luque et al. [18] can be considered the first35

and also only one that considers density as a random field.36

However, the conclusions in their study are difficult to gen-37

eralize to the whole bone because they were derived from a38

bone sample of small size under stationarity conditions.39

Unstable pelvic fractures are difficult to treat and cur-40

rent methods of fixation suffer from a high failure rate41

[19, 20, 21]. A higher risk of fracture fixation failure is associ-42

ated with lower mineral density values [22, 23]. In addition,43
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local variance in mineral density has been shown to signif-44

icantly affect the strength of fixation screws [24]. Regional45

variance of pelvic bone density is insufficiently described in46

the literature, although it may play an important role in the47

study of pelvic fractures. Therefore, the pelvic bone serves as48

a suitable candidate to demonstrate BMD as a random field49

in the present study.50

Study Aim & Outline51

The present study aims to analyze the spatio-temporal vari-52

ability in BMD of the pelvic bone and to model BMD as a ran-53

dom field. First, a shape registration algorithm was used to54

geometrically align CT samples (Shape Registration section).55

In the next step, the Karhunen-Loève expansion (KLE) was56

employed to simulate BMD as a random field with Gaussian57

coefficients, see the Karhunen-Loève Expansion section. The58

new BMD realizations based on the random field model were59

validated using average bone mineral density (BMD), which60

can be considered a global measure of bone mineral density.61

Furthermore, what is known as the energy distance [25] was62

computed between the random field of BMD obtained from63

the CT samples and those generated with the KLE. The en-64

ergy distance is evaluated locally to see how similar the distri-65

butions are point-wise, and then also globally as an integral66

measure (Validation Measures section); see the flow chart in67

Figure 1.68

Materials and Methods69

CT Data Collection70

The anonymized retrospective CT data of 97 females and71

88 males were randomly taken from routine examinations72

performed in the Faculty Hospital in Hradec Králové un-73

der ethical approval 202102IO2P. The CT resolution of the74

dataset was 0.8 × 0.8 × 0.8 mm (Siemens Definition AS+,75

Siemens Definition 128, both Siemens AG, Erlangen, Ger-76

many; 120–130 kV using CareDose, reconstruction kernel77

80–90, bone algorithm). The inclusion criteria were as fol-78

lows: abdominal CT scans, bones without any trauma and,79

an age range of 20 years or older. Patients who had no record80

of having undergone a densitometric examination at the time81

of data collection (2018–2020) were selected. The sample82

population age per sex is in the range of 22–88 years, divided83

into 10 bins, where each bin contains more than 5 samples.84

The pelvic bone geometry implicitly defined by Hounsfield85

(HU) field was extracted with MITK-GEM interactive segmen-86

tation software. First, the rough contours of the bone and87

background were drawn manually on several slices. Subse-88

quently, the GraphCut algorithm was used to segment the rest89

of the slices [26].90

The CT scans were calibrated internally resulting in BMD91

[27]. The HU values of air, bone tissue, fat, blood and muscle92

were considered for internal calibration as shown in Figure 2.93

Only the right-hand side pelvic bone was considered because94

no significant difference was identified between the left and95

right sides.96

Shape Registration97

The estimation of the random field density requires the98

universal description of bone locations among all of the ex-99

perimentally studied bones using a single reference/template100

bone shape. This is achieved by introducing a fixed metric101

for spatial or temporal locations per sample to evaluate at.102

This requirement is violated for bone samples because each103

sample has a different size and shape. However, bone sam-104

ples are anatomically and topologically equivalent. This im-105

plies the existence of a point correspondence between two106

shapes under some suitable class of bijective maps and sim-107

ilarity metrics. To find such a correspondence, rigid and108

affine transforms were realized for the initial global align-109

ment of bones in datasets using the ANTs registration library110

[28]. Mutual Information (MI) was used as a similarity met-111

ric [29]. Then, a non-linear transform was found with the112

help of the SyN diffeomorphic–based registration algorithm113

in the ANTs library, see [28, 29]. The similarity of deformed114

bone shapes was measured with a modified intensity–based115

criterion called the demons–like metric. This metric provides116

the best accuracy/speed balance out of all the metrics tested117

(mean-squared difference, cross-correlation, MI) [29, 28]. In118

order to minimize registration error, a template bone shape,119

which is an estimate of the mean sample shape, was esti-120

mated according to [29, 30].121

Finite Element Projection of a BMD Field122

The template geometry described by an implicit HU field123

was transformed to a triangulated surface by the marching124

cube algorithm [31]. The resultant triangular mesh was used125

to build a tetrahedral volume mesh (fTetWild [32]).126

The computer analysis of BMD in the original CT data
space is inefficient. Therefore, the BMD is projected into a
suitable space with fewer DOFs. In fact, this projection is
an approximation of the BMD by piecewise (dis)continuous
functions using the least squares method. This approach
leads to the minimization of the following functional:

Π :=

∫

Ω

�

R(ρ̂, ρ̄)
�2

dΩ (1)

The goal is to find an approximation of the BMD that best
represents the original CT data. The residual R represents
the difference between the CT BMD value ρ̄ and the approx-
imated value with unknown coefficients ρ̂:

R(ρ̂, ρ̄) := φρ̂ − ρ̄ (2)

The φ is FE basis functions evaluated at a given integration
point. Substituting (2) into (1) and taking the derivative with
respect to coefficients ρ̂, one gets:

∂Π

∂ ρ̂
=

∫

Ω

2φφT ρ̂ − 2φρ̄ dΩ= 0. (3)

This expression represents a system of linear equations for
unknown values of ρ̂:

Kρ̂ = f (4)
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Figure 1: A flowchart of the study.

Figure 2: Example of CT slice where HU values of the considered tissues
were selected for internal calibration. ROI content (mm2): air: 1312; fat:
1109; bone: 160; blood: 92; muscle: 618. Mean HU (standard deviation):
air: -1002(7); fat: -90(12); bone: 1233(236); blood: 217(16); muscle:
60(12).

where K =
∫

Ω
φφT dΩ and f=

∫

Ω
φρ̄ dΩ. Note that ρ̄ can be127

noisy, and hence it is evaluated by averaging in a sampling128

volume of 4× 4× 4 voxels in size.129

There are two sets of finite element (FE) models used in the130

present study. The first set consists of validation models. The131

morphed BMD fields from the dataset were projected onto132

a discontinuous FE space constructed on the template mesh.133

All samples in the dataset shared the same geometry domain134

and finite element space. The correlation matrix of BMD can135

then be estimated. The FE models in the second set contain136

BMD fields simulated by KLE on the template geometry. The137

FE mesh size was estimated based on an auxiliary conver-138

gence study where a BMD difference between two mesh re-139

finements of below 5% was considered to be converged. The140

resultant number of degrees of freedom (DOFs) was roughly141

M ≈ 0.7 · 106.142

Karhunen-Loève Expansion143

The data set was split into two sets according to sex in144

order to capture sex differences. Consequently, the relation145

between age and BMD was analyzed and linear regression146

was used to separate deterministic trends composing of in-147

tercept (sample mean) ρ0 and slope ρ1 from the data matrix148

X.149

The random fieldρ(x) ∈ Ω is not known explicitly, but only
through a set of N standardized realizations projected onto
the template bone:

X ={X1,X2, . . . ,XM}, X ∈ RM ,N (5)

The projected realizations are evaluated at DOF coordinates,
from which the matrix of realizations X is built. The empirical
correlation matrix C is estimated as 1

N−1 XXT . The discretized
random field can be viewed as a set of correlated random
variables. Sample paths of Gaussian random fields can then
be generated by transforming uncorrelated Gaussian random
variables into correlated space [33, 34]. One possible linear
mapping between the uncorrelated and correlated Gaussian
random vectors is via the KL expansion. This expansion in-
volves the eigen-decomposition of the correlation matrix (or
the covariance function having the role of a covariance kernel
in the continuous version of the KL expansion). In order to
compute the KL decomposition of C, the associated discrete
eigenvalue problem must be solved [35]:

CΨ = DΨ (6)

where Ψ ∈ RM ,M is a matrix of eigenvectors and D =
diag(λ1,λ2, . . . ,λM ) is the diagonal matrix of eigenvalues.
The full population of correlation matrix C is impossible as
it is dense, moreover the rank of the matrix C is N only
and hence we adopt an alternative solution to the above
eigenproblem represented by a suitable matrix decomposi-
tion. Considering an economical QR decomposition of X, the
matrix C can be expressed:

C= QRRT QT , RRT ∈ RN ,N . (7)
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Consequently, the singular value decomposition of product
RRT is computed:

RRT = VDVT (8)

Substitution of Eq. (8) into Eq. (7) leads to:

C= QV
Ψ∈RM ,N

DVT QT , D ∈ RN ,N (9)

where Ψ and D are the eigenvector and eigenvalue matri-
ces of C. Once the N eigenpairs have been computed and
sorted in decreasing order λ1 ≥ λ2, . . . ,λN−1 ≥ λN , the spec-
tral representation of random field ρ(x) can be replaced with
a truncated discrete KL expansion [35]:

ρ(x) =ρ0(x) +ρ1(x)t +σ(x)
P
∑

i=1

Æ

λiθiψi(x) (10)

where θi is a zero mean, unit variance ith Gaussian pairwise150

uncorrelated variable described byN (0, 1), t is a time (age)151

in a range from 22–89 years (from CT data sets) and σ(x) is152

the sample standard deviation.153

The truncation in the KLE expressed in Eq. (10) may lead154

to dramatic computation time savings, since P can be con-155

siderably less than the order of the correlation matrix (= the156

number of discretization points), M , and also less than the157

order N . An appropriate selection of truncation order P can158

be based on various points of view. The standard way is to159

control the truncation error in KLE using the decay of the160

covariance operator’s eigenvalues. The eigenvalues play the161

role of variances of the underlying uncorrelated random vari-162

ables θi , which serve as random coefficients of deterministic163

eigenfunctions/vectors ψi(x). Given this interpretation, one164

can easily control the total amount of variance represented165

via the truncated KLE. Since the correlation matrix C is pos-166

itive (semi)definite by definition, the eigenvalues are non-167

negative and their sum is known in advance. Therefore, the168

eigenvalues can be sorted from the maximum eigenvalue to169

the minimum one, along with the corresponding eigenvectors170

(or eigenfunctions). The gradual sum of the sorted eigen-171

values serves as an indicator of how much variance is cap-172

tured by the corresponding subset of eigenmodes. In other173

words, the expansion can be truncated after taking a subset174

of P dominant eigenvalues (=variables with the largest vari-175

ance). The number of modes needed to cover a sufficient176

variability depends on the reach of the autocorrelation func-177

tion: when the autocorrelation length is high compared to178

the domain dimensions, usually only a small subset of eigen-179

pairs is necessary for a given truncation error. Furthermore,180

it can be shown that the KL expansion is optimal with respect181

to the global mean-squared error among all series expansions182

of truncation order P. We remark that, in order to achieve183

convergence, there are restrictions regarding the mesh dis-184

cretization [33].185

The amount of variance captured by the truncated KLE186

may not be the only criterion for the selection of truncation187

order, P. We also consider stabilization of the energy distance188

between the generated samples and the required value with189

P as shown in the numerical results below.190

In order to generate sample paths of random fields via the191

KL expansion, a technique for the generation of the under-192

lying standardized pairwise uncorrelated Gaussian random193

variables θi must be employed. Sample paths of random194

fields generated via orthogonal series expansion directly in-195

herit the quality of sample statistics of the underlying random196

variables. As shown in [33], utilization of the stratification197

technique called Latin Hypercube Sampling (LHS) [36, 37]198

leads to faster convergence of the sample statistics to the199

target values with increasing number of samples than crude200

Monte Carlo sampling. Therefore, LHS was used to generate201

KLE realizations (nsim = 300 samples were found sufficient202

to obtain a converged mean and standard deviation). The203

LHS generator of pelvic BMD realizations accompanying this204

paper is freely available on the BoneGen website [38].205

Validation Measures206

BMD and energy distance [25] were considered as valida-
tion measures for the proposed BMD random field model.
The BMD measure is an integral value, defined as

BMD=

∫

Ω

ρ dΩ (11)

This integral is computed by finite element (FE) discretiza-
tion. The BMD can be considered as the spatial average of
the BMD. Since the volume is identical for all samples, it is
unnecessary to include a volume denominator in expression
(11). Therefore, the BMD could also be interpreted as a frac-
tion of the bone mass which is formed by mineral content.
The energy distance d provides a way to measure the sim-
ilarity between two probability distributions. For two one-
dimensional distributions, u and v, the distance d is com-
puted [25]:

d(u, v) =

√

√

√

2

∫ +∞

−∞

�

U(x)− V (x)
�2

dx (12)

where U and V are cumulative distribution functions.1207

Within this study, the expression above describes the spa-208

tial distance density over the bone volume, and hence we209

additionally introduce a global distance measure as well:210

D =
∫

Ω
d dΩ. This spatial integral over bone volume is again211

computed with the help of FE discretization.212

Results213

The mean and standard deviation functions of BMD varied214

spatially significantly and differed for the cortical and trabec-215

ular regions and for both females and males, i.e., BMD ran-216

dom fields were non-stationary in space.217

Data analysis for females yielded the highest sample mean218

value of 1.246 (arcuate line, upper third), while the lowest219

1For empirical distribution functions, the integral is replaced by a sum.
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was 0.106 (above the greater sciatic notch). The highest sam-220

ple standard deviation (std) was 0.191 (top of the acetabular221

margin) while the lowest was 0.015 (deep to the auricular222

surface). The BMD normality is considered to be acceptable223

at the significance level p ≥ 0.05, which was fulfilled for 59%224

of the bone volume. The skewness range is −1.893 (midpart225

of the anterior margin of the greater sciatic notch) to 7.502226

(posterior part of the iliac wing). The negative values cor-227

responding to left-skewed distributions occupy 23% of the228

volume, while the right-skewed distributions occupy 77% of229

the volume.230

The data analysis for males yields the lowest mean value of231

0.119 (deep to the auricular surface), while the highest was232

1.135 (uppermost part of the arcuate line). The lowest std233

was 0.016 (in between the iliac wing and the iliac tuberosity),234

while the highest was 0.218 (top of the acetabular margin).235

BMD distributions can be considered normal for 54% of the236

volume, while the rest contained non-normally distributed237

data. The skewness range is from −1.895 (inferior to the238

ischial spine) to 6.177 (deep to the auricular surface). The239

left skewed distributions occupy 17% of the volume, while240

the rest of the volume was occupied by right skewed distri-241

butions. The spatial descriptive statistics are shown in Figure242

3.243

Influence of KLE truncation on the accuracy of random field244

representation of BMD245

The BMD was computed from CT samples and the new246

samples generated by the KLE with different numbers of247

eigenpairs. It was found that the most significant eigenvalue248

explains 32%/36% of the variance in the BMD, and the top249

five explain 54% of the variance for both females and males.250

There is no significant statistical difference between the BMD251

computed from CT- and KLE-based realizations, even with252

the KLE containing only the most significant eigenpair, see253

Figure 4.254

Age dependence of BMD/BMD255

The BMD slope for females varied in range from −5.163256

(dorsally to the arcuate line) to 3.269 (above the greater sci-257

atic notch) and from −5.470 (superior-posterior part of the258

acetabular margin) to 3.625 (anterior third of the iliac crest)259

[mg/cc/year] for females and males. The BMD is interme-260

diately correlated with age at (R2 ≤ 0.51) and (R2 ≤ 0.49)261

for females and males, respectively. The age correlation was262

significant at 73% and 56% of volume at a significance level263

of p ≤ 0.05 for females and males respectively, see Figure 5.264

At 71%/61% of volume, BMD decreased with age for both265

females and males. The difference in the BMD age rate esti-266

mated from CT and KLE realizations is 5.57% and 4.71% for267

females and males, respectively. The difference in standard268

error was 47% and 55% for females and males. The differ-269

ence in R2 is 21% and 50% for females and males; see Table270

1.271

Table 1: Age dependence of BMD estimated by linear regression for both
CT and KLE samples. The KLE samples were generated with five eigenpairs
included and LHS design.

females males
source: CT KLE CT KLE

BMD rate [mg/year] −0.2369 −0.2501 −0.1168 −0.1223
standard error 0.060 0.032 0.075 0.034
R2 0.140 0.169 0.028 0.042

Energy Distance272

The minimum/maximum distance dmin/dmax stabilized af-273

ter including more than 30 eigenpairs for females. The total274

distance D decreased as the number of included KL pairs in-275

creased, and ended up at a value of 7425 for females.276

The minimum/maximum distance dmin/dmax decreased up277

to the 50th KL pair, and consequently stabilized up to the last278

KL pair. The total distance decreased as the number of in-279

cluded eigenpairs increased up to a minimum value of 8303.280

The detailed evolution of energy distance is shown in Figure281

6, together with snapshots of selected included eigenpairs.282

Considering only the first KL pair, there are energy distance283

peaks at the dorsal portion of the acetabular notch for fe-284

males and below the anterior inferior iliac spine for males.285

286

Discussion287

Quantifying the uncertainties in bone mechanical prop-288

erties originating from a representative population is of289

paramount importance in order to achieve clinically relevant290

conclusions and research-informed practice in bone treat-291

ment. Due to the complexities of bone shape and the broad292

individual variations materials, any biomechanical experi-293

ments, both real and virtual (for example finite element sim-294

ulations), should be performed with sufficient sample size.295

This requirement is often difficult to achieve, and a lack of296

samples may reduce the potential for research conclusions297

to be applied to a broad population. We here introduce a298

random field model for BMD. With this model at hand, one299

can generate a number of BMD samples respecting popula-300

tion variability and age dependence. The current model al-301

lows the replication of the BMD density in a domain, which302

is a sample mean population bone shape. This step, which303

aims to separate BMD and shape, allows the analysis of304

BMD variations at a fixed metric as a random field, but it305

limits the model’s usability. Nevertheless, shape variations306

can be considered as a random field as well. The study of307

BMD and shape variations as random fields, potentially cross-308

correlated, will form the objective of subsequent studies.309

Representing BMD and bone shape using random fields310

can be considered as a step towards creating a digital twin311

of bone [39, 40]. However, the next key step is to include312

osteoporotic changes and analyze their effect on the random313

field of BMD.314

Although patients without a densitometric record were se-315

lected and their CT scans were carefully examined by an316
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Figure 3: Spatial statistics for BMD comprising three statistical moments for both females and males

experienced radiologist, it cannot be excluded that patients317

with osteoporosis are not present in the considered sample318

of patients. The patients, although not listed in the database,319

may have undergone densitometric measurements at another320

institution or may have been diagnosed with osteoporosis at321

a later date. In addition, routine CT scans provide limited in-322

formation about the patient. Furthermore, according to the323

authors, no information is currently available in the literature324

on the effect of internal calibration on the accuracy of the T-325

score used for osteoporosis classification. The above reasons326

make patient selection by routine CT difficult and must be327

considered as limitations of this study.328

Spatio-Temporal Dependence of a BMD Random Field329

Bone mechanical properties are well known to be age de-330

pendent ([41, 42, 43, 44]), and it is likely that the studied331

random field will also be time dependent. For this present332

study, only the deterministic part of an age trend was iso-333

lated. Generally, a temporal correlation structure can be334

modeled by the KL expansion but it requires a sufficient sam-335

ple size per analyzed time period. Knowing the temporal ef-336

fect on a BMD random field is extremely important and hence337

it is on the priority list for the authors’ next study.338

Clinical CT Resolution & Calibration339

The multi-scale nature of bone could not be considered in340

detail in the present study. The random field was estimated341

only at the organ scale based on routine CT data that may not342

have a sufficient resolution to capture trabecular architecture343

or the bone cortical shell properly. This issue complicates the344

estimation of local variations and anisotropy (fabric tensor345

[45, 46]) of the trabecular network as well as the composite346

structure of the cortical shell. Although the gradient of the347

structure tensor might potentially be used to analyze bone348

anisotropy based on clinical data, this has not been tested349

in this study [47]. Clinical routine CT is known to distort350

cortical density and thickness [48, 49], thereby exceeding351

a 100%-error in the sub millimeter structure of cortical bone.352

The effect of insufficient CT resolution may be seen at the353

central part of the iliac wing, where the thickness of the tra-354

becular bone layers is minimized and prone to partial volume355

effects; this is likely to affect the random field. In some cases,356

even a fenestration may be present at this location [50]. It357

is not obvious how the statistical moments and correlation358

structure are affected, and a careful analysis should be per-359

formed with the help of cortical thickness and the density es-360

timation algorithm introduced in [51], dedicated for clinical361

CT.362

The CT data were calibrated internally, without a phan-363

tom, using surrounding tissues [27]. Recent studies have364

shown that internal calibration can be a full alternative to the365

gold phantom standard [27, 52, 53]. However, various fac-366

tors that influence internal calibration remain up for debate367

and therefore caution is in order with regard to achieving ac-368

curacy and robustness. Fortunately, the correlation structure369

of the mineral density is invariant with respect to any linear370

calibration. However, the mean and variance of the mineral371

density can be biased by insufficient calibration. In an ex-372

treme case, the calibration curve can be considered a source373

of uncertainty in the mineral density model.374

Spatial Variation of BMD375

We assume that spatial fluctuation of BMD reflects the376

response of bones to external loading, which causes bone377
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Figure 4: Analysis of explained variance by eigenpairs (λ,ψ) and its influence on BMD [g/cc] / BMD [g] computed by the truncated KLE.

to deform in a complex manner (bending + torsion + ten-378

sion/compression). The load from the trunk is directed379

through the sacroiliac (SI) joint to the acetabulum and the380

femoral head while standing, or through the ischial tuberos-381

ity while sitting. Simultaneously, more than thirty muscles382

and several ligaments are attached to the pelvis, loading the383

bone with their tension in various directions. Increased BMD384

in area of the greater sciatic notch, the upper part of the arcu-385

ate line and the body of ischium seems to correspond well to386

weight-bearing load. The relatively low standard deviation387

in this area could indicate that the weight-bearing load can388

be considered as a common base load in the population. Even389

though the force generated by related muscles can be signif-390

icant, just slight density elevations following the margins of391

large muscles’ attachments (iliacus, gluteus medius) or iso-392

lated peaks for muscles with smaller insertion sites such as393

the rectus femoris were found. However, an interesting sim-394

ilarity was observed between the high standard deviations395

and the sites of possible apophyseal avulsions. This could in-396

dicate an increased individual localized stress induced by in-397

serted muscles or ligament insertions (anterior superior iliac398

spine – rectus femoris; anterior superior iliac spine – sarto-399

rius; ischial tuberosity – hamstrings; iliac crest – abdominal400

wall muscles; ischial spine – sacrospinous ligament and coc-401

cygeus muscle). The increased standard deviation at these402

sites could reflect variations in physical activity and other un-403

known effects. Other sites with increased standard deviation,404

i.e., the superior acetabulum and anterior margin of the au-405

ricular surface, are typical of osteophytes.406
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Figure 5: Spatio-temporal evolution of BMD and BMD.

Figure 6: Spatial evaluation of the energy distance composed of spatial functions dmin and dmax and the total distance D with respect to the number of
eigenpairs included. The ratios dmin/dmax are defined as the minimum/maximum distance over the domain. The minimum/maximum distance location
changed with each eigenpair included, which leads to scatter in the convergence plot.

Age Evolution of Bone Density407

Most publications generally assume a gradual reduction408

in bone mineral density with increasing age [54, 55, 56].409

However, it remains unclear whether this is a uniform pro-410

cess for all skeletal sites or whether there might be some re-411

gion dependence [57, 58, 59]. Moreover, due to the variable412

surface-volume ratio and related bone turnover, local differ-413

ences between cortical and cancellous bone should be ex-414

pected [60, 61, 62]. The age changes in cortical BMD can be415

described by cortical thinning, higher porosity, pore diameter416

and osteon density [63, 64, 62, 65, 66]. Cancellous bone is417

affected by trabecular loss. In males this is mostly in the form418
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of trabecular thinning, while in females trabecular disconnec-419

tion occurs [67, 68, 69, 70]. There is, however, little known420

about the spatial and age distribution of BMD in human in-421

nominate bone, as the majority of studies focus on long bone,422

vertebral or hip examinations. Our results showed general423

age dependent cortical BMD decline and, surprisingly, local424

mild trabecular BMD elevation. The reason is unclear, but it425

could be connected to higher trabecular mineralization pat-426

terns, which correlate with age, as documented in [71]. We427

found that female BMD is more sensitive to age. The BMD428

decreases with age in more than 68%/58% of the volume of429

bone for females/males. The BMD decreases faster for fe-430

males (51% faster than for males).431

Correlation Structure of BMD432

In the present study, a non-parametric approach to the gen-433

eration of new realizations of BMD has been demonstrated.434

This approach was based on input CT data, and the next step435

is to determine parametric correlation kernels, which could436

represent the correlation structure in time and space. It is un-437

likely that a simple stationary random field model for whole438

bone is achievable for several reasons: Bone forms a geo-439

metrically highly complex structure, and Euclidean distance440

is unlikely to be able to properly capture bone topology [72].441

Moreover, due to the adaptation processes that bone under-442

goes, there might be spatially dependent anisotropy in the443

correlation structure, and the distance metric will be spa-444

tially dependent. Finally, multiple latent variables coexist,445

for example the adaptation process, geometrical influences446

and other metabolic variables [73]. Together, these variables447

are very likely to cause long correlation distances, as seen in448

Figure 7. The identification and separation of these latent449

variables is difficult due to the limited information available450

from CT and from patients’ medical records. This will be the451

topic of a future study. Another question concerns how well452

the empirical correlation C and its eigenpairs represents the453

true population correlation due to the curse of dimensional-454

ity and noise (potentially spurious correlation) [74].455

Assumption of Gaussian KL Coefficients456

The distribution of BMD is site dependent. There are457

locations which follow approximately normal distribution,458

while other locations are slightly left-skewed and signifi-459

cantly right-skewed in distribution as well. The proposed460

KLE-based model uses uncorrelated Gaussian coefficients,461

which introduces a certain inaccuracy that is seen in the en-462

ergy distance metric. The energy metric reveals that the dis-463

tributions estimated from CT samples and those from the464

KLE model are different at some locations. It has been shown465

that five dominant KL coefficients are sufficient for an accu-466

rate reproduction of variance in BMD. However, the analysis467

of the energy distance shows that far more KL coefficients468

(>30) are needed to reproduce the distribution function of469

the BMD random field. Energy distance is stricter than BMD470

because it directly describes the similarity of BMD distribu-471

tions. Hence, the energy distance could be a good indicator472

Figure 7: Correlation dependence on distance for a BMD random field for
females estimated from CT samples.

that local properties such as stress and deformation quanti-473

ties might not be accurate enough and mean/std estimation474

might be biased. To improve our model, the identification475

of (generally non-Gaussian) distributions of KL coefficients476

should be incorporated into a random field model based on477

KLE, for example by the iterative algorithm introduced in478

[75].479

Random Field Model Implementation480

The covariance matrix of BMD is dense and large, hence it481

disallows a common storage representation or the solution of482

a Fredholm integral equation. Although we partially avoided483

these difficulties by directly manipulating the data on a dis-484

crete level, a more robust approach must be applied, for in-485

stance the recent approximation of KL by an isogeometric486

method [76].487

Comparison with Statistical Shape & Appearance Models488

(SSM/SSA)489

Our method shares the steps of geometry aligment and490

spectral decomposition of the empirical covariance matrix491

with SSM/SSA [77, 78, 79], but the meaning and comput-492

ing of these steps is different. The bone shape aligment is493

computed on an ROI of whole pelvic bone, allowing the in-494

terior to be aligned as well. Our approach uses covariance495

eigenpairs as bases for generating new BMD realizations.496

Most importantly, our approach is rather focused on ex-497

ploring/explaining the spatio-temporal correlation structure,498

which somehow reflects the (mechano-)biological mecha-499

nisms of growth and adaptation [80] in the authors’ opinion.500

Conclusion501

The understanding of uncertainties in bone density is of502

paramount importance to biomechanics in the relation to503

the understanding of bone mechanobiology, and it should504
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be properly incorporated into computational models. We in-505

troduced a random field model describing the fluctuation in506

bone density via the KLE. The following sub-conclusions can507

be drawn:508

• BMD has a complex correlation structure which cannot509

be modeled by an isotropic, spatially/temporally sta-510

tionary Gaussian random field,511

• Gaussian KL coefficients allow BMD to be simulated ac-512

curately,513

• the modeled BMD random field allows age dependence514

of BMD to be incorporated.515
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