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A B S T R A C T

Background and Objective: Computer-aided diagnosis (CAD) systems promote diagnosis effective-
ness and alleviate pressure of radiologists. A CAD system for lung cancer diagnosis includes nodule
candidate detection and nodule malignancy evaluation. Recently, deep learning-based pulmonary
nodule detection has reached satisfactory performance ready for clinical application. However, deep
learning-based nodule malignancy evaluation depends on heuristic inference from low-dose computed
tomography (LDCT) volume to malignant probability, which lacks clinical cognition.
Methods: In this paper, we propose a joint radiology analysis and malignancy evaluation network
(R2MNet) to evaluate the pulmonary nodule malignancy via radiology characteristics analysis. Radi-
ological features are extracted as channel descriptor to highlight specific regions of the input volume
that are critical for nodule malignancy evaluation. In addition, for model explanations, we propose
channel-dependent activation mapping (CDAM) to visualize the features and shed light on the deci-
sion process of deep neural network (DNN).
Results: Experimental results on the LIDC-IDRI dataset demonstrate that the proposed method
achieved area under curve (AUC) of 96.27% on nodule radiology analysis and AUC of 97.52% on
nodule malignancy evaluation. In addition, explanations of CDAM features proved that the shape and
density of nodule regions were two critical factors that influence a nodule to be inferred as malignant,
which conforms with the diagnosis cognition of experienced radiologists.
Conclusion: Incorporating radiology analysis with nodule malignant evaluation, the network inference
process conforms to the diagnostic procedure of radiologists and increases the confidence of evalua-
tion results. Besides, model interpretation with CDAM features shed light on the regions which DNNs
focus on when they estimate nodule malignancy probabilities.

1. Introduction

Lung cancer is the most common cause of cancer death
worldwide [1]. Lung cancer screening using low-dose com-
puted tomography (LDCT) scans has been proved as an ef-
fective tool to reduce patient mortality [2]. However, A thor-
ough inspection of a CT scan usually takes a radiologist around
10 minutes and diagnosis results are influenced by the doc-
tor’s experience and emotion. With the increasing number of
CT images, the data volumes to be analyzed overwhelm the
capacity of radiologists. Computer-aided diagnosis (CAD)
systems have the potential to reduce this burden. In recent
years, deep learning-based methods have demonstrated im-
pressive performance in medical image processing, and taken
up a dominant position in the design of CAD systems [3, 4,
5, 6, 7, 8].

A general deep learning-based CAD system for lung can-
cer diagnosis includes 1) a pulmonary nodule detection mod-
ule that detects candidate pulmonary nodules, and 2) a nod-
ule malignancy evaluation module that diagnoses the suspi-
cious nodules proposed by the previous stage. Deep learning-
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Benign Malignant

Figure 1: Examples of benign (the left column) and malignant
nodules (the right column). The red rectangles emphasize the
nodule locations and the yellow dashed rectangles highlight the
nodule areas. Figure best viewed in color.

based nodule detection has achieved remarkable results. How-
ever, deep learning-based nodule malignancy evaluation mod-
els that straightforwardly predict malignant probabilities are
short of explanations of which regions deep neural networks
(DNNs) focus on [9, 10]. Doctors estimate nodule malignant
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Figure 2: Examples of nodules labeled as solid nodule (a), mix
ground-glass opacity nodule (b), ground-glass opacity nodule
(c), and calcified nodule (d). The red rectangles emphasize the
nodule locations and the yellow dashed rectangles highlight the
nodule areas. Figure best viewed in color.

risk mainly according to the shape and density of the nod-
ules as well as other pathology information. Qualitatively,
compared to the benign nodules, the malignant ones often
have larger volumes, varied density, and irregular shapes.
Examples of benign and malignant nodules are illustrated in
Fig.1. The inference results of the DNNs, therefore, lack
confidence and interpretation.

To overcome the problems mentioned above, we propose
a joint radiology analysis and malignancy evaluation net-
work (R2MNet) that evaluates nodule malignancy accord-
ing to radiology analysis. Specifically, radiology analysis
aims to classify nodules as solid nodules (SN), ground-glass
opacity nodules (GGO), mix GGO nodules (MGGO), and
calcified nodules (CN) as shown in Fig.2. The purpose of
malignancy evaluation is to estimate malignant risk of nod-
ule. R2MNet consists of two sub-networks, the radiology
analysis network (RNet) and the malignancy evaluation net-
work (MNet) to implemented these two task, respectively.
To consolidate the two sub-networks, we design assisted gat-
ing units (AGUs) embedded in the MNet to transform the
feature maps extracted by RNet as a channel descriptor to
capture channel dependencies of that by MNet. Moreover,
model interpretability is crucial in CAD. To enable our model
explainable, we propose channel-dependent activation map-
ping (CDAM) that adopts channel dependencies of activa-
tion maps themselves for features interpretation. Extensive
experiments on LIDC-IDRI [11] via five-fold cross-validation
demonstrate that the proposed R2MNet achieves satisfactory
performance on nodule malignancy evaluation. Moreover,
its inference process conforms to clinical diagnosis proce-
dure which increases the confidence level of evaluation re-
sults. Our contributions can be summarized as follows:

• We propose R2MNet that integrates two sub-networks

(RNet and MNet) to inference malignant risk via radi-
ology analysis. The RNet extracts radiological feature
using new labeled data. MNet evaluates nodule ma-
lignancy.

• To conjoin the two sub-networks of R2MNet, we de-
sign the AGUs embedded in MNet to transform the
feature maps extracted by RNet as a channel descrip-
tor to capture channel dependencies of that by MNet.

• To enable our model interpretable, we propose CDAM
that exploits channel dependencies of the activation
maps for visualizing explanation.

• Extensive experiments on the LIDC-IDRI dataset in-
dicate that our method achieves promising accuracy
for nodule malignancy evaluation. Remarkably, the
inference process conforms to clinical diagnosis pro-
cedure.

The rest of this paper is organized as follows. In Section
2, we review the relevant literature. Datasets and their cor-
responding preprocessing are specified in Section 3. Section
4 elaborates on the proposed methods. Experiments setting
and results are shown in Section 5. In Section 6, we dis-
cuss the experiment results and analyze the superiority and
limitations of our approach. Section 7 concludes this paper.

2. Related work

In the following, we review the works related to pul-
monary nodule classification, long-range dependencies, and
Class Activation Map (CAM)-based explanation.

2.1. Pulmonary nodule classification
In a deep learning-based CAD system, nodule classifiers

either reduce false-positive nodules following nodule detec-
tors or evaluate nodule malignancy in the back of the CAD
systems. Setio et al. extracted 2D patches from nine sym-
metrical planes of a cube for false positive reduction [12].
Dou et al. encoded multi-level context information with 3D
Convolutional Neural Network (CNN) to reduce false posi-
tives [13]. MD-NDNet integrated nodule volumetric infor-
mation and spatial nodule correlation features from sagittal,
coronal, and axial planes to decrease false positive rate [14].
Winkels et al. developed a 3D version of group equivariant
convolutional networks that generalizes automatically over
discrete rotations and reflection for false-positive reduction
[15]. False-positive reduction using CNNs that identifies in-
put CT volumes whether have nodules or not conforms to
the clinical basis. However, nodule benign/malignant eval-
uation directly from CT to malignant probability lacks in-
terpretation of features extracted by CNN [9, 10]. To im-
prove model interpretability, Hussein et al. adopted multiple
CNNs based on graph regularized sparse multi-task learning
for malignant risk stratification [16]. Similarly, Wu et al. in-
tegrated the tasks including classification and segmentation
in a multi-task learning manner [17]. In this work, we ex-
ploit radiological features as a channel descriptor for nodule
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malignancy evaluation. Besides, we employ the proposed
CDAM for model explanation. Overview of the proposed
model is introduced in Section 4.1.

2.2. Long-range dependencies
Learning long-range dependencies is of great importance

in deep neural networks. Long-range dependencies enable
networks to capture large receptive field and learn global
features. Convolutions are local operations in which long-
range dependencies can only be captured when these opera-
tions are applied repeatedly. The transformer was one of the
first attempts to apply a self-attention mechanism to model
long-range dependencies in machine translation [18]. Non-
local operation captured the pixel-level pairwise relations for
solving computer vision [19]. GCNet improved the Non-
local network with less computation while maintained the
effectiveness of long-range dependencies capturing [20]. To
learn channel-wise dependencies of feature maps, SENet re-
calibrated the channel dependency with global context fea-
tures as each channel of feature maps corresponding to the
specific region of the input image [21]. Motivating by the
superiority of SENet, we propose a AGU for recalibrating
channel relationships using specific features as a channel de-
scriptor. Details of the AGU are presented in Section 4.2.

2.3. CAM-based Explanation
Activation maps visualization has been the most main-

stream method for CNN interpretation. Specifically, the Class
Activation Map (CAM) is one of the widely adopted meth-
ods [22]. CAM-based explanations provide feature visual-
ization for explanations with a weighted combination of ac-
tivation maps learned from CNN [22, 23, 24, 25].

CAM identified discriminative regions by a linear weighted
combination of activation maps of the last convolutional layer
before the global pooling layer [22]. However, it is only ap-
propriate for a restricted class of CNNs that contain global
average pooling layers and fully connected layers. To ex-
tend the range of application of CAM, Grad-CAM general-
ized the definition of the weighting coefficients as the gra-
dient of class confidence concerning the activation map and
applies to a significantly broader range of CNN model fami-
lies [23]. The variation of Grad-CAM, Grad-CAM++ aimed
to provide better localization of objects as well as explain-
ing occurrences of multiple objects of a class in a single
image [24]. Using gradient to incorporate the importance
of each channel towards the class confidence is a natural
choice. The gradient information for a deep neural network
can be noisy and also tends to vanish due to saturation in sig-
moid or the flat zero-gradient region in Rectified Linear Unit
(ReLU). Instead of using the gradient information flowing
into the last convolutional layer to represent the importance
of each activation map, Score-CAM exploited the impor-
tance as the linear combination of score-based weights and
activation maps [25]. However, the aforementioned methods
adopted weighting coefficients derived from external data,
which may introduce noise and bias. Therefore, we pro-
pose the CDAM for activation maps visualization where the
weighting coefficients are calculated from the activation maps

themselves. Details of the CDAM are presented in Section
4.3.

3. Materials

In this section, we introduce the database used in our ex-
periments. Data annotation and preprocessing methods are
also specified.

3.1. Dataset
In this study, we use a selected version of the LIDC database

[11] provided in the LUNA16 challenge [26] which consists
of 888 CT scans comprising a total of 1186 nodules. We
have obtained the nodules malignancy from the annotation
files in the LIDC-IDRI dataset. Nodules with an average
score higher than 3were labeled as malignant and lower than
3 are labeled as benign. Some nodules were removed from
the experiments in the case of the averaged malignancy score
3, ambiguous IDs, and rated by only one or two radiologists,
which resulted in a total of 1004 nodules where there were
450 malignant nodules and 554 benign nodules.

3.2. Radiological categories annotation
For nodule radiological analysis, two experienced radiol-

ogists labeled nodules as SN, GGO, MGGO, CN according
to the 3D radiological features of LDCT scans using ITK-
SNAP [27]. The steps of data annotation are briefly listed as
follows.

1) Two experienced doctors, respectively, marked the class
of all nodules based on radiological characteristics.

2) Then, they carefully inspected and corrected the labeled
results, respectively.

3) The final version was obtained by discussing and remark
the different classes labeled in previous steps.

3.3. Preprocessing
The data preprocessing follows four steps.

1) Normalization. We clipped hounsfield units (HU) of the
raw CT data into [-1200, 600] and normalized them into
[0, 1].

2) Extraction. Foreground regions of normalized CT scans
were extracted according to the ground truth masks pro-
vided by LUNA 16 challenge.

3) Resample. We resampled all CT volumes to have 1 mm
spacing in the z-, y-, x-dimension.

4) Crop. The nodule regions used to train and test our method
were cropped according to the experiment configurations
(i.e. 2D/3D format and size)
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Figure 3: The diagram of the proposed method. (a) R2MNet. Note that we omit the four max pooling layers each of which
is behind the Residual blocks for illustration convinience. (b) The convolutional block. (c) The residual blocks. (d) The AGU
module.

4. Methods

In this section, we introduce our R2MNet and detail its
components. Then, the implemented details are presented.
The proposed R2MNet are shown in Fig.3. The diagram
of R2MNet is illustrated in Fig.3(a). R2MNet is composed
of two CNN trained in multi-task learning manner (Section
4.1). The AGU transforms radiological features into a chan-
nel descriptor to facilitate malignancy evaluation (Fig.3(d)).
CDAM are proposed for model explanation (Fig.4).

4.1. R2MNet
Here we present our R2MNet and provide an overview of

the key components. The proposed R2MNet takes a 3D CT
volume of as input and provides as outputs a radiology class
and a nodule malignant score. Specifically, the R2MNet
consists of two improved residual networks [28], i.e., RNet
and MNet as illustrated in Fig.3 (a). MNet includes two
convolutional blocks(Fig.3 (b)), four residual blocks each of
which contains three residual units (Fig.3 (c)), four AGUs
(Fig.3 (d)), and four max-pooling layers. The architecture of
RNet is similar to MNet but without AGUs. The proposed

method can combine nodule radiological features for nodule
malignancy evaluation. The RNet and MNet are trained si-
multaneously in a multi-task learning manner. This is differ-
ent than current approaches that use directly a CNN for ma-
lignancy estimation [9, 10]. The goals of RNet are extracting
radiological features of pulmonary nodules for nodule eval-
uation as well as providing the radiological characteristics as
a reference for practice diagnosis. The outputs of RNet are
four categories probabilities and radiological features. The
radiological features are transformed into a channel descrip-
tor by AGU (Section 4.2) to render the MNet focus on nodule
area. MNet takes as inputs the CT volume data and the radi-
ological features for pulmonary nodule malignancy evalua-
tion. The loss function for training our networks is weighted
cross-entropy (CE) loss.

L(Yr, Ym, Ŷr, Ŷm) = �LCE(Yr, Ŷr)+(1−�)LCE(Ym, Ŷm) (1)

, where Yr and Ym are the ground truth, and Ŷr and Ŷm are
predictions of the R2MNet.
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Figure 4: The diagram of the proposed CDAM. Activation maps are linearly weighted to generate visual explanation.

4.2. Assisted Gating Unit
The vanilla SE layer [21] adopted the input features to

capture channel dependencies in 2D senario. The AGU, in-
stead, transforms the features extracted by RNet as a channel
descriptor to capture channel dependencies of that by MNet
in 3D senario. The diagram of AGU is shown in Fig. 3 (d).
Specifically, we transform radiological features into a chan-
nel descriptor to capture the channel dependencies of malig-
nancy features. Similar to the SE block, we model channel
interdependencies to recalibrate filter responses in two steps
(i.e., squeeze and excitation) as discussed follows.

1) Squeeze. Squeeze operations are adopted for global in-
formation embedding. In R2MNet, radiological features
R = [r1, r2, . . . , rN ] are squeezed to a channel descriptor
by using global average pooling (GAP). Noting that more
sophisticated aggregation strategies could be employed
here as well, we adopt GAP as used in [21]. The channel
descriptor T = [t1, t2, . . . , tN ] ∈ ℝ

C is computed as:

tn = Fsq

(

rn
)

=
1

D ×H ×W

D
∑

i=1

H
∑

j=1

W
∑

k=1

rn(i, j, k) (2)

where Fsq is the squeeze operation, and D, H and W

denotes the depth, height and width of the feature maps.

2) Excitation. The following operation takes as input the
information aggregated in the last step to capture chan-
nel dependencies, i.e. S = [s1, s2, . . . , sN ] ∈ ℝ

C . The
excitation operation can be formulated as follows:

S = Fex(T ,W ) = �(g(T ,W )) = �
(

W2�
(

W1T
))

(3)

where � is the sigmoid function and � refers to ReLU

activation, W1 ∈ ℝ

C

r
×C and W1 ∈ ℝ

C×
C

r . Similar to
[21], we form a bottleneck including a dimensionality-
reduction layer with parameters W1 with reduction ratio
r, a ReLU acitivation, and then a dimensionality-increasing
layer with parameters W2. Finally, the recalibrated ma-
lignant features M̃ = [m̃1, m̃2, . . . , m̃N ] ∈ ℝ

C are ob-
tained by rescaling the malignant featuresM = [m1, m2, . . . , mN ] ∈

ℝ
C with the radiological channel descriptors T :

m̃n = Fscale

(

tn, sn
)

= sn ⋅ tn (4)

where Fscale denotes channel-wise multiplication.

4.3. Channel-Dependent Activation Mapping
We propose CDAM for 3D features visualization moti-

vating by CAM-based methods, as shown in Fig.4. CAM is a
technique for identifying discriminative regions by a linearly
weighted combination of activation maps of the last convo-
lutional layer before the global pooling layer [22]. The mo-
tivation behind CAM is that each activation map of a CNN
layer contains different spatial information about the input
X and the importance of each channel is the weight of the
linear combination of the fully connected layer following the
global pooling. However, if there is no global pooling layer
or there is no fully connected layers, CAM will not apply
due to no definition of the weighted coefficients. Grad-CAM
[23] and its variations [24] generalize CAM to models with-
out global pooling layers by employing gradients as weights.

Instead of using weights of the fully connected layer or
gradient information derived from external layers, CDAM
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Figure 5: ROC curves of RNet and R2MNet on the radiology analysis (a), and malignancy evaluation (b).

employs activation maps themselves to obtain weights for a
linear combination of activation maps. Formally, CDAM is
defined as:

LCDAM = ReLU

(

C
∑

i=1

�iA
l
i

)

(5)

where Al denotes the activations of the lth CNN layer, Al
i

refers to the activation map for the ith channel of Al, and
a = [a1, a2, ..., an] ∈ ℝ

C is defined as:

an =
1

D ×H ×W

D
∑

i=1

H
∑

j=1

W
∑

k=1

Al
n(i, j, k) (6)

, We apply a ReLU activation to the linear combination of
maps because we are only interested in the features that have
a positive influence. Both al and Al are utilized after the
Softmax activation because the relative output value after
normalization is more reasonable to measure the relevance
than the absolute output value. Furthermore, to capture voxel-
wise importance, we up-sample LCDAM to the input resolu-
tion using bicubic interpolation.

4.4. Implemented details
The network were performed on PyTorch [29]. The mod-

els were trained via Adam optimizer [30] with standard back-
propagation. Data augmentation operations i.e., scaling, flip,
and rotation were also employed in the experiments. The
learning rate was set as a fixed value of 1e−4 and the number
of epochs was 100. The networks were trained on a single
NVIDIA GeForce GTX 1080Ti.

5. Experiments and results

In this section, we evaluate the proposed R2MNet on the
LIDC-IDRI database and show the results. First, we per-
formed nodule characteristics identification and malignancy
evaluation individually. Then, we combined two tasks in

Table 1

Performance comparison of RNet and R2MNet on radiology
analysis.

Model SN MGGO GGO CN AUC
RNet 95.50 89.88 91.01 96.63 95.21
R2MNet 96.63 92.13 91.01 97.75 97.08

multi-task learning where radiology analysis assisted malig-
nancy evaluation. For model explanations, we visualized the
feature maps and analyzed their characteristics. Experimen-
tal results show that the proposed method achieved higher
performance compared to the baseline.

5.1. Nodule Radiology analysis
Nodule radiology analysis aims to classify nodules as

SN, MGGO, GGO, and CN nodules. Identifying these char-
acteristics renders the model to learn radiological features
for facilitating malignant evaluation. In addition, these char-
acteristics can assist radiologists in determining nodule at-
tributes as well. Experimental results of nodule character-
istics classification are listed in Table 1. Both RNet and
R2MNet achieved accuracy higher than 90% among the four
categories. After combined with MNet, the performance of
R2MNet either remained the accuracy level of RNet (GGO,
CN) or was higher than that of RNet (SN, MGGO). Also,
the area under curve (AUC) of R2MNet is larger than that of
RNet. According to the Fig.5 (b), the ROC curve of R2MNet
nearly surrounds that of the RNet.

5.2. Nodule malignancy evaluation
Radiological features of pulmonary nodules can assist

CNN for malignant classification because the inference pro-
cedure conforms to the diagnosis process. To testify the ef-
fectiveness of the proposed method, we conducted experi-
ments of nodule malignant classification. As shown in Ta-
ble 2, R2MNet outperforms MNet with an accuracy gain
of 1.72% and an AUC gain of 1.38%, respectively. More-
over, the accuracy and AUC of R2MNet are more stable
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Figure 6: Comparison among RNet, MNet, R2MNetw/oAGU, and R2MNet with accuracy and AUC on radiology analysis (a) and
malignancy evaluation (b), respectively. The first three columns are the accuracy boxes and the remaining are AUC ones. Each
scalar in the left of the corresponding boxes is the average value.

Table 2

Performance comparison measured by accuracy and AUC (mean ± s.d.%) for MNet,
R2MNetw/oAGU, and R2MNet on radiology analysis and malignancy evaluation.

Task Radiological analysis Malignant evaluation
Model Accuracy AUC Accuracy AUC
MNet 90.82% ± 1.09 95.15% ± 1.05 92.89% ± 0.76 95.24% ± 1.25

R2MNet_w/oAGU 91.11% ± 0.95 96.41% ± 1.64 93.97% ± 1.33 96.08% ± 1.40

R2MNet 91.13% ± 1.10 96.27% ± 1.60 94.74% ± 0.62 97.52% ± 1.04

compared to MNet according to the standard deviation. The
ROC curves of MNet and R2MNet are depicted in Fig.5 (c).
To compare the overall performance of MNet and R2MNet
through five-fold cross-validation, we also illustrated the box
plots with accuracy and AUC in Fig.6. As shown, compared
to MNet, R2MNet achieved more stable and higher results.

5.3. Ablation study
We conducted an ablation study to investigate the indi-

vidual contributions of R2MNet and AGU module. We im-
plemented the experiments both on radiology analysis and
malignant evaluation. The experiments were performed from
two ends; on the one hand, we just included the radiology
analysis in nodule malignant evaluation, which resulted in
a fundamental version of R2MNet (i.e., R2MNetw/oAGU).
On the other hand, the AGU modules were introduced into
the preliminary R2MNet to construct the final version of the
proposed method (i.e., R2MNet).

In nodule radiology analysis, a comparison was made
among RNet, R2MNetw/oAGU, and R2MNet. As indicated
in Table 2 the accuracy and AUC scores of the R2MNetw/oAGU
are similar to that of R2MNet. Both of them slightly outper-
forms RNet. Results are shown in Fig.6(a).

In nodule malignancy evaluation, a comparison was im-
plemented among MNet, R2MNetw/oAGU, and R2MNet.

The results of the five-fold cross-validation are listed in Ta-
ble 2. We can observe from the table that combining ra-
diological analysis with malignant evaluation improves per-
formance over doing the latter only. Further, when AGU
is introduced into R2MNet, the synergy between these two
components generates the best performance. The illustration
of these results is shown in Fig.6 (b).

5.4. Model interpretation
Direct approaches that classify pulmonary nodule as be-

nign or malignant from input CT data to the malignant prob-
abilities lack of interpretation. To build explainable models,
we provided visual explanations using the proposed CDAM.
The experiments were performed both on malignant evalua-
tion and radiology analysis to investigate voxel-wise impor-
tance regions which the models focus on in different tasks.
Specifically, we employed the feature maps with a size of
256 × 6 × 6 × 6 after the last residual block in our model as
activation maps. Since the activation maps are volume data,
we adopted the center slice for visualization convenience.
Fig.7 shows the CDAM features and its corresponding prob-
abilities of MNet, R2MNetw/oAGU, and R2MNet concern-
ing nodule malignant evaluation, respectively. The value be-
low each sub-figure is the probability predicted by the corre-
sponding model. Besides, we illustrated the CDAM features
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Figure 7: Visualization of CDAM features derived from MNet, R2MNetw/oAGU, and R2MNet regarding malignant evaluation,
respectively. The value under each sub-figure is probability predicted by the corresponding model. Note that we show the central
slice only for visualizing convenience. Figure best viewed in color.

with respect to nodule radiology analysis in Fig.8.

6. Discussion

Automatic pulmonary nodule malignancy evaluation is
an essential component of a CAD system for lung cancer di-
agnosis. Deep learning-based methods have demonstrated
promising results on this task. Table 3 summarizes the re-
lated works from the literature. Shen et al. introduced a Mul-
tiscale CNN for nodule malignancy diagnosis and achieved
an accuracy of 86.84%on a selected LIDC-IDRI dataset [31].
Nibali et al. adopted ResNet with multiview inputs for be-
nign/malignantclassification [9]. They evaluated their method
on the dataset derived from the LIDC-IDRI and achieved an
accuracy of 89.90%. Al-Shabi et al. employed non-local
blocks to model nodule global features and residual blocks
to capture local features of nodule [10]. They estimated the
model on the selected LIDC-IDRI database with accuracy
of 88.46%. However, classifying lung nodules as benign or
malignant directly from the CT volume (or slice) lack clin-
ical basis and explanations of the features extracted by the
CNN. Therefore, the results are short of confidence level.
Hussein et al. empirically established the significance of dif-
ferent high-level nodule attributes for malignancy determi-
nation [32]. Furthermore, they adopted CNNs to learn a se-
ries of features for nodule attributes then fused these features
to predict the malignancy of pulmonary nodule in a multi-

Table 3

Overview of previous methods for pulmonary nodule evalua-
tion. Abbreviations: Information Processing in Medical Imag-
ing (IPMI), International Symposium on Biomedical Imaging
(ISBI), International Journal of Computer Assisted Radiology
and Surgery (IJCARS).

Methods Accuracy
MCNN [31], IPMI 86.84%
TurmorNet [32], ISBI 82.47%
TurmorNet (Attributes) [32], ISBI 92.31%
Nodule-ResNet [9], IJCARS 89.90%
MIT-3DCNN [16], IPMI 91.26%
PN-SAMP [17], ISBI 97.58%
Local-Global Networks [10], IJCARS 88.46%
R2MNet, ours 94.74%

task learning manner [16]. Similarly, Wu et al. proposed
a multi-task learning CNN that integrated pulmonary nod-
ule segmentation attributes and malignancy prediction [17].
Their approach simultaneously predicted the malignancy of
lung nodules, segmented the nodule areas and learned nod-
ule attributes, and aimed to tackle the problem of model
interpretability. Note that it can be difficult to pursue an
objective cross-study comparison due to the differences in
datasets, initialization methods, and experimental settings.

Our method leveraged radiological features as a channel
descriptor to assist lung nodule evaluation in a multi-task
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Figure 8: Visualization of CDAM features derived from RNet, R2MNet_w/oAGU, and R2MNet concerning radiology analysis,
respectively. Note that we show the central slice only for visualizing convenience. Figure best viewed in color.

learning manner. Specifically, Table 1 indicates the results
of the radiological analysis. Although radiology analysis is a
auxiliary component in the R2MNet, R2MNet increased the
accuracy among four nodule categories and the AUC score
compared with RNet. Moreover, the ROC curves in Fig.5(b)
where the curve of R2MNet nearly surrounds that of RNet il-
lustrate that the classification performance of R2MNet better
than that of RNet. In nodule malignancy evaluation, Fig.5(c)
depicts the ROC curves of MNet and R2MNet in which the
curves of the latter higher than that of the former. As indi-
cated in Table 2, in general, joint learning of radiology anal-
ysis and malignancy evaluation improved the performance
compared to each individual. Combined learning facilitates
communication between different tasks. We can conclude
that these two tasks reinforce each other. Furthermore, com-
paring R2MNetw/oAGU with MNet, we can view the accu-
racy and AUC gain both in the two tasks. The performance
of R2MNet on radiological analysis nearly equal to that of
R2MNetw/oAGU. It is reasonable because the AGU module
adopted radiological features to facilitate nodule malignancy
evaluation. Indeed, the performance gain was obtained by
R2MNet in malignancy estimation. On the other hand, Fig.6
depicts the box plots with average values and data distribu-
tion. The accuracy scores and AUC scores increase grad-
ually among MNet, RNet, R2MNetw/oAGU, and R2MNet,
which further proves the effectiveness of the proposed meth-
ods. Viewing the boxes of MNet/RNet and R2MNetw/oAGU,

one can conclude that although multi-task learning can bring
performance gain, the results tend to fluctuate due to the
hard convergence of the networks. However, the results of
R2MNet are stable compared to others because introducing
AGU into R2MNetw/oAGU enables the R2MNet to employ
radiological features and then improve the adaptability of the
model to different data.

Although performance improvement is one of a great
purpose in developing deep learning-based methods, inter-
pretability is essential as well. According to the experiences
of radiologists, the shape and density of nodule regions are
two critical factors that influence a nodule to be inferred
as malignant. Fig.7 shows the CDAM features of MNet,
R2MNetw/oAGU, and R2MNet concerning nodule malig-
nant evaluation, respectively. MNet tended to be disturbed
by the background noise and confused with benign and ma-
lignant features. In contrast, both R2MNet and R2MNetw/oAGU
can focus on nodule regions except that they yielded a wrong
identification in the first benign nodule. Furthermore, these
two architectures paid higher attention to malignant nodules
and lower attention to benign ones, which conforms to the
risk of the nodules. According to the last two columns of be-
nign and malignant nodules in Fig.7, even though the MNet
generated high probabilities, similar to other models, the con-
cerning regions of MNet slightly deviate from the ground
truth. On the contrary, R2MNet predicted low scores when
it falsely located the nodule region, whereas MNet still gen-
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erated high probability (Fig.7, the first column). We can con-
clude that incorporating malignancy evaluation with radiol-
ogy analysis can render the network emphasize nodule re-
gions and characterize the shape and density features of nod-
ules. Besides, the density of nodules plays a key role for nod-
ule radiology analysis. As shown in Fig.8, even though the
four classes of nodules have different densities, the bound-
aries among them are confused, which led both the RNet and
R2MNetw/oAGU to locate the nodule regions inaccurately.
On the contrary, the R2MNet accurately located the nodules
and lay different emphasis on these regions according to their
densities, conforming with the clinical basis. Therefore, we
can conclude that even though the results of R2MNet and
R2MNetw/oAGU are similar, the inference process of R2MNet
is more reasonable.

A major limitation of this work is that the input data de-
pend on pulmonary nodule detection. The input data are de-
rived from either manually choosing by radiologists or au-
tomatic detection by nodule detectors. Previous researches
integrated multi-models into a synthetic system whose com-
ponents were trained separately to performed different tasks.
For example, Bonavita et al. developed a lung cancer clas-
sification pipeline that integrated a 3D CNN with an exist-
ing nodule detection framework [33]. Liao et al. adopted a
3D Faster R-CNN for patch-based nodule detection and in-
tegrated the leaky noisy-OR model into neural networks to
solve lung cancer prediction [7]. Similarly, Zhu et al. build a
DeepLung system to identify suspicious nodules and predict
nodule malignancy [6]. Ozdemir et al. introduced a CAD
system that included two sub-systems for nodule candidates
segmentation and malignancy prediction [8]. An end-to-end
explainable CAD system for lung cancer diagnosis that in-
tegrates nodule detection,segmentation and malignancy pre-
diction is of extensive clinical application value. This will
be considered as our future work.

7. Conclusion

In this paper, we proposed the R2MNet that evaluated
pulmonary nodule malignancy resorting to radiology anal-
ysis instead of directly infer malignant probability, which
conformed to the clinical diagnosis procedure and increased
the confidence of prediction results. Specifically, the radio-
logical features were transformed into a channel descriptor
that emphasized the informative malignant features and sup-
pressed the less useful ones, so that the network could esti-
mate the malignant risk based on radiological characteristics
as did an experienced doctor to a patient. Besides, model
explanations with CDAM shed light on the voxel-wise nod-
ule regions which CNNs focussed on when they estimated
nodule malignancy risk. The experimental results on the
LIDC-IDRI database demonstrated the effectiveness of the
proposed R2MNet.
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