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Abstract:  Background and Objective: Tuberculosis (TB) is an infectious bacterial disease. It can affect the human lungs, 

brain, bones, and kidneys. Pulmonary tuberculosis is the most common. This airborne bacterium can be transmitted with the 

droplets by coughing and sneezing. So far, the most convenient and effective method for diagnosing TB is through medical 

imaging. Computed tomography (CT) is the first choice for lung imaging in clinics because the conditions of the lungs can 

be interpreted from CT images. However, manual screening poses an enormous burden for radiologists, resulting in high inter-

observer variances. Hence, developing computer-aided diagnosis systems to implement automatic TB diagnosis is an 

emergent and significant task for researchers and practitioners. This paper proposed a novel context-aware graph neural 

network called TBNet to detect TB from chest CT images. Methods: Traditional convolutional neural networks can extract 

high-level image features to achieve good classification performance on the ImageNet dataset. However, we observed that 

the spatial relationships between the feature vectors are beneficial for the classification because the feature vector may share 

some common characteristics with its neighboring feature vectors. To utilize this context information for the classification of 

chest CT images, we proposed to use a feature graph to generate context-aware features. Finally, a context-aware random 

vector functional-link net served as the classifier of the TBNet to identify these context-aware features as TB or normal. 

Results: The proposed TBNet produced state-of-the-art classification performance for detecting TB from healthy samples in 

the experiments. Conclusions: Our TBNet can be an accurate and effective verification tool for manual screening in clinical 

diagnosis. 

 

Keywords: tuberculosis; computed tomography; computer-aided diagnosis; graph neural network; random vector functional-

link net 

 

1. Introduction 
Tuberculosis is a highly infectious lung disease caused 

by Mycobacterium tuberculosis airborne bacteria. 

Tuberculosis is among the top causes of human death. 

Although the human immune system can kill most bacteria, 

there are approximately ten million new confirmed cases of 

TB and nearly two million death tolls by the disease every 

year around the world. The world health organization 

envisions eliminating TB by 2030 [1]. Early diagnosis is 

crucial to control the spreading of TB. The most widely used 

TB diagnosis method is computed tomography (CT). The 

infected regions can be observed in the chest CT images. 

Nevertheless, manual screening requires expertise and 

long working hours, and the results of different observers 

may be contradictory. On the other side, the development of 

deep learning algorithms in the last decade has achieved 

outstanding performance on image classification and 

recognition tasks, making automatic medical image analysis 

possible. Therefore, computer-aided diagnosis (CAD) has 

become a heated research field. CAD systems can analyze 

the medical images and produce the results automatically and 

rapidly, which can serve as the verification to assist the 

radiologists in their diagnosis. In recent years, numerous 

CAD methods have been proposed to identify TB. 

Hooda, Sofat, Kaur, Mittal and Meriaudeau [2] 

constructed a deep convolutional neural network (CNN) with 

seven convolutional layers and three fully connected layers 

to detect TB from chest X-ray images. The Adam algorithm 

was employed to train the CNN model. The proposed method 

yielded an accuracy of 82.09% on the validation set in the 

experiments. Lakhani and Sundaram [3] proposed to 

ensemble the pre-trained AlexNet and GoogLeNet to classify 

the chest radiographs as TB or healthy. They discovered that 

the pre-trained models performed better than un-pre-trained 

models. Liu, Cao, Alcantara, Liu, Brunette, Peinado and 

Curioso [4] also leveraged AlexNet and GoogLeNet to 

design their TX-CNN by transfer learning. Cross-validation 

and shuffle sampling were employed to evaluate the 

classification performance of their method. The proposed 

method achieved an accuracy of 85.68% in detecting TB 

from normal samples. Abbas and Abdelsamea [5] transferred 

a pre-trained AlexNet to identify TB and healthy samples 

from the chest X-ray images. In their experiments, they tried 

to fine-tune different layers of the AlexNet to obtain the best 

accuracy. Dinesh Jackson Samuel and Rajesh Kanna [6] 

exploited the pre-trained Inception V3 as the backbone and 

trained it on microscopic images. Then, the Inception V3 was 

used as the feature extractor to obtain image features from 

the microscopic images. Finally, a support vector machine 

(SVM) was trained with these features for the identification 

of TB. Shabut, Hoque Tania, Lwin, Evans, Yusof, Abu-

Hassan and Hossain [1] put forward a TB diagnosis method 
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based on plasmonic ELISA images. They computed the color 

moments from those images as the features and selected the 

random forest as the classification algorithm. Their CAD 

system can be deployed on mobile platforms. Vajda, 

Karargyris, Jaeger, Santosh, Candemir, Xue, Antani and 

Thoma [7] firstly employed an atlas-based segmentation 

algorithm to obtain regions of interest (ROIs) from the chest 

X-ray images. Then, they extracted three different sets of 

image features: shape, edge, moment, texture, size, 

orientation, eccentricity, bounding box, etc. Afterward, a 

wrapper feature selection method was used to obtain the best 

image features from the three feature sets. Finally, they 

trained a multi-layer perceptron was trained to classify the 

samples as TB or normal. Xiong, Ba, Hou, Zhang, Chen and 

Li [8] constructed a CNN model called TB-AI and pre-

trained it on the CIFAR-10 dataset. The pre-trained TB-AI 

was transferred to the classification of microscopic images to 

detect TB. Diaz-Huerta, Tellez-Anguiano, Fraga-Aguilar, 

Gutierrez-Gnecchi and Arellano-Calderon [9] proposed a 

segmentation method for bacilloscopies to diagnose TB. The 

segmentation was based on a Bayesian classification 

algorithm with a Gaussian mixture. Hwang, Park, Jin, Kim, 

Choi, Lee, Goo, Aum, Yim, Park, Deep Learning-Based 

Automatic Detection Algorithm and Evaluation [10] added 

12 residual connections in their CNN model with 27 layers. 

The CNN was trained from scratch on their chest radiograph 

dataset and achieved satisfactory results. Lopez-Garnier, 

Sheen and Zimic [11] collected a dataset of microscopic 

observed drug susceptibility images for TB diagnosis. A 15-

layer CNN model inspired by VGG16 was trained from 

scratch on their dataset for TB classification. Nguyen, 

Nguyen, Dao, Unnikrishnan, Dhingra and Ravichandran [12] 

tested the backbone models pre-trained on different datasets 

such as the ImageNet dataset and NIH-14 dataset. They 

discovered that the models pre-trained on the NIH-14 dataset 

can generate better low-level features than those pre-trained 

on the ImageNet dataset for chest X-ray images. Norval, 

Wang and Sun [13] tested different pre-processing methods 

for the classification of lung X-ray images including 

histogram equalization, contrast enhancement, sharpening, 

color channel reduction, and cropping of ROIs. They trained 

a CNN model to compare the classification performance of 

those pre-processing methods and found that the 

combination of contrast enhancement and cropping of ROIs 

produced the best results. Qin, Sander, Rai, Titahong, 

Sudrungrot, Laah, Adhikari, Carter, Puri, Codlin and 

Creswell [14] compared and discussed the classification 

performance of three deep learning-based TB diagnosis 

systems. Chandra, Verma, Singh, Jain and Netam [15] 

proposed a two-level hierarchical feature (HF) structure to 

generate features from chest X-ray images. In the first level, 

they computed the geometric features, and in the second level, 

they generated statistical features from the images. The SVM 

classification algorithm was chosen as the identifier of TB. 

Tao Hwa, Bade, Hijazi and Saffree Jeffree [16] combined 

deep learning models with contrast-enhanced Canny edge 

detector for TB diagnosis in chest X-ray images. They used 

the Canny edge detector to get the edges in the X-ray images. 

Based on the edges, they obtained edge-enhanced images and 

edge-detected images. Then, they trained VGG16 and 

InceptionV3 on these two types of images. The final 

predictions were generated using the ensemble of the CNN 

models. Ul Abideen, Ghafoor, Munir, Saqib, Ullah, Zia, Tariq, 

Ahmed and Zahra [17] proposed a Bayesian-based CNN (B-

CNN) to detect TB and non-TB samples in the chest X-ray 

images. Govindarajan and Swaminathan [18] employed 

extreme learning machine (ELM) and online sequential ELM 

(OSELM) to classify the chest radiographs as TB and normal. 

The drawbacks of these existing methods were presented in 

Table 1. 

 

Table 1: drawbacks of the state-of-the-art methods 

Methods Drawbacks 

Hooda, Sofat, Kaur, Mittal and 
Meriaudeau [2] 

The validation accuracy was 
low, which was just over 80%. 

Lakhani and Sundaram [3] The classification performance 

can be improved with more 
advanced backbones. 

Liu, Cao, Alcantara, Liu, Brunette, 

Peinado and Curioso [4] 

The validation accuracy was 

low, which was just over 85%. 
Abbas and Abdelsamea [5] The classification performance 

can be improved with more 
advanced backbones. 

Dinesh Jackson Samuel and Rajesh 

Kanna [6] 

The performance for different 

folds fluctuated in a wide 
range. 

Shabut, Hoque Tania, Lwin, Evans, 

Yusof, Abu-Hassan and Hossain [1] 

Handcrafted image features 

were not optimal, which can be 
replaced by features from a 

CNN model. 

Vajda, Karargyris, Jaeger, Santosh, 
Candemir, Xue, Antani and Thoma [7] 

Handcrafted image features 
were not optimal, which can be 

replaced by features from a 

CNN model. 

Xiong, Ba, Hou, Zhang, Chen and Li 

[8] 

The dataset was too small to 

train a deep CNN model. 

Diaz-Huerta, Tellez-Anguiano, Fraga-
Aguilar, Gutierrez-Gnecchi and 

Arellano-Calderon [9] 

Their method was evaluated on 
a small dataset. 

Hwang, Park, Jin, Kim, Choi, Lee, 
Goo, Aum, Yim, Park, Deep Learning-

Based Automatic Detection Algorithm 

and Evaluation [10] 

It’s time-consuming to train a 
deep network from scratch. 

Lopez-Garnier, Sheen and Zimic [11] It’s time-consuming to train a 

deep network from scratch. 

Nguyen, Nguyen, Dao, Unnikrishnan, 
Dhingra and Ravichandran [12] 

They trained the models for 
100 epochs, which was time-

consuming. 

Norval, Wang and Sun [13] The validation accuracy was 
low, which was just over 90%. 

Qin, Sander, Rai, Titahong, 

Sudrungrot, Laah, Adhikari, Carter, 

Puri, Codlin and Creswell [14] 

The dataset was class-

imbalanced. 

Chandra, Verma, Singh, Jain and 

Netam [15] 

Handcrafted image features 

were not optimal, which can be 
replaced by features from a 

CNN model. 

Tao Hwa, Bade, Hijazi and Saffree 
Jeffree [16] 

Handcrafted image features 
were not optimal, which can be 

replaced by features from a 

CNN model. 
Ul Abideen, Ghafoor, Munir, Saqib, 

Ullah, Zia, Tariq, Ahmed and Zahra 

[17] 

It’s time-consuming to train a 

deep network from scratch. 

Govindarajan and Swaminathan [18] Handcrafted image features 

were not optimal, which can be 

replaced by features from a 
CNN model. 



3 

 

 

From these recently published TB diagnosis methods, it can 

be found that deep CNN models are prevalent in medical 

image analysis, and transfer learning is often used to transfer 

the pre-trained weights on medical image datasets. However, 

these CAD systems can be improved to obtain better 

classification performance. The medical image datasets are 

often much smaller than the ImageNet dataset, so it may 

cause an overfitting problem if the pre-trained CNNs are 

fine-tuned for classification on the medical image datasets. 

In addition, the relationships between the samples in the 

latent feature space can be beneficial for the classification, 

but they are neglected.  

Therefore, in this work, we proposed a new TB diagnosis 

method called TBNet, based on the context-aware graph 

neural network. We employed EfficientNet as the backbone 

model to generate the sample-level features (SLFs). To 

utilize the context information of these features, we extracted 

novel context-aware features (CAFs) extracted based on the 

nearest neighbors of the SLFs in the feature space. Finally, 

the context-aware random vector functional-link net 

(CARVFLN) was trained as the classifier for TB diagnosis. 

Extensive experiments were implemented to evaluate the 

classification performance of our TBNet, and the results 

suggested that the TBNet was effective and accurate for the 

classification of TB based on chest CT images. 

The remainder of this study is organized as follows. The 

information of the chest CT dataset in the experiments is 

presented in Section 2. The methodology of the proposed 

TBNet is provided in Section 3. Section 4 is about the 

experimental results, and discussion is presented in Section 

5. The conclusion of this paper is given in Section 6. 

 

2. Materials 
 

We obtained two types of chest CT images: tuberculosis 

and healthy control (HC) from the Fourth Hospital of 

Huai’an. All the CT images were generated with a Philips 

spiral CT machine, and the resolution of the images was 1024 

× 1024 × 3 pixels. We enrolled a total of 840 chest images to 

form our dataset in which half of the images are TB, and the 

other half are healthy samples. The ground-truth labels of 

these images were generated with the consensus of three 

radiologists.  

The original chest CT images contained excessive 

information not related to the diagnosis of TB, such as texts 

and backgrounds. In addition, the grayscale and the contrast 

of the images can be improved. Hence, we employed a set of 

pre-processing operations to improve the quality of these CT 

images. Firstly, we converted the original CT images into 

grayscale images. Then, a histogram stretching algorithm 

was performed on the images to improve the contrast. 

Afterward, a margin cropping operation was employed to 

remove the texts and backgrounds in the images. Finally, the 

images were resized to meet the input resolutions of the 

backbone CNN models, which are often 224 × 224 × 3 pixels 

or 227 × 227 × 3. Two samples of both labels are shown in 

Figure 1. 

 

  
(a) Tuberculosis (b) Healthy control 

Figure 1: chest CT images in our dataset 

 

3. Methodology 
 

We proposed a novel CAD method called TBNet to 

classify TB in the chest CT images. The diagram of the 

proposed TBNet is shown in Figure 2. Initially, CNN models 

are the cutting-edge methods for feature extraction as they 

can automatically generate high-level image representations. 

However, training a deep CNN model from scratch requires 

much memory and time.  

 

 
Figure 2: diagram of our TBNet (TBNet includes three 

main parts: transfer learning, context-aware feature 

extraction, and CARVFLN training.) 

 

In addition, big labeled image datasets such as the 

ImageNet dataset are also needed to train the CNN models to 

avoid the overfitting problem but labeled medical image 

datasets are usually small. Hence, transfer learning was 

employed in our TBNet to extract sample-level features 

(SLFs), and the EfficientNet was used as the backbone model 

pre-trained on the ImageNet dataset. Then, based on the 

obtained SLFs, a graph was built in the SLF space by k 
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nearest neighbors. The SLF vectors are connected with their 

nearest neighbors in the feature graph. Consequently, the 

context information of the SLF vectors was fused into the 

CAFs so that can be used for classification. Finally, a 

context-aware random vector functional-link net 

(CARVFLN) was embedded in the TBNet to serve as the 

classifier to identify the CAFs as TB or healthy. Five-fold 

cross-validation was employed to evaluate the classification 

performance of our TBNet, and the gradient-weighted class 

activation mapping (Grad-CAM) was used to explain the 

TBNet predictions. 

 

3.1. Sample-level features (SLFs) 

 

Feature extraction is a necessary and significant 

procedure in computer vision tasks because the volumes of 

the images are usually too high with excessive information. 

The distribution of the features in the latent space directly 

determines the complexity of the image classification 

problem. Handcrafted SLFs were usually used in the CAD 

methods over ten years ago, such as wavelet features [19-21] 

before the prevalence of CNN models. As the AlexNet won 

the famous ImageNet competition, CNN models have 

become the cutting-edge solution for image classification 

and segmentation problems.  

Because these deep models can automatically learn 

high-level representations from the input images so that the 

researchers are free from developing handcrafted SLFs, it is 

time-consuming to train the deep CNNs. It also requires 

dedicated GPU and big image datasets during the training. 

Hence, transfer learning is a more feasible method in specific 

applications than training from scratch. 

In this paper, transfer learning was used only to generate 

the SLFs instead of classifying the chest CT images. We 

wanted to transfer the pre-trained deep CNN model's 

powerful image representation learning ability to extract 

effective SLFs from chest CT images by transfer learning. 

The backbone model was the EfficientNet [22], pre-trained 

on the ImageNet dataset. The structure of the EfficientNet 

was determined by architecture search. To extract SLFs, the 

EfficientNet was modified and fine-tuned on our chest CT 

dataset because of the difference between the ImageNet 

dataset and our chest CT dataset. The original pre-trained 

EfficientNet was designed to distinguish 1,000 categories of 

images, so there were 1,000 nodes in its output layer. 

Nevertheless, in our dataset, there were only 2 

categories of images: TB and healthy. In addition, the fully 

connected layers in the pre-trained EfficientNet served as the 

classifier, so we considered that they could not contribute to 

the generation of SLFs. Therefore, we removed the top three 

layers in the pre-trained EfficientNet and added five new 

layers to serve as the classifier during the fine-tuning of our 

chest CT images. The modifications are presented in Figure 

3. 

All the parameters in the pre-trained EfficientNet were 

preserved as the initial values except those in the last three 

layers. We proposed to insert a set of buffer layers: the ‘fully 

connected_1’ with 256 nodes and ‘ReLU’, between the 

‘global average pooling’ layer and the ‘fully connected_2’ 

layer with two nodes because there were 1,000 nodes in the 

original pre-trained EfficientNet. The buffer layers can 

smooth the reduction procedures of the dimensions. After the 

fine-tuning, the SLFs can be computed in the feature layer 

‘fully connected_1’ so that the dimension of the SLFs is 256. 

The ‘fully connected _1’ was selected as the feature layer 

because it was the beginning of the classifier and the end of 

feature learning. 

 

 
Figure 3: transfer learning by EfficientNet (‘fully 

connected_1’ was the feature layer.) 

 

3.2. Context-aware features (CAFs) 

 

The context information in the SLFs can be beneficial 

for the classification because good representation generation 

can ensure that the SLFs of the same labels are often 

distributed close to each other in the latent feature space.  

To exploit the context information in these SLFs, we 

proposed to generate an SLF graph and fuse the context 

information into the SLFs. Specifically, the SLF graph was 

computed based on the k nearest neighbors (k-NN) algorithm, 

in which the distances between the SLFs were measured by 

Euclidean distance. Each SLF was regarded as a node and 

connected with its k nearest nodes in the graph. In this way, 

the context information was converted as the connections in 

the SLF graph. Given the SLF set as 

 𝐅𝐒𝐋 = [𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑁]𝑇 ∈ ℝ𝑁×𝐷 (1) 

Where N and D represent the number of samples in the SLF 

set and the dimension of each SLF, respectively, the distance 

matrix Dis between the SLFs and the matrix of adjacent 

nodes Adj can be calculated with the following two 

equations: 

 𝐃𝐢𝐬(𝑚, 𝑛) = ‖𝑓𝑚 − 𝑓𝑛‖, 1 ≤ 𝑚, 𝑛 ≤ 𝑁 & 𝑚 ≠ 𝑛 (2) 

𝐀𝐝𝐣(𝑚, 𝑛) = 1, if 𝑓𝑛 ∈ 𝑘𝑛𝑛(𝑓𝑚), 1 ≤ 𝑚, 𝑛 ≤ 𝑁 & 𝑚 ≠ 𝑛
  (3) 
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Where the knn(fm) function produced the k nearest neighbors 

of the SLF fm, and both Dis and Adj were initialized with 

zero values. Then, the normalized Adj can be obtained by: 

 𝐀𝐝𝐣̂ = 𝐃𝐞𝐠−
1

2(𝐀𝐝𝐣 + 𝐈)𝐃𝐞𝐠−
1

2 (4) 

Where the matrix I represents the identity matrix and the 

degree matrix Deg is expressed as:  

 𝐃𝐞𝐠(𝑚, 𝑛) = {
𝑘, if 𝑚 = 𝑛 
0, if 𝑚 ≠ 𝑛 

, 1 ≤ 𝑚, 𝑛 ≤ 𝑁

 (5) 

Consequently, the context-aware feature set FCA can be 

calculated as: 

 𝐅CA = 𝐀𝐝𝐣̂ ∙ 𝐅SL (6) 

The diagram of the CAF generation is provided in Figure 

4. First of all, an EfficientNet pre-trained on the ImageNet 

dataset was modified and trained on our chest CT images. 

Then, the SLFs can be obtained from the feature layer in the 

transferred EfficientNet. Afterward, the SLF graph was 

constructed to store the context information of the SLFs in 

the latent feature space using the k-NN algorithm. Finally, the 

CAFs can be generated with the graph and the SLFs. 

 

 
Figure 4: diagram to compute CAFs (k-NN algorithm was 

employed to generate the graph for sample-level feature 

vectors.) 

 

3.3. Context-aware random vector functional-link net 

(CARVFLN) 

 

For the classification of the CAFs, a CARVFLN was 

proposed as the classifier of our TBNet based on the 

traditional random vector functional-link (RVFL) [23-25]. 

The differences between the RVFL and conventional back-

propagation neural networks (BPNNs) are mainly two-fold. 

Firstly, there is an extra shortcut between the input layer and 

the output layer in the RVFL, while traditional BPNNs don’t 

have such links. Secondly, the training of an RVFL is much 

faster than BPNNs [26, 27]. Because the weights and biases 

in the random mapping layer are randomly initialized and 

remain fixed during the entire training process, the output 

weights of the RVFL can be obtained by pseudo-inverse. 

The difference between the CARVFLN and the RVFL lies 

only in that the input of the CARVFLN is the CAF instead of 

conventional SLFs. The structure of the CARVFLN is 

presented in Figure 2.  

In total, there are three parameters in the CARVFLN to be 

trained: the hidden mapping weights w = [w1, w2, w3,…, 𝑤𝑁̂]T, 

hidden mapping biases b = [b1, b2, b3,…, 𝑏𝑁̂]T, and the output 

weights β. 𝑁̂ represents the dimension of the hidden space. 

The training algorithm of the CARVFLN consists of three 

steps. First, the weights and biases from the input to the 

hidden mapping space are assigned with random values. 

Then, the output matrix M of the hidden mapping layer can 

be computed with the training CAFs:  

 𝐌 = ∑ 𝑓 (𝑤𝑖𝑓𝑗
+ 𝑏𝑖)

𝑁̂
i=1 , 𝑗 = 1, … , 𝑁, (7) 

where f(x) represents the activation function. The obtained M 

is concatenated with the original CAFs: 

 𝐅 = concat(𝐅CA, 𝐌) (8) 

Finally, the output weights can be calculated by the 

pseudo-inverse:  

 𝛃 = 𝐅†T, (9) 

where the T denotes the ground-truth labels of the training 

samples. In this way, all the parameters in the CARVFLN are 

determined. It can be found that there is no iteration in the 

training algorithm of CARVFLN, which is often employed 

in gradient descent methods. Therefore, the CARVFLN can 

converge much faster than BPNNs, and we utilize it as the 

classifier of the TBNet to produce the predictions of chest CT 

images. 

 

4. Results 
 

The proposed TBNet was implemented and trained on a 

laptop on MATLAB 2021a with an i7 7700H processor and 

a GTX1060 graphic card. The EfficientNet B0 was selected 

as the backbone model in the proposed TBNet, considering 

the capacity of our experiment platform. All the statistical 

results were obtained using five-fold cross-validation. In the 

five-fold cross-validation, the entire chest CT dataset was 

evenly separated into five groups of samples. In every loop, 

one group served as the testing set, and the rest four groups 

served as the training set. The loop was repeated five times 

so that every data group was tested. The average performance 

can be obtained based on the results of the five runs. 

 

Pre-trained EfficientNet

Chest CT images Transferred EfficientNet

Sample-level features

...

...

Graph generation based on k-NN

Context-aware features

...

Train



6 

 

4.1. Hyper-parameter settings 

 

The hyper-parameters in our TBNet are listed in Table 2. 

The mini-batch size was set as 32, considering the memory 

size of our device. The value of max-epochs was set to be 

only one because it can result in overfitting if the 

EfficientNet is fine-tuned on the small chest CT dataset. The 

learning rate was 1e-4, the usual setting in most applications. 

The k denotes the number of neighbors in the CAFs, which 

was set as 4 considering the mini-batch size. The dimension 

of the hidden mapping layer in the CARVFLN was 400, as 

the dimension of the input CAFs was 256. It is beneficial for 

the classification to map the CAFs into higher dimensions 

randomly. 

 

Table 2: hyper-parameter settings 

Hyper-parameter Value 

Mini-batch size 32 

Max-epochs 1 
Initial learning rate 1e-4 

K 4 

𝑁 400 

 

4.2. Performance of the proposed TBNet 

 

Five common measurements were employed to evaluate 

the classification performance of the proposed TBNet, 

including accuracy, sensitivity, specificity, precision, and F1 

score based on five-fold cross-validation. The results are 

presented in Table 3. It can be observed that the proposed 

TBNet achieved the perfect sensitivity of 100.00% for all 

five folds. The average accuracy, specificity, and precision 

were over 97%, and the average F1 score was near 98.91%. 

Meanwhile, the fluctuation range of all the five indicators 

was around 5% in different folds of images, which suggested 

the robustness of our TBNet. 

 

Table 3: classification performance of the proposed 

TBNet based on five-fold cross-validation 

 Accuracy Sensitivity Specificity Precision F1 score 

Fold 1 99.40% 100.00% 98.82% 98.81% 99.40% 

Fold 2 97.02% 100.00% 94.38% 94.05% 96.93% 
Fold 3 100.00% 100.00% 100.00% 100.00% 100.00% 

Fold 4 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 5 99.40% 100.00% 98.82% 98.81% 99.40% 
Average 98.93% 100.00% 97.94% 97.86% 98.91% 

 

4.3. Grad-CAM of the TBNet 

 

The explanation of deep learning models is another hot 

issue in artificial intelligence recently because it remains a 

problem why these CNN models can produce accurate 

predictions. The CNN models are like the black box with 

only the input and output. Researchers try to interpret the 

working mechanism of the black box. The Grad-CAM 

provides a visual explanation of why CNN produces such 

results. The regions where the CNN model is concentrating 

on are highlighted in the Grad-CAM map, while the other 

areas are less related to the prediction. We provided two 

Grad-CAM maps of TB samples in Figure 5. The original 

chest CT images were on the left, while the Grad-CAM maps 

were on the right. The regions in red and yellow colors 

indicated the concentrations of the TBNet, while the regions 

in blue color were less important for making the predictions.  

 

  
(a) TB1 (b) Grad-CAM of TB1 

  
(c) TB2 (d) Grad-CAM of TB2 

Figure 5: Grad-CAM maps of two TB samples by TBNet 

 

4.4. Effects of backbone models in the TBNet 

 

The pre-trained EfficientNet was selected as the backbone 

model for the proposed TBNet. However, there are numerous 

state-of-the-art pre-trained CNN backbone models to choose 

from, such as AlexNet, ResNet, VGG, DenseNet, and 

MobileNet.  

 

 
Figure 6: comparison of the TBNets performance using 

different backbones 
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Although the classification performance of these deep 

CNNs varies on the ImageNet dataset, there are no general 

rules for selecting the optimal backbone model for a specific 

image classification problem. Hence, we experimented with 

testing the performance of the proposed TBNet using 

different backbone models. 

All the backbone models were modified with the same 

operation shown in Figure 3, and all the hyper-parameters 

were the same during the entire training and testing. The 

results of the TBNet using pre-trained AlexNet, ResNet-18, 

ResNet-50, VGG-16, DenseNet-201, and MobileNetV2 were 

listed in Table 4, and the comparison of the results was 

demonstrated in Figure 6. 

 

Table 4: Performance of the TBNet with different transferred backbone models by five-fold cross-validation 

Backbone model Accuracy Sensitivity Specificity Precision F1 score 

AlexNet 

Fold 1 92.26% 97.33% 88.17% 86.90% 91.82% 

Fold 2 97.02% 98.77% 95.40% 95.24% 96.97% 

Fold 3 95.24% 96.34% 94.19% 94.05% 95.18% 

Fold 4 96.43% 98.75% 94.32% 94.05% 96.34% 

Fold 5 96.43% 97.56% 95.35% 95.24% 96.39% 

Average 95.48% 97.75% 93.49% 93.10% 95.34% 

ResNet-18 

Fold 1 92.86% 93.90% 91.86% 91.67% 92.77% 

Fold 2 94.05% 96.25% 92.05% 91.67% 93.90% 

Fold 3 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 4 94.05% 100.00% 89.36% 88.10% 93.67% 

Fold 5 94.64% 98.70% 91.21% 90.48% 94.41% 

Average 94.88% 97.77% 92.43% 91.90% 94.71% 

ResNet-50 

Fold 1 95.24% 98.72% 92.22% 91.67% 95.06% 

Fold 2 93.45% 95.06% 91.95% 91.67% 93.33% 

Fold 3 98.21% 98.80% 97.65% 97.62% 98.20% 

Fold 4 96.43% 98.75% 94.32% 94.05% 96.34% 

Fold 5 96.43% 98.75% 94.32% 94.05% 96.34% 

Average 95.95% 98.01% 94.09% 93.81% 95.86% 

VGG-16 

Fold 1 98.21% 100.00% 96.55% 96.43% 98.18% 

Fold 2 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 3 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 4 97.02% 100.00% 94.38% 94.05% 96.93% 

Fold 5 98.81% 100.00% 97.67% 97.62% 98.80% 

Average 98.33% 100.00% 96.79% 96.67% 98.30% 

DenseNet-201 

Fold 1 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 2 98.21% 100.00% 96.55% 96.43% 98.18% 

Fold 3 98.21% 100.00% 96.55% 96.43% 98.18% 

Fold 4 96.43% 98.75% 94.32% 94.05% 96.34% 

Fold 5 98.21% 100.00% 96.55% 96.43% 98.18% 

Average 97.98% 99.75% 96.33% 96.19% 97.94% 

MobileNet V2 

Fold 1 98.81% 100.00% 97.67% 97.62% 98.80% 

Fold 2 98.21% 100.00% 96.55% 96.43% 98.18% 

Fold 3 97.02% 98.77% 95.40% 95.24% 96.97% 

Fold 4 94.64% 96.30% 93.10% 92.86% 94.55% 

Fold 5 98.21% 100.00% 96.55% 96.43% 98.18% 

Average 97.38% 99.01% 95.86% 95.71% 97.33% 

 

 

4.5. Transfer learning versus training from scratch 

 

Table 5: Performance of the TBNet with the EfficientNet 

trained from scratch based on five-fold cross-validation 
 Accuracy Sensitivity Specificity Precision F1 score 

Fold 1 77.98% 78.31% 77.65% 77.38% 77.84% 

Fold 2 74.40% 87.27% 68.14% 57.14% 69.06% 

Fold 3 74.40% 77.33% 72.04% 69.05% 72.96% 

Fold 4 80.95% 78.26% 84.21% 85.71% 81.82% 

Fold 5 84.52% 89.19% 80.85% 78.57% 83.54% 

Average 78.45% 82.07% 76.58% 73.57% 77.05% 

 

Deep CNN models can be used in automatic medical 

image analysis by either transfer learning or training from 

scratch. In transfer learning, the weights and biases in the 

pre-trained model can be re-used in the target datasets, 

contributing to faster convergence and representation 

generation. However, the pre-trained dataset and the target 

dataset can be very different. On the other side, training a 
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deep model from scratch is a more straight choice, but 

overfitting and the long training time posed new challenges, 

especially for small datasets. To compare the two methods, 

we experimented, and the results of the TBNet with the 

EfficientNet trained from scratch were given in Table 5. The 

architecture of the EfficientNet trained from scratch was the 

same as the pre-trained EfficientNet. The hyper-parameters 

for training the EfficientNet from scratch were the same as 

Table 2. The comparison is shown in Figure 7. 

 

 
Figure 7: performance comparison of the TBNets with 

the transferred EfficientNet and the EfficientNet trained 

from scratch 

 

4.6. Comparison with state-of-the-art methods 

 

We compared the classification performance of the 

proposed TBNet with recently published state-of-the-art 

methods for the classification of TB, including Inception 

V3+SVM [6], random forests [1], HF+SVM [15], and 

OSELM [18]. The comparison results are listed in Table 6 

and Figure 8. 

This comparison revealed that the proposed TBNet 

achieved the best overall accuracy of 98.93% among the 

listed methods. Our TBNet and the random forests method 

both yielded 100%, but the handcrafted features used to train 

the random forests might be sub-optimal. OSELM attained 

the best performance for specificity and precision, but our 

TBNet was only marginally worse. Meanwhile, ten-fold 

cross-validation was used to evaluate the OSELM, which 

means that a higher proportion of images were used for 

training. At the same time, fewer samples were tested 

compared with five-fold cross-validation in the evaluation of 

TBNet. In addition, the TBNet also produced the highest F1-

score of 98.91% in the listed methods.  

 

Table 6: comparison with state-of-the-art TB classification approaches 

Method Accuracy Sensitivity Specificity Precision F1 score Validation 

Inception 

V3+SVM [6] 
95.05% - - - - 

Five-fold cross-

validation 

Random 

forests [1] 
98.36% 100.00% 97.62% 95.00% 97.44% 

Hold-out 

validation 

HF+SVM 

[15] 
95.60% 93% - 96.90% 94.3% 

Hold-out 

validation 

OSELM [18] - 98.7% 98.7% 97.9% 98.6% 
Ten-fold cross-

validation 

TBNet (ours) 98.93% 100.00% 97.94% 97.86% 98.91% 
Five-fold cross-

validation 

 

 
Figure 8: comparison with state-of-the-art approaches 
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5. Discussion 
 

Sensitivity is an important indicator in clinical diagnosis 

because low sensitivity can result in the misdiagnosis of true 

positive cases. The proposed TBNet produced 100.00% 

sensitivity on five-fold cross-validation, revealing that our 

TBNet is an accurate and practical model to detect TB in CT 

scans. 

The Grad-CAM maps in Figure 5 demonstrated that the 

TBNet could generally find the suspicious locations of TB. 

This observation suggested that our TBNet can make 

accurate predictions based on the CT scans and locate the 

potential lesion regions. Therefore, the TBNet can be further 

applied to CT segmentation in the future. 

It can be seen from Figure 6 that the proposed TBNet 

produced over 94% accuracy with all the seven backbone 

models for five-fold cross-validation, and the performance of 

the TBNet with different backbones was close. The backbone 

VGG and EfficientNet performed the best among the seven 

models in terms of sensitivity. Considering all the five 

indicators, we obtained a slightly superior result with the 

EfficientNet. We speculated this result might be due to the 

architecture search algorithm for designing EfficientNet.  

There showed overwhelming evidence in Figure 7 that the 

proposed TBNet worked substantially better with transferred 

EfficientNet than that with the EfficientNet trained from 

scratch. The gap between the two methods was around 20%. 

The present finding confirmed that the parameters learned in 

the pre-trained EfficientNet from the ImageNet were 

fundamental for the SLF generation, contributing to the good 

classification performance of our TBNet consequently.  

The poor performance might be due to the small max-

epochs when training the EfficientNet from scratch. Still, our 

TBNet worked very well with the same hyper-parameter 

settings by transfer learning, which both require 

approximately 650 seconds to finish the five-fold cross-

validation. Hence, through this fair comparison, it can be 

revealed that transfer learning was the better option for 

utilizing the EfficientNet in our TBNet for the automatic 

diagnosis of TB in chest CT images. 

The possible reasons behind the high performance of our 

TBNet were analyzed as follows. The good SLFs generated 

from the pre-trained EfficientNet provided the potential for 

high performance. The CAFs obtained using the fusion of 

SLFs and their context relationships in the latent feature 

space improved the discrimination ability of the image 

features. Finally, the CARVFLN served as the classifier in 

our TBNet, which was fast to train. The TBNet leveraged the 

representation learning ability from the EfficientNet and the 

excellent generalization ability of the CARVFLN on small 

datasets. Together, the proposed TBNet can be an effective 

and efficient tool to assist radiologists in the clinical 

diagnosis of TB in chest CT images. 

 

6. Conclusion 
 

In this work, we put forward a CAD method called TBNet 

to diagnose tuberculosis in the chest CT images. In the 

TBNet, we firstly extracted sample-level features from the 

images using a pre-trained EfficientNet. Then, we proposed 

to generate a feature graph based on the distribution of these 

sample-level features. Consequently, the context-aware 

features can be obtained based on the sample-level features 

and the graph. In this way, the context information was fused 

into these context-aware features. Considering the relatively 

small size of our chest CT image dataset, we proposed a 

CARVFLN as the classifier in the TBNet. The proposed 

TBNet achieved an overall accuracy of 98.93%, a sensitivity 

of 100.00%, a specificity of 97.94%, a precision of 97.86%, 

and an F1 score of 98.91% based on five-fold cross-

validation. Extensive experiments were carried out, and the 

results showed that our TBNet was comparable to state-of-

the-art methods in the diagnosis of tuberculosis from chest 

CT images. 

For future research, we shall collect more images with 

more pulmonary diseases. Image-level fusion is another 

research direction because the imaging results of the same 

patient using different imaging machines can be different, so 

the fusion of different images can improve the classification 

performance. In addition, segmentation of the chest CT 

images to find the focuses of the diseases is also an important 

research topic. 
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