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Background and objective: Mechanical ventilation causes adverse effects on the cardiovascular system. 

However, the exact nature of the effects on haemodynamic parameters is not fully understood. A recently 

developed cardio-vascular system model which incorporates cardio-pulmonary interactions is compared 

to the original 3-chamber cardiovascular model to investigate the exact effects of mechanical ventila- 

tion on haemodynamic parameters and to assess the trade-off of model complexity and model reliability 

between the 2 models. 

Methods: Both the cardio-pulmonary and three chamber models are used to identify cardiovascular sys- 

tem parameters from aortic pressure, left ventricular volume, airway flow and airway pressure measure- 

ments from 4 pigs during a preload reduction manoeuvre. Outputs and parameter estimations from both 

models are contrasted to assess the relative performance of each model and to further investigate the 

effects of mechanical ventilation on haemodynamic parameters. 

Results: Both models tracked measurements accurately as expected. There was no identifiable increase 

in error from the added complexity of the cardio-pulmonary model, with both models having a mean 

average error below 0.5% for all pigs. Identified left ventricle and vena cava elastances of the 3-chamber 

model was found to diverge exponentially with PEEP from identified left ventricle and vena cava elas- 

tances of the cardio-pulmonary model. The r 2 of the fit for each pig ranged from 0.888 to 0.998 for 

left ventricle elastance divergence and from 0.905 to 0.999 for vena cava elastance divergence. All other 

identified parameters showed no significant difference between models. 

Conclusions: Despite the increase in model complexity, there was no loss in the cardio-pulmonary model’s 

ability to accurately estimate haemodynamic parameters and reproduce system dynamics. Furthermore, 

the cardio-pulmonary model was able to demonstrate how mechanical ventilation affected parameter 

estimations as PEEP was increased. The 3-chamber model was shown to produce parameter estimations 

which diverged exponentially with PEEP, while the cardiopulmonary model estimations remained more 

stable, suggesting its ability to produce more physiologically accurate parameter estimations under higher 

PEEP conditions. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Mechanical ventilation is a critical support for many patients in 

CU. Positive-end expiratory pressure (PEEP) is used to maximise 

lveoli recruitment for increased blood oxygenation. However, ex- 

essive PEEP is dangerous and can cause lung damage [1] . Elevated 

evels of PEEP also cause an increase of pressure in the thoracic 
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hamber, where the heart and vena cava are located. This rise in 

ntra-thoracic pressure (ITP) is known to decrease cardiac preload, 

nd thus, decrease venous return, ultimately reducing both the 

troke volume (SV) and stressed blood volume (SBV) of the system 

2–4] . 

SBV is defined as the total pressure-generating blood volume 

n the circulation and describes the volume contributing to tissue 

erfusion. Recently, SBV has been shown to be a potential index 

f fluid responsiveness as it is a major determinant of the mean 

ystemic filling pressure (MSFP) and thus, venous return, making 
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Fig. 1. Three chamber CVS model. 
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t a potentially important diagnostic tool [5] . However, clinically 

etermining the SBV of a patient is a highly complex and dan- 

erous procedure, involving multiple cardiac arrests and fluid infu- 

ions, and is clearly not a clinically viable diagnostic procedure [6] . 

herefore, accurate model based or other surrogates are required if 

BV is to be used as an index of fluid responsiveness. 

Several lumped parameter models have been presented, most 

ommonly the 6 and 3-chamber models [7–11] , as reviewed in 

12] . While simple, identifiable models have proven successful at 

apturing the fundamental system dynamics of the CVS and es- 

imation of total SBV. However, they do not typically include the 

ulmonary system or the impact of ventilation. Instead they rely 

n the effects of the pulmonary system to be contained in the left 

entricle and vena cava pressure waveforms. Given the complex re- 

ationship mechanical ventilation has on the CVS, the ability to di- 

ectly account for its effects could prove important in reliable pa- 

ient state estimation and in using SBV as an index of fluid resus- 

itation. 

De Bournonville et al. [13] presented a cardio-pulmonary model 

ombining 2 separate, clinically validated models of the cardiovas- 

ular and respiratory systems. The model reproduced the effects 

f mechanical ventilation on the CVS. However, while the study 

emonstrated the impact of PEEP on haemodynamic parameters, it 

id not demonstrate whether the added model complexity signif- 

cantly improved the simulation of cardiovascular measurements. 

n particular, the parameter estimation process and identifiability 

ere not addressed, so there is no assessment of the impact of 

he combined model on the value and trends of haemodynamic 

arameters as PEEP and other MV settings change. Thus, its identi- 

ability and clinical utility are unknown, particularly in contrast to 

he simpler original, uncoupled, but clinically validated, 3-chamber 

ardiovascular model alone. 

While model-based decision support is an emerging field [10] , 

ardiovascular decision support for fluid administration to improve 

BV and avoid excessive fluid administration is an important clin- 

cal area which has not been well-studied [12] . Excessive fluid ad- 

inistration also significantly impacts lung mechanics and func- 

ion, and thus mechanical ventilation. The inter-relationship be- 

ween cardiovascular system management and pulmonary system 

anagement is thus stronger, and both need to be accounted for 

n any decision support so their model-based management can be 

ointly achieved and optimised. This paper directly examines these 

linically driven modelling interactions. 

This study uses a 3-chamber minimal CVS model and a com- 

ined cardio-pulmonary model with cardiovascular measurements 

rom a preload reduction manoeuvre (RM) performed on 4 pigs 

o address these issues and delineate the impact on model per- 

ormance and parameter identification. The study also integrates a 

ew driver function developed by Davidson et al. [14] to remove 

he need for left ventricular pressure measurements which are not 

sually available in a clinical setting. 

. Methods 

.1. Cardiovascular system model 

The CVS model is a highly simplified lumped parameter model 

omprising of three chambers representing the left ventricle, aorta 

nd vena cava. The chambers are connected by 3 flow resistances, 

hich represent the output, input, and systemic resistance ( R o , R i 
 R c ). The input and output valves of the ventricle chamber are 

epresented by diodes, which prevent flow for a negative pressure 

radient. This simple model ensures theoretical identifiability and 

aximises practical identifiability [15] , which elude more com- 

lex and detailed models [12,16] . The model schematic is shown 

n Fig. 1 . 
2 
The chambers representing the aorta and vena cava are passive 

hambers [9] , their pressures are thus defined: 

 a (t) = E a (t) V s,a (t) , (1) 

 v c (t) = E v c (t) V s, v c (t) , (2) 

Where P ao and P v c represent aortic and venous pressure, V s,ao 

nd V s, v c represent the stressed volume of the aorta and vena cava, 

nd E ao and E v c represent aortic and venous elastance. 

The left ventricle contracts during each heartbeat making it an 

ctive chamber. Left ventricle pressure is thus defined using time 

arying elastance as a driver function [7] : 

 lv (t) = e (t ) E lv V s,lv (t ) (3) 

here e (t) is the driver function of the left ventricle derived from 

avidson et al. [14] . 

The flow into each of the chambers is modelled using Ohm’s 

aw. The systemic flow is thus defined: 

 c (t) = 

P a (t) − P v c (t) 

R c 
. (4) 

The input and output flows to the left ventricle are controlled 

y valves preventing flow across a negative pressure gradient. 

hese flows can be represented using piecewise functions: 

 o (t) = 

{
P lv (t) −P ao (t) 

R o 
P lv (t) > P ao (t) 

0 else 
(5) 

 i (t) = 

{
P v c (t) −P lv (t) 

R i 
P v c (t) > P lv (t) 

0 else . 
(6) 

The rate of change of stressed volume for each chamber is given 

y the difference of input and output flow: 

˙ 
 s,ao (t) = Q o (t) − Q c (t) (7) 

˙ 
 s, v c (t) = Q c (t) − Q i (t) (8) 

˙ 
 s,lv (t) = Q i (t) − Q o (t) (9) 

The CVS is a closed system and its total rate of change of vol- 

me is zero, yielding: 

˙ 
 s,lv (t) + 

˙ V s,a (t) + 

˙ V s, v s (t) = 0 (10) 

Integrating Eq. (10) gives the constant stressed blood volume 

or the system, V s, 3 : 

 s, 3 = V s,lv + V s,a + V s, v c (11) 
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Fig. 2. Single chamber RS model. 
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Fig. 3. Coupled cardiopulmonary model. The thoracic cavity is represented by 

the dashed line and exerts intra-thoracic pressure, P th , on the vena cava and left 

ventricle. 

Table 1 

Parameter Summary. 

Parameter Parameter Description 

E a Aortic elastance 

E lv Left ventricle elastance 

E v c Vena cava elastance 

R c Systemic resistance 

R i Input resistance 

R o Output resistance 

V s, 3 Total stressed blood volume 

E wall Chest wall elastance 
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The model is thus made up of a total of 7 parameters; 3 elas-

ances ( E a , E lv , E v c ), 3 resistances ( R c , R i , R o ) and the total stressed

lood volume of the system, V s, 3 . 

.2. Respiratory system model 

The respiratory system model is a clinically validated lumped 

arameter model made up of a single chamber to represent the 

ungs connected to a mechanical ventilator [1,17–22] , as shown in 

ig. 2 . Airway flow is represented using Ohm’s law: 

 aw 

(t) = 

P aw 

(t) − P lung (t) 

R aw 

, (12) 

here P aw 

is the airway pressure supplied by the ventilator, P lung 

s the lung pressure and R aw 

is the airway resistance. The lung is 

epresented as a passive chamber, and the lung pressure can thus 

e defined: 

 lung (t) = E rs V lung (t) + P E E P (13) 

here V lung is the lung air volume and E rs is the respiratory system 

lastance. Lung volume is determined by integrating airway flow: 

 lung (t) = 

∫ 
Q aw 

(t) dt + 

P E E P 

E rs 
(14) 

Airway flow and pressure, and lung volume are provided by the 

entilator. Substituting Eq. (13) into Eq. (12) yields airway pres- 

ure: 

 aw 

(t) = R aw 

Q aw 

(t) + E rs V lung (t) + P E E P (15)

Linear regression can identify the parameters R aw 

and E rs from 

easured ventilator data. 

.3. Model coupling 

The model coupling in this work is based on [13] . The CVS and

S models are coupled by thoracic pressure, the pressure exerted 

ithin the thoracic cavity due to the expansion of the lungs dur- 

ng mechanical ventilation [2–4] . The model schematic is shown in 

ig. 3 . 

Thoracic pressure ( P th ) is calculated from the respiratory system 

odel: 

 th (t) = E wall V lung (t) (16) 
3 
here the wall elastance E wall = E rs − E lung . Substituting Eq. (14) 

nto Eq. (16) , thoracic pressure can be expressed: 

 th (t) = E wall V c (t) + P E E P 
E wall 

E rs 
(17) 

here P th (t) is the thoracic pressure and V c (t) is the tidal volume, 
 

Q aw 

(t ) dt . 

The left ventricle and vena cava are located within the thoracic 

avity and are directly influenced by ITP. However, the aorta is 

ot located within the thoracic cavity and is not directly exposed. 

herefore, the CVS model equations for venous and left ventricle 

ressure are updated: 

 v c = E v c V s, v c (t) + P th (t) (18) 

 lv (t) = e (t ) E lv V s,lv (t ) + P th (t) (19)

The final cardio-pulmonary model has a total of 8 parameters 

o identify, as summarised in Table 1 . 

.4. Driver function model 

Using the time varying elastance from Eq. (3) , the driver func- 

ion of the left ventricle can be defined: 

 (t) = 

P lv (t) 

V lv (t) − V u 
(20) 

here V u is the unstressed volume in the left ventricle. The driver 

unction is used to drive the cardio-pulmonary model and contains 

rucial information pertaining to the cardiac cycle. However, mea- 

urements of left ventricle pressure and volume are not available 
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Fig. 4. Measured and modelled driver functions for each pig. From left to right, the plots represent the driver function of Pig 4, 6, 7 and 8 respectively. 
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n the ICU, as they are highly invasive. Thus, a modelled equivalent 

ased on the work of Davidson et al. [14] is employed. This model 

ecreates the pressure and volume waveforms from other available 

linical measurements and simple physiological assumptions. 

To reconstruct the left ventricle pressure waveform, it is as- 

umed that aortic valve resistance is negligible, implying P lv = P a 
uring systole with some small amount of phase lag. During dias- 

ole, no information about P lv can be extrapolated from P a . How- 

ver, the left ventricle is largely passive during diastole. Thus, the 

elaxation and filling phases can be modelled as an exponential 

ecay and an exponential increase, respectively. 

The V lv waveform is reconstructed using piecewise phase- 

hifted sine waveforms in conjunction with 3 timings from the 

ortic pressure wave. Three pieces of volume information are also 

sed: unstressed volume, end-systolic volume and end-diastolic 

olumes ( V d , V es , & V ed ). For this study, unstressed volume was as-

umed to be 48% of V ed . The V lv and P lv waveforms were recreated

sing the model from [14] . Finally, the driver function was calcu- 

ated using Eq. (20) . Figure 4 shows simulated and measured driver 

unctions for each pig. 

.5. Output vector 

Model outputs were chosen as beat-to-beat metrics, rather than 

ime dependent measurements. This choice is largely due to the 

act the temporal evolution of all signals is not always available or 

xportable from bedside machines [7] . As such, only beat-to-beat 

ata, such as mean pressures and pulse pressures, are assumed to 

e available. 

Outputs were chosen to ensure structural identifiablility of the 

odel [15,23–25] . The work by Pironet gives lists of model out- 

uts required to ensure structural identifiablility of the CVS model 

7,10] . The output vector in Pironet’s work is defined: 

 cv s = [ P a (t) , �P a (t) , P v c (t) , �P v c (t) , V h (t) , SV ] (21)

The pressure gradient between the left atrium and left ventri- 

le determines the flow into the ventricle during filling. However, 

n the experiments performed, there were no measurements of left 

trial pressure. Pironet’s work used central venous pressure (CVP) 

s a reference measurement in place of left atrial pressure. How- 

ver, in between CVP and left ventricle pressure lies the pulmonary 

irculation, and while CVP may be a close approximation, it is not 

ecessarily a physiologically accurate one. Indeed, CVP was often 

ound to be lower than P (t) during all of diastole, which would 
lv 

4 
revent ventricle filling. Therefore, due to the absence of left atrial 

ressure measurements and the unreliability of CVP as a reference, 

 v c (t) and �P v c (t) were omitted from the output vector. 

The coupling of the respiratory system adds an extra parameter 

o identify, the chest wall elastance, E wall . To identify this param- 

ter, a further model output is required. From Eq. (17) , chest wall 

lastance is directly proportional to thoracic pressure. Fig. 5 illus- 

rates the effect of thoracic pressure on the aortic pressure wave- 

orm. The peaks of P a (t) , P a (t) max , form the outline of P th (t) . Thus

P th (t) ≈ �P a (t) max over one respiratory cycle is a visible condi- 

ion, and thus �P a (t) max can be used to estimate E wall . Therefore, 

he final output vector employed in this study is defined: 

 = [ P a (t) , �P a (t) , V h (t) , SV, �P a (t) max ] (22)

.6. Parameter estimation 

Parameter estimation is performed through iterative adjustment 

f parameter values from a set of initial conditions to minimise an 

rror function. 

.6.1. Nominal parameters 

A nominal parameter estimation or initial values are required. 

here possible, parameters were identified using model equa- 

ions and measurements. Where measurements were unavailable, 

alues from literature were used. A summary of the equations for 

ach parameter is defined in Table 2 . 

.6.2. Parameter subset 

To ensure practical identifiability [15,23] , a common subset of 

ensitive parameters was chosen for optimisation for all pigs. The 

arameters E wall and V s, 3 are crucial for final analyses and were 

hus automatically included in the final parameter subset. Sensi- 

ivity and correlation analyses per the method in [7] identified a 

ommon parameter set. The most commonly sensitive parameters 

rom all pigs were then identified and added to the final parameter 

ubset. A common parameter set was required to ensure compar- 

sons between pigs were relevant. 

.6.3. Error function 

The error function is a measure of accuracy for identified model 

utputs. If y re f is a vector containing the N y reference measure- 

ents and y (p) is the output vector of parameter vector, p, each 
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Fig. 5. Effect of thoracic pressure on the aortic pressure waveform. Aortic pressure is shown in blue and thoracic pressure in orange. 

Table 2 

Parameter definitions. 

Parameter Parameter Definition 

E a 
�P a (t) 

CO.T 
[13] 

E lv max T 
P lv (t) 

V lv (t) 
[10] 

E v c 
�P v c (t) 

CO.T 
[13] 

R c 
P a (t) − P v c (t) 

CO 
[10] 

R i 0 . 05 mmHg . s / ml [11] 

R o 0 . 04 mmHg . s / ml [11] 

V s, 3 V lv (t) + 

P a (t) 

E a 
+ 

P v c (t) 

E v c 
[10] 

E wall 

E rs 
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utput’s error is defined as the difference between the measure- 

ent and the output: 

 i (p) = y re f 
i 

− y i (p) , i ∈ [1 , N y ] (23)

The error function is then defined using the RMS of all errors: 

(p) = 

√ ∑ N y 
i =1 

e i (p) 2 

N y 
(24) 

.6.4. Parameter identification 

The parameter identification in this work was performed using 

ATLAB’s (The Mathworks, Natick, MA, USA) fmincon function. The 

arameter subset and error function were passed as parameters. 

arameter estimation was performed for 4 pigs over 2 preload re- 

uction manoeuvres each. 
5 
.7. Experiment and data 

.7.1. Experimental procedure 

The experimental protocol was approved by the Ethics Commit- 

ee for the use of animals at the University of Liege, Belgium be- 

ween September - November, 2015 (Reference Number 14–1726). 

ight pure Pietrain pigs were anaesthetised and mechanically ven- 

ilated. Septic shock was then induced in the subjects via a single 

nfusion of endotoxin (lipopolysaccharide from E. Coli, 0.5 mg/kg , 

nfused over 30 min ). Pre-endotoxin infusion, a 500 mL saline so- 

ution was administered over 30 min simulating fluid resuscitation 

herapy. Several PEEP driven RMs were performed on each pig both 

re- and post- endotoxin. Aortic pressure in the subjects was con- 

inually measured via a catheter with a sampling rate of 250 Hz. 

 lv and V lv were also continually measured at a rate of 250 Hz via

n admittance pressure volume catheter inserted into the left ven- 

ricle via an apical stab. 

The airway flow data for Pigs 1 and 5 gave no negative readings, 

endering the data unusable for the cardio-pulmonary model. Pigs 

 and 3 both displayed unreliable data with multiple interruptions 

n the data stream and were thus also unusable for this study. The 

emaining pigs (Pigs 4, 6, 7 and 8) all had usable data and were 

sed in this work. 

.7.2. Sections of importance 

In this study, the section of particular interest was the first 

M, as all the following RMs took place post-endotoxin. The pres- 

nce of endotoxin induced septic shock introduces a multitude of 

dditional physiological mechanisms deemed unsuitable for initial 

odel validation. During the initial RM, PEEP was initially set to 

 cm 

2 H 2 O and incremented by 5 cm 

2 H 2 O roughly each minute until

 maximum pressure of 20 cm 

2 H 2 O was reached, with the excep- 

ion of Pig 7 which had a maximum PEEP of 15 cm 

2 H 2 O . PEEP was

hen set back to a baseline value of 5 cm 

2 H O . 
2 



J. Cushway, L. Murphy, J.G. Chase et al. Computer Methods and Programs in Biomedicine 220 (2022) 106819 

Fig. 6. Identified model waveforms vs measured waveforms. Top left and right show measured and model P a respectively while bottom left and right show measured and 

model V lv respectively. Mean values are shown as a dashed black line, and the min and max are shown with dashed red lines. 
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Sections of data corresponding to each PEEP level of the RM 

ere annotated for all pigs. Parameter estimation was then per- 

ormed over the first and last five beats of each PEEP section for 

ll pigs. 

.8. Analyses 

Model dynamics and quality of fit were analysed by checking 

he mean absolute error (MAE) of parameter estimates and by 

omparison of simulated and measured waveforms. Model outputs 

f the cardio-pulmonary model were compared to outputs of the 

-chamber model to analyse the effects of PEEP on model outputs. 

he progression of all parameters over the RM were then analysed 

nd compared to expected physiological trends. The effect of tho- 

acic pressure on parameter estimation was analysed by comparing 

arameter progressions of the two models. 

. Results 

.1. Parameter subset selection 

The 2 least sensitive parameters for all pigs were the input and 

utput resistances. They were left out of the final parameter sub- 

et. The final parameter subset was defined: 

 = [ E a , E lv , E v c , R c , V s, 3 , E wall ] (25)

.2. Parameter estimation 

Parameter estimation was qualified using the MAE of the error 

ector for each beat. All MAE errors were found to be lower than 

.5%. Parameter estimation was also qualified by plotting simulated 

aveforms against measurements to ensure model dynamics were 
6 
ccurately captured. Figure 6 shows the comparison of measure- 

ent and simulated aortic pressures and left ventricle volumes, 

isplaying their means and ranges. Figure 7 shows the effects of 

horacic pressure on both the measured and simulated aortic pres- 

ure, illustrating the cardio-pulmonary model’s ability to capture 

he effects of thoracic pressure on the CVS. 

.3. Effect of PEEP on SBV and SV 

Figure 8 shows the progression of SBV and SV for both the 3- 

hamber model and the cardio-pulmonary model. The two mod- 

ls result in almost identical outputs, emphasising the ability of 

oth models to track the left ventricular volume measurements. SV 

ecreases as PEEP is increased, as expected, due to the increased 

ressure in the thoracic chamber, causing a decrease in venous re- 

urn and thus a reduction in ventricular preload [26,27] . In healthy 

atients under normal conditions, SV and SBV are expected to dis- 

lay a strong linear correlation [7] . The relationship between SBV 

nd SV of all pigs is shown in Fig. 9 . As expected, the SV and SBV

re highly correlated for all pigs displaying a very strong relation- 

hip between SBV and SV. 

.4. Effect of PEEP on haemodynamic parameters 

Figure 10 shows the progression of parameter estimations of 

oth models over the RM. With the exception of Pig 8, the E v c 
emains relatively constant over the RM for both models, as ex- 

ected, since the inherent elastance property of the vessel should 

ot change over the short duration of the RM. Furthermore, as 

EEP increases, the estimates of E v c and E lv between the models 

ncreasingly diverge. This divergence is expected because the 3- 

hamber model cannot account for the additional thoracic pressure 

pplied directly to the left ventricle and vena cava. 
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Fig. 7. Modelled waveforms vs measured waveforms. Measured P a in solid blue and modelled P a in solid orange. Thoracic pressures are outlined by the dashed lines. 

Fig. 8. SV and SBV progression over the RM for both models. Results from the 3 chamber model are shown on the left and results of the cardio-pulmonary model are shown 

on the right. 

7 
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Fig. 9. SBV vs SV for all pigs. Pig 4 is shown in blue, Pig 6 in orange, Pig 7 in green and Pig 8 in purple. Model data are represented by individual points, and the solid lines 

represent the line of best fit for each pig. 

Fig. 10. Parameter estimates over the RM for both models. The dotted line represents cardio-pulmonary estimations and the solid line represents 3-chamber estimations. 

8 
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Fig. 11. The difference between elastance estimates from the cardio-pulmonary and 3-chamber models. The left shows identified E lv of the cardio-pulmonary model sub- 

tracted from identified E lv of the 3-chamber model for all pigs. The right shows the same for E v c . Actual elastance values ( ∗) are shown against an exponential line of best 

fit (solid line). 

Table 3 

r 2 values for exponential fit of elastance divergence. 

Pig r 2 of E lv r 2 of E v c 

4 0.998 0.999 

6 0.915 0.906 

7 0.889 0.915 

8 0.918 0.973 
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The nature of the divergence is illustrated in Fig. 11 . The plot 

hows identified elastances from the cardio-pulmonary model sub- 

racted from that of the 3-chamber model. The identified elastance 

rom the 3-chamber model are shown to diverge exponentially 

ith increasing PEEP from those of the cardio-pulmonary model. 

 first order exponential was fitted to the data. The r 2 values for 

ach fit are summarised in Table 3 . 

R c and E a remain relatively constant over the duration of the 

ecruitment manoeuvre for both models. Neither the systemic vas- 

ulature nor the aorta are directly affected by ITP and thus large, 

mmediate variations of these parameters with PEEP are not ex- 

ected. Furthermore, the difference in estimations between the 2 

odels is much subtler than that of E v c and E lv , further demon- 

trating the indirect nature of the affect ITP has on these parame- 

ers. 

. Discussion 

.1. Comparison of model dynamics 

Both models captured the fundamental dynamics of the CVS. 

odel outputs were validated by assessing the MAE of the param- 

ter estimation and by means of visual inspection to ensure reli- 

ble tracking of measurement data. Despite its slight increase in 

omplexity, there was no apparent increase in MAE of the cardio- 

ulmonary model when compared to the 3-chamber model. 

.2. Model discrepancies 

The results shown in Figs. 6 - 7 do not match measurement vol- 

me and pressure waveforms exactly. Despite having near identical 
9 
eans and ranges, the shapes of modelled aortic pressure and left 

entricle volume vary slightly from their measured counterparts. 

The reason for the discrepancy in volume results from obtain- 

ng left ventricular volume via integration of aortic flow. While 

his produces accurate measurements of SV and mean left ven- 

ricular volume used by the error function, it does not provide 

n accurate overall shape of the left ventricular volume wave- 

orm, which would closer resemble the shape of the modelled 

utput. 

Similarly, the Dicrotic Notch in the aortic pressure is not 

resent in Fig. 7 as the model definition chosen does not capture 

his local nonlinear behaviour given its goal is to capture system 

verall system dynamics and system wide metrics such as stressed 

lood volume. 

.3. Effect of MV on the CVS 

Mechanical ventilation has a wide range of effects on the CVS. 

t causes an increase in ITP which is directly applied to the heart 

nd the vena cava. As PEEP increases, so too does ITP, and, as such, 

ts effects on the CVS are exacerbated. Increased levels of thoracic 

ressure are known to inhibit venous return, causing a reduction 

n preload and ultimately a reduced CO. 

As PEEP increased, measured SV decreased significantly, drop- 

ing by over 60% in Pigs 4 and 8. Both models were able to suc-

essfully track the large variations in SV as PEEP was increased. 

urthermore, the models were able to capture the strong relation- 

hip between SBV and SV, as shown in Fig. 9 , emphasising their 

bility to accurately estimate SBV and their potential for use in 

uiding fluid therapy. 

E v c remained relatively constant over the RM for 3 of the 4 Pigs. 

he elastance is an inherent property of the vessel and should not 

hange over small periods of time in healthy subjects. However, 

ig 8 showed a large increase in E v c . Pig 8 was diagnosed as be-

ng hypovolemic. The model relies on a linear relationship between 

ressure and stressed blood volume in its passive chambers. Once 

 subject becomes increasingly hypovolemic, it is possible for the 

odel to enter a non-linear operating range, where estimated pa- 

ameters are less physiologically relevant or accurate. However, at 

uch low volumes, there is little diagnostic loss as there would 
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ave already been many available signs of such a severe condition, 

uch as very low blood pressure levels. 

.4. Effect of ITP on estimated parameters 

The effects of ITP on the CVS can also interfere with a model’s 

bility to produce accurate parameter estimations. In the case of 

he three chamber model, which is unable to account for thoracic 

ressure, the model is unable to separate thoracic pressure from 

imulated left ventricle pressure and venous pressure. Thus, while 

ome parameters remain unaffected, some parameters show large 

eviations compared to the cardio-pulmonary model. 

As expected, estimations of SBV and aortic elastance remained 

naffected by thoracic pressure. Since blood flow through the sys- 

em remains the same for both models, it can be deduced SBV 

ould remain the same as well, since stressed blood volume is the 

ntegral of blood flow in the system. If SBV in the aortic chamber 

emains constant, from Eq. (1) , any change in pressure results in 

 direct change in elastance and vice versa. Since modelled aor- 

ic pressure is not directly affected by thoracic pressure and the 

tressed volume in the aortic chamber remains constant, it can be 

educed aortic elastance estimates between the 2 models should 

ot change either. 

As shown in Fig. 10 , both the left ventricle and vena cava elas-

ance estimates of the two models diverged as PEEP increased. 

he divergence was found to be exponential with PEEP, as illus- 

rated by Fig. 11 . This outcome is expected because unlike aortic 

ressure, both the left ventricle pressure and vena cava pressure 

re directly affected by thoracic pressure. Measured pressures are 

omprised of pressure caused by stressed volume in the chamber 

nd the thoracic pressure caused by MV. Since the three cham- 

er model is unable to account for thoracic pressure, it assumes 

ressure measurements are caused exclusively by SBV. This neces- 

ary assumption due to the model’s definition results in elastance 

stimations which increase directly with PEEP. Since the cardio- 

ulmonary model is able to distinguish between thoracic pressure 

nd pressure caused by SBV, it produces a more physiologically ac- 

urate estimation of elastance, one which does not fluctuate with 

EEP. 

.5. Limitations 

.5.1. Simplicity of model 

One of the biggest limitations of the model presented in this 

ork is the omission of the pulmonary circulation [10,28] . In- 

eed, it is assumed the systemic and pulmonary circulations can 

e treated independently for assessing SBV, which is not physio- 

ogically accurate. Furthermore, under normal operating conditions, 

he heart experiences ventricular interactions due to the heart be- 

ng enclosed in a fibrous membrane called the pericardium. The 

hysiological connection between left and right ventricles causes 

 compressive force applied to the left ventricle when the right 

ndergoes filling. With only one circulation being considered this 

nteraction cannot be accounted for, though it is typically small 

xcept in pulmonary embolism [29,30] . Equally, the model’s sim- 

licity ensures identifiability and is still able to capture observed 

ynamics. 

Another limitation of the model is the absence of the left 

trium. At the end of filling, the left atrium contracts to provide 

n additional amount of blood to the ventricle. It has not yet been 

hown the time varying elastance theory can be applied to the 

tria as it is done to the ventricle. Other authors have developed 

lternate methods to represent the atria such as the multi-scale 

odel [28] . However, these models use large numbers of param- 

ters, rendering the model structurally unidentifiable due to the 

imited data clinically available. 
10 
A further limitation of the model is the fixing of the input re- 

istance for parameter estimation. Several studies have cited rais- 

ng PEEP increases the resistance to venous return, which is linked 

o reduced ventricular preload and thus reduced SV. With the 

esistance to venous return fixed for parameter estimation, the 

odel accounts for this in other ways which means some identi- 

ed parameters may not be entirely physiologically accurate. How- 

ver, it is not immediately evident to what degree estimations 

re affected. Sensitivity analyses performed in this study and sev- 

ral others [7,8,13] found input resistance to be the least sensi- 

ive parameter in the parameter estimation process, implying that 

t has very little effect on overall system dynamics compared to 

ther parameters. Furthermore, the model is still able to accurately 

apture expected trends of haemodynamic parameters. Parame- 

er trends are arguably of much greater importance as they are 

ore clinically relevant in assessing a patient’s response to treat- 

ent than exact parameter values, which have less physiological 

mportance given the wide variation of parameter values among 

ndividuals. 

.5.2. Experimental data 

The study was limited by the small sample size of experimen- 

al data available. Furthermore, of the 8 pigs which underwent 

he experimental procedures, only 4 produced suitable measure- 

ent data for use in this study. Despite the small sample size, the 

orcine data used in this study provided accurate information to 

un and validate the model, including left ventricle volume, which 

s not typically available in the ICU. Such animal studies are inten- 

ive, time consuming, and costly, thus only few experiments are 

erformed. However, the quality of data available for validation is 

ery high, and unavailable in human subjects. Thus, this study and 

ata provide a foundation of work, which can be confidently built 

n to investigate trends in a larger population of human subjects, 

hile directing it towards a clinical setting. 

. Conclusions 

The work in this paper investigated the novel cardio-pulmonary 

odel and its ability to reproduce cardiovascular system dynamics 

nd physiologically expected trends over the course of a preload 

eduction manoeuvre. It proved successful in reproducing overall 

VS dynamics and importantly, the effects of ITP on the CVS with- 

ut skewing other model parameters. 

The model outputs and estimated parameters were also com- 

ared to the original 3 chamber model from which the cardio- 

ulmonary model was derived. Despite the increase in model com- 

lexity, there was no loss in the model’s ability to accurately es- 

imate haemodynamic parameters and reproduce system dynam- 

cs. Furthermore, the cardio-pulmonary model was able to demon- 

trate how MV affected parameter estimations as PEEP was in- 

reased. The 3 chamber model was shown to produce parame- 

er estimations which fluctuated directly with PEEP, while the car- 

iopulmonary model estimations remained more stable, suggesting 

ts ability to produce more physiologically accurate parameter esti- 

ations under higher PEEP conditions. 
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