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Abstract. Background and Objectives: Automatic segmentation of the cerebral

vasculature and aneurysms facilitates incidental detection of aneurysms. The

assessment of aneurysm rupture risk assists with pre-operative treatment planning

and enables in-silico investigation of cerebral hemodynamics within and in the

vicinity of aneurysms. However, ensuring precise and robust segmentation of cerebral

vessels and aneurysms in neuroimaging modalities such as three-dimensional rotational

angiography (3DRA) is challenging. The vasculature constitutes a small proportion

of the image volume, resulting in a large class imbalance (relative to surrounding

brain tissue). Additionally, aneurysms and vessels have similar image/appearance

characteristics, making it challenging to distinguish the aneurysm sac from the vessel

lumen. Methods: We propose a novel multi-class convolutional neural network to

tackle these challenges and facilitate the automatic segmentation of cerebral vessels

and aneurysms in 3DRA images. The proposed model is trained and evaluated on

an internal multi-center dataset and an external publicly available challenge dataset.

Results: On the internal clinical dataset, our method consistently outperformed

several state-of-the-art approaches for vessel and aneurysm segmentation, achieving

an average Dice score of 0.81 (0.15 higher than nnUNet) and an average surface-

to-surface error of 0.20 mm (less than the in-plane resolution (0.35 mm/pixel)) for

aneurysm segmentation; and an average Dice score of 0.91 and average surface-

to-surface error of 0.25 mm for vessel segmentation. In 223 cases of a clinical

dataset, our method accurately segmented 190 aneurysm cases. Conclusions:

The proposed approach can help address class imbalance problems and inter-class

interference problems in multi-class segmentation. Besides, this method performs

consistently on clinical datasets from four different sources and the generated results

are qualified for hemodynamic simulation. Code available at https://github.com/

cistib/vessel-aneurysm-segmentation.
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1. Introduction

Cerebral aneurysms are pathological protrusions of cerebral arterial walls (see Fig. 1, for

example), and their rupture is the leading cause of subarachnoid hemorrhage in patients.

Three-dimensional X-ray rotational angiography (3DRA) imaging is commonly used to

visualize and characterize cerebral vessels and aneurysms through the reconstruction

of tomographic slices of a region of interest like computed tomography angiography

(CTA), using single-plane radiographic equipment [2, 3]. In contrast with 3D magnetic

resonance angiography (MRA) imaging and CTA, 3DRA provides images of higher

spatial resolution and improved soft-tissue contrast [41, 42, 43], capturing fine vascular

structures and enabling precise characterization of aneurysm morphology.

Figure 1. From left to right: 2D slice from a reconstructed 3DRA image; the

maximum intensity projection (MIP) of the 3DRA image; and a 3D simulation-ready

mesh of a cerebral aneurysm (blue) and the major vessels (white) in its vicinity

reconstructed from its corresponding main vessel segmentation.

An accurate, automated, and reproducible cerebral vessel and aneurysm

segmentation technique would facilitate various computational imaging and clinical

applications. Segmentation of cerebrovasculature has found its use in pre-operative

planning of invasive procedures [48], delivering image-guided therapies/treatments [49],

and assessing cerebral hemodynamics through computational fluid dynamics (CFD)

simulations [50]. Similarly, detection and segmentation of cerebral aneurysms are

valuable as they facilitate incidental identification and quantitative characterization

of aneurysm morphology [51]. The latter is especially useful as previous studies

have shown that the size and shape of a cerebral aneurysm are essential biomarkers

for evaluating rupture risk [47]. Precise characterization of aneurysm location and

morphology is necessary for selecting a suitable/approved treatment strategy, pre-

operative intervention planning, and postoperative assessment and monitoring. While

cerebral aneurysms and their surrounding vessels can be detected and segmented
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manually, this process is time-consuming due to the high dimensionality of 3D image

volumes and is subject to inter- and intra-observer variability. If the computer-

assisted model can automatically detect the location of the aneurysm and characterize

its morphological properties such as neck diameter, aneurysm size, etc., all of these

characteristics can support the clinical decision-making process. For instance, depending

on the size and location of the aneurysm, the clinician would either use coils or flow

diverters to treat the aneurysm. Similarly, to decide the type of medical device for

treating the aneurysm, the clinician relies on the information on whether there is a

bifurcation around the aneurysm. On the one hand, the direct clinical needs involve

automatically characterizing the location and morphological properties of the aneurysm

which could inform the best course of treatment for the aneurysm. On the other hand,

to motivate clinical needs, in-silico trials [52] can help identify the best operational

regimes for the use of certain devices and better inform the safety and efficacy of medical

devices in clinical trials. In order to be able to scale up in-silico trials to large-scale, both

qualified vessel and aneurysm segmentation are required to derive accurate geometrical

and computational models.

Several previous studies have proposed automatic and semiautomatic techniques

for cerebral vessel and aneurysm segmentation in 3D imaging modalities such as MRA,

CTA, and 3DRA. While early work in the field relied on classical techniques such

as geodesic active regions for segmenting vessels and aneurysms [53, 54, 55], recent

approaches have focused on data-driven supervised learning-based methods due to

the tremendous success of convolutional neural networks (CNNs) at detecting and

segmenting objects/regions in images. As in several other domains, the segmentation

performance afforded by deep learning-based approaches for cerebral vessels and

aneurysms far exceeds that of classical approaches. For example, in a recent study

[23], the authors proposed DeepVesselNet, a CNN designed to segment cerebral vessels

in MRA images. Here, 2D orthogonal cross-hair filters (convolutions) were used to

preserve details of fine vascular structures in the learned features while incorporating

3D contextual information. As vessels constitute a small fraction of the overall image

volume, the segmentation task suffers from a significant class imbalance between

the foreground (vessel) and background (surrounding brain tissue) classes. This

was addressed by training DeepVesselNet with a class-balanced cross-entropy loss

function that minimizes the false-positive rate. Similarly, to incorporate 3D contextual

information and improve the accuracy of segmenting fine vessels in digital subtraction

angiography, Patel et al. [19] used DeepMedic, a powerful segmentation approach

proposed in a previous study [15]. To improve the performance of deep learning on

small object segmentation and obtain annotated training data at a rapid pace, Vessel-

CAPTCHA [60] proposes a novel annotation-efficient deep learning vessel segmentation

framework. The framework only requires weak patch-level labels to discriminate between

the vessel and non-vessel 2D patches in the training set. This framework can effectively

segment vessels including both main and fine branches. Unlike the original U-Net

architecture [20], DeepMedic is a 3D CNN with two parallel encoder pathways that
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learn features at different image resolutions to capture contextual information while

keeping the computational cost low. 3D image patches centered at the same location

in the image are used as inputs to the two pathways. The image is downsampled to

a third of its original size for the second pathway. Several U-Net based approaches

have been proposed for segmenting cerebral vessels and aneurysms [14, 10, 12, 13].

The method proposed by Livne et al. [10] is trained to segment cerebral vessels

using 2D patches extracted from MRA images [16] with a U-Net. The method

proposed by Shahzad et al. [14] segments ruptured intracranial aneurysms resulting

in subarachnoid hemorrhage in CTA images using DeepMedic. Zhou et al. [21]

proposed U-Net++ as a new framework for image segmentation to further improve

segmentation performance. The redesigned skip connections in U-Net++ aggregate

features across multiple scales within decoder sub-networks, leading to a highly flexible

feature fusion scheme. Attention modules have been widely used in vessel segmentation

networks to weigh the importance of relevant but under-represented structures/features

[35, 36, 37, 38]. However, stand-alone segmentation networks trained and applied to

imaging data without using appropriate pre, and post-processing steps typically lack

robustness when segmenting fine structures (such as vessels and aneurysms) in the

presence of significant class imbalance and variability in image appearance and soft-

tissue contrast (typical of imaging data acquired across multiple centers). Therefore, to

facilitate robust segmentation of diverse imaging data with imbalanced classes, Isensee

et al. [1] proposed nnU-Net, which can automatically configure itself, including pre-

processing, network architecture, and training and post-processing for any new task in

the biomedical domain. The nnUNet improves the robustness of the model by learning

fixed, rule-based and empirical parameters.

The methods discussed thus far achieved state-of-the-art segmentation performance

for cerebrovascular structures. However, several challenges remain to enable precise and

robust characterization of cerebral vessels and aneurysms in 3D, namely, effectively

dealing with the severe class imbalance, the difficulty of distinguishing between the

aneurysm and vessel lumen, and the lack of a robust deep learning framework for

segmenting cerebral vessels and aneurysms for multi-center studies. Firstly, the

aneurysm region often constitutes less than 1 % of the overall image volume. The

features extracted from the small regions such as fine vessels and aneurysms may

not be effectively propagated through a series of convolutional and up-/down-sampling

layers by conventional CNN-based networks. Secondly, vessel interference is the main

reason for over-segmentation due to the similarity of closed vessels in patch boundaries

to aneurysms in morphology. Last, multi-center imaging data varies considerably in

image appearance and spatial resolution due to different scanners and image acquisition

protocols across different institutions. All these factors make precise segmentation of

cerebral vessels and aneurysms challenging. Addressing these challenges is the main

focus of this study and here are the contributions:

1) A dual-class segmentation network is proposed for the automatic segmentation

of cerebral vessels and aneurysms in 3DRA images. To deal with the class imbalance



Cerebral Vasculature and Aneurysm Segmentation from 3DRA 5

inherent in such a segmentation task, especially for aneurysms, we proposed a cascaded

transformer block at the end of the encoder to highlight aneurysm features. Multi-

view blocks are designed to receive continuous features in a lower feature dimension.

Learnable downsample blocks are proposed at the end of every encoder block to prevent

small features from being washed out during down-sampling. Wide blocks are designed

to extract high-level features in multi-dimensions.

2) For the inter-class interference challenge, we designed the multi-class network

with weighted Dice loss and set aneurysms as a subclass of vessels. The semantic

guidance from vessel features reduces the interference of brain tissue and skull with

aneurysms and can significantly improve aneurysm segmentation performance.

3) To further enhance the aneurysm segmentation performance, we designed a

post-processing pipeline including majority voting and self-refinement which can predict

accurate aneurysm localization and boundary.

4) For hemodynamics simulation analysis, to the best of our knowledge, previous

methods have segmented vessels or aneurysms individually and most experiments have

been validated on image-based evaluation metrics like Dice. Whether the independent

outputs of these segmentation methods are suitable for vessel and aneurysm simulation

is still unknown. Our method allows the simultaneous segmentation of shape-consistent

vessels and aneurysms. More importantly, after generating the mesh from the image-

based output, a mesh-based surface-to-surface error evaluation was performed to verify

that the output is suitable for simulation (surface-to-surface error 0.20 mm for aneurysm

segmentation and 0.25 mm for vessel segmentation, less than the in-plane resolution 0.35

mm/pixel). The automatic segmentation pipeline can bridge the gap between clinical

data and hemodynamic simulation input.

We comprehensively evaluated the proposed approach across two 3DRA datasets:

an in-house multi-center @neurIS dataset [26] and a publicly available cerebral aneurysm

detection and analysis dataset (CADA) [27].

2. Materials and Methods

This section describes the 3D multi-class cerebral vessel and aneurysm segmentation

network proposed in this study and the overall pipeline developed to ensure robust and

reproducible segmentation performance. The proposed multi-class CNN incorporates

several architectural components dedicated to preserving fine structural details in-

plane across multiple orthogonal planes, and ensures consistency in 3D for the vascular

structures of interest. The proposed pipeline comprises three steps: pre-processing,

multi-class segmentation, and post-processing in Fig. 2. Details of each step of the

pipeline and the architectural components developed for the multi-class segmentation

network are discussed in subsequent subsections.
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Figure 2. Schematic of the proposed cerebral vessels and aneurysm segmentation

pipeline comprising three steps. Step 1: shows the pre-processing operations applied

to the original 3DRA images; Step 2: shows the architecture of the proposed multi-

class CNN-based segmentation model; Step 3: shows the post-processing operations

applied to segmented images based on majority voting and self-refinement.

2.1. Step1: Pre-processing

The first step in our segmentation pipeline focuses on processing the original 3DRA

image volumes to generate 3D image patches suitable for training the multi-class

segmentation network. Before extracting patches from the image volumes, we use a

sequence of operations to reduce the variability across patients’ images and stabilize

subsequent segmentation network training. As the spatial resolution varies across

patients’ images in the @neurIST database, we standardized the resolution of all image

volumes by resampling them to a fixed voxel size of 0.35 × 0.35 × 0.35 mm. We also

applied histogram equalization to the resampled image volumes to reduce differences

in tissue contrast across patients’ images. Then, we normalized voxel intensities in all

images to [0, 1]. Vascular structures are only partially labeled within the @neurIST

dataset, with ground-truth segmentations available just for the major cerebral arteries

and their branches in the vicinity of the aneurysm. Hence, we cropped each image
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volume using a bounding box encapsulating the labeled structures to reduce label

noise/confounding information when training the segmentation network. Finally, we

extracted 3D patches of size 64× 64× 64 voxels from the cropped volumes, discarding

all patches that had no associated labels for the vessels or aneurysm, and used the

remaining patches for training our segmentation network.

2.2. Step2: multi-class segmentation network

The backbone of our multi-class segmentation network’s architecture is U-Net++ [21],

a deeply supervised encoder-decoder network with nested dense connections across

convolution blocks nestled between the encoder and decoder paths (as illustrated in

Fig. 2). The nested dense skip pathways help aggregate multiscale features at each

convolution block in the decoder from all convolution blocks at the same resolution

level or below (relative to the former) in the encoder. These dense connections help

alleviate the restrictive behavior of skip connections (allowing only for the same-scale

fusion of learned features) used in the original U-Net architecture and its variants.

They enable rich semantic multiscale features from different encoder blocks to be used

by each decoder block to generate segmentations. Additionally, we propose several

additional feature extraction modules (discussed in subsequent sections) integrated into

this backbone U-Net++ architecture to increase the network’s sensitivity to detect

vessels and aneurysms.

2.2.1. Cascaded Transformer Cerebral vessels and aneurysms constitute less than

6% of the overall image volume in 3DRA images [56]. This leads to a significant

class imbalance between the foreground (vessels and aneurysms) and background

(surrounding tissues) classes. We designed a cascaded transformer block to address this

challenge, which adaptively increases the network’s attention on vessels and aneurysms

[22]. As shown in Fig. 3., we first exploited this module at the end of the encoder to

integrate local features with their global dependencies along the spatial and channel

dimensions in parallel paths. The spatial attention module on the top left selectively

highlights the locations that comprise vessels and aneurysms by a weighted sum of

the features from all locations. Meanwhile, the channel attention module on the top

right enhances the interdependence between different channels through a sequence

of permutation and dot product operations acting channel-wise on the input feature

maps. Then, we exploited three multi-head attention modules cascaded with multilayer

perception (MLP) in latent space to further learn features with a wider spatial context.

Since the feature order in latent space is learned by the model rather than by spatial

position, we removed the position embedding layer here to reduce artificial interference

and provide more room for learning. Finally, we add the features from different attention

stages, increasing training stability and the weight of key features specific to vessels and

aneurysms to enhance overall segmentation performance.
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Figure 3. Transformer block. Increased attention to aneurysms and fine vessels.

2.2.2. Multi-view Block Learning representative features of fine vessels is challenging

as they may be as few as two pixels in diameter in Fig. 13. Because of the presence of

noise points in the low-level features, convolution with a kernel size three has difficulty

distinguishing noise from such subtle features with a diameter of less than three. These

noise-like features are either filtered out or over-enhanced by using only small kernel

3D convolution filters. But in large receptive field, this continuous and uniformly

slender feature will be completely different from the noise point feature. We propose

a multi-view convolution block composed of three branches to extract 2D features in

the larger receptive field along orthogonal planes of the 3D image volume to tackle this

challenge. This enables feature learning and orthogonal views, which are subsequently

aggregated, to highlight the slender features specific to fine vessels. This represents

finer vascular structures than conventional 3D convolutions. Besides, we are also

interested in preserving the 3D structure and morphology of vessels and aneurysms,

which is somewhat lost using just 2D orthogonal convolutions. Hence, we also use a 3D

convolution layer alongside each multi-view block in our network, and add the features

learned by the former and latter. This combination of the multi-view block and a 3D

convolution layer ensures that 3D contextual features are learned and aggregated with

detailed features of fine vascular structures. The structure of the multi-view block is

shown in Fig. 4.

2.2.3. Learnable Downsample Block Down-sampling of learned feature maps through

pooling operations is essential in CNNs to increase the receptive field size of the

network and enable learning of hierarchical features while keeping model complexity

(i.e. the number of learnable parameters) reasonable to reduce overfitting and ensure

computational tractability. During down-sampling, weak features of small vessels

and aneurysms are easily ignored/lost if standard pooling operations are used (e.g.

max-pooling). We designed a learnable downsample block to retain weak features to

compensate for this. This block halves the size of the input feature maps along three
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Figure 4. Multi-view block. Extract features from three orthogonal views using 2D

convolutions in large kernels. The fine vessel feature is not obvious in the second and

third views, but the slender feature is easily captured in the first view.

parallel branches comprising two stridden convolution branches and a max-pooling

branch, as illustrated in Fig. 5 (left). These three branches dissociate the spatial

and channel information through a 3D convolution layer (with a kernel size of 3) for

the former and three parallel 2D convolutional layers (multi-view block) of factorized

asymmetric 3D convolutions for the latter (as shown in Fig. 5). This enables effective

learning of spatial and channel-wise features alongside down-sampling of the feature

maps in each individual path. The max-pooling path downsamples the input feature

maps and aggregates them across channels using a 3D convolution layer with a kernel

size of one. The resulting feature maps from all three branches are subsequently

concatenated, resulting in downsampled feature maps that have preserved weak features

across multiple scales and dimensions.

2.2.4. Wide Block To further increase the receptive field size of the network, with a

limited increase in model complexity, and learn features with a wider spatial context,

we designed the wide block. This module comprises three branches in Fig. 5 (right).

One branch aggregates the feature maps across channels and learns local features with

a 3D convolution of kernel size three. The other two branches utilize asymmetric 3D

convolutions applied in parallel and serially with a large kernel size to learn multiscale

features along all dimensions. The resulting feature maps from each branch are finally

concatenated and provided as input to subsequent network layers.

2.2.5. Loss Function The aneurysm regions account for only a small part of the brain

image, and a critical imbalance exists in the distribution of the positive and negative

samples. Thus, following the generalized dice loss proposed in [59], in this work, we

used the weighted dice loss (Eq. 1) that weights inversely proportional to labels area,

in order to better predict labels with general small regions, i.e., the aneurysms in our
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Figure 5. Learnable downsample block (left) and wide block (right).

case. wa and wv are the weights of the aneurysm and vessel volume in Eq. (2). Dice is

calculated in Eq. (3). Because of the class imbalance issue, we compensated for this by

multiplying the Dice of aneurysm segmentation whose proportion is small by the larger

weights and multiplying the vessel segmentation whose proportion is big by the smaller

weights.

Loss = wv ∗Dicea + wa ∗Dicev (1)

wa =
Va

Va + Vv

, wv =
Vv

Va + Vv

(2)

2.3. Post-processing

2.3.1. Majority voting The multi-class segmentation network processes patch data. In

the segmentation result of a single patch, a vessel near the patch edge has a closed

geometry and is therefore incorrectly identified as an aneurysm. After ensembling the

predictions of patches together, there will be over-segmentation of aneurysms like the

fourth column of Fig. 2. As visualized in Fig. 6 and Fig. 7, the 2D image is divided

into four groups of patches represented in red, yellow, green and blue boxes. Similarly,

the 3D image is divided into eight groups of patches. Each group of patches is fed

into the multi-class model for prediction. For true aneurysms in 6, all eight groups had

positive prediction results (eight votes). For fake aneurysms (vessels near the patch edge

mentioned above) in Fig. 7, only four groups (pred 2, 4, 6, 7) had positive prediction

results (four votes), the remaining four groups (pred 0, 1, 3, 5) did not predict the

controversial area to be an aneurysm. Therefore, after ensembling the results of eight

groups, we keep only the predicted area with the highest number of votes and use this

area as the aneurysm prediction of majority voting. The proposed approach decomposes
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each 3DRA image volume into eight groups of patches and uses these to train the multi-

class segmentation network. The starting points of the eight groups are the eight vertices

of the 3D image after zero-padding, which is to ensure the eight groups do not overlap

completely. Patch-based learning allows semantic features to be learned from the 3DRA

images in their native resolution with a limited degree of down-sampling throughout the

network, not afforded by methods that learn features directly from the original image

volumes due to GPU memory constraints.

Figure 6. Patch grouping example and inference results. 2D image have four patch

groups, 3D image will have eight patch groups. The different colors represent the

different patch groups. The label shows here is an aneurysm and the prediction of

eight different groups is correct.

2.3.2. Self-refinement The fourth column of Fig. 2 shows that the aneurysm may still

be inaccurately over-/undersegmented. Therefore, we refine the segmentation results

by selecting one patch centered on the aneurysm prediction (after majority voting)

and feeding this patch into the multi-class model to predict the aneurysm’s shape. If

there are multiple independent aneurysms, patches will also be selected multiple times.

During this process, the predictions close to the edge of the patch are ignored to prevent

interference from vessels at the edges here. Finally, we can obtain aneurysm predictions

with correct locations and accurate boundaries in the fifth column of Fig. 2.

By combining majority voting with self-refinement, we can prevent vessels at the

edge of the patch from being predicted as aneurysms, effectively suppressing aneurysm

over-segmentation.
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Figure 7. Patch grouping example and inference results. The label shows there is

no aneurysm. The predictions of pred0, 1, 3, and five are correct, and pred2, 4, 6, and

seven are incorrect, which will cause over-segmentation.

3. Experimental Setup

3.1. Datasets

The proposed method is trained and validated on 3DRA images from 223 patients

acquired from the @neurIST project [26]. These images were acquired across four

different centers with different scanners and imaging protocols. There are significant

variations in image appearance and resolution across image data from different centers,

as shown in Fig. 8. Image data from the @neurIST database were split patient-wise into

training, validation, and test sets using a ratio of 7 : 1 : 2, respectively, and five-fold

cross-validation experiments were conducted to thoroughly evaluate the segmentation

performance of the proposed approach and the state-of-the-art methods. The test

sets in different cross-validation experiments traverse the entire data set. We also

trained and evaluated our approach on a publicly available dataset, CADA [27], which

comprises computerized tomography (CT) images of patients with cerebral aneurysms.

These images were acquired as part of the Cerebral Aneurysm Detection and Analysis

challenge, hosted at the international conference on medical image computing and

computer-assisted interventions in 2020. The training data released as part of the CADA

challenge comprised 109 3DRA images with 127 annotated aneurysms. We also split the

labeled data into training, validation, and test sets by patient in a 7 : 1 : 2 ratio. When

preparing the training data, we randomly extracted 3D patches around the aneurysm.

Negative patches that did not contain aneurysms were not selected for training. When

training the segmentation model, there were 904 patches extracted from the cropped

volumes, with 716 patches being used as the training set and the rest patches being

used as the validation set to monitor the training process. In addition, we applied data
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augmentation for these patches including left and right 90-degree rotation.

Figure 8. Examples of images collected in the @neurIST dataset: 2D visualization

of data from different four sources showed great differences in pixel distribution and

aneurysm size.

3.2. Network training

The proposed multi-class segmentation network was trained using the Adam optimizer

[33] with a learning rate of 0.0003. The model converged after ten epochs, and the

validation loss was minimized around 30 epochs. All experiments were conducted on

an NVIDIA 1080Ti GPU with 11 GB memory. The batch size was kept consistent

across all experiments and was set to four. The best model is chosen according to

the validation loss. We trained the network of Step2 in Fig. 2 with the above setting

and shared the best weight to majority voting and self-refinement. Table. 1 provides the

comparison of model complexity in terms of model parameters and training time/epoch,

between the proposed method and the benchmarked networks. Table. 2 shows the

hyper-parameter configurations for the benchmarked networks and our method. The

loss functions of UNet, Dual Attention Net, UNet++, and 3DResUNet in benchmark

methods are consistent with the proposed method, i.e., the weighted dice loss. The

loss function of DeepVesselNet and nnUNet is Dice loss + CrossEntropy. We kept

their original loss functions since DeepVesselNet and nnUNet are self-contained, highly

encapsulated frameworks with dedicated pre-processing and post-processing strategies,

and changing their loss functions may affect their overall performance.

Table 1. Comparison of model complexity in terms of model parameters and training

time/epoch between the proposed method and the benchmark networks.

Model complexity Total params Training time

U-Net++ 1,857,939 78 s/epoch

Dual Attention Net 1,633,747 60 s/epoch

DeepVesselNet 1,608,147 57 s/epoch

Vessel-CAPTCHA 16,337,666 161 s/epoch

Ours 16,812,195 182 s/epoch
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Table 2. Summary of the hyper-parameter configurations for the benchmarked

networks and the proposed method.
Hyper-parameters U-Net++ Dual Attention Net DeepVesselNet 3DResUNet Vessel-CAPTCHA nnUnet Ours

Optimizer Adam Adam Adam Adam Adam SGD Adam

Learning Rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.001 Decay 0.0003

Epochs 40 40 40 40 40 200 40

Batch Size 4 4 4 4 64 4 4

Patch Size 64 64 64 64 64 64 64

Dimension 3D 3D 3D 3D 2D 3D 3D

3.3. Evaluation metrics

The proposed multi-class segmentation network is used to segment both cerebral vessels

and aneurysms, denoted as ypred. Several evaluation metrics are used to evaluate

the similarity of the masks predicted for vessels and aneurysms individually regarding

ground-truth masks (denoted as ytrue). These include the Dice (or F1) score, Jaccard

(JAC) index, and the volume similarity (VS) index.

The Dice similarity index [39] measures overlap between ypred and ytrue and is

calculated:

Dice =
2× TP

FP + 2× TP + FN
. (3)

The Jaccard index [39] is computed as the intersection over the union of two sets

and measures the similarity and diversity between two sets. It is computed:

JAC =
TP

FP + TP + FN
. (4)

The VS index [39] measures the similarity between segmented regions of interest

volumes in the predicted and ground-truth masks. It represents the absolute volume

difference divided by the sum of the compared volumes.

V S = 1−
abs(FN − FP )

FP + 2× TP + FN
. (5)

The surface-to-surface distance error metrics estimate the error between the ground-

truth surfaces S, and the segmentation prediction surfaces S ′. The distance between

a point pi on surface S and the surface S ′ is given by the minimum of the Euclidean

norm. And we compare the similarity between the predicted and ground-truth vessel

and aneurysm geometries by generating surface mesh-based representations of these

structures from their corresponding masks.

d(pi, S
′) = min

p′∈S′

∥pi − p′∥
2

(6)

Doing this for all N points in the ground-truth surface S gives the average surface-

to-surface distance error:

d(S, S ′) =
1

N

i∑

N

d(pi, S
′) (7)
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As highlighted, the ground-truth masks available for the @neurIST dataset are

only partially labeled, i.e. vessel masks cover only the major artery branches near the

aneurysm rather than the entire vascular tree visible within the 3DRA image field-of-

view. On the other hand, as our segmentation framework is trained patch-wise to retain

fine vascular details, during inference, our approach can segment the entire vascular tree

using the learned representations for identifying vascular structures within the image

volume. This results in a large proportion of correctly identified pixels as vessels, for

which no ground-truth labels exist. Thus, the surface-to-surface distance may be more

appropriate in this scenario as it only computes the distance errors for the GT labeled

region.

Across all comparative evaluations conducted comparing the proposed segmentation

framework with state-of-the-art approaches and in the ablation study evaluating

the impact of each module included in the proposed multi-class network, we assess

the statistical significance of the obtained segmentation results using paired-sample

Student’s t-tests.

4. results

4.1. Visual comparison

Fig. 9 illustrates the 3D renderings of obtained segmentation results captured in the

entire field of view in 3DRA images. These data samples were randomly selected from

different data collection centers. As can be seen, the proposed method can capture

much more abundant vascular structures in the images, which were mislabelled as the

background in manual annotations. The segmented results preserve the continuity and

topology of the vascular trees and are visually comparable to the annotated regions.

The surface meshes generated using the vessel and aneurysm segmentations

predicted at different stages of our segmentation pipeline are shown in Fig. 10. These

figures demonstrate the utility of the proposed post-processing steps to suppress

false-positive predictions for the aneurysm and refine the same. Cropped vessels

share similarities in topology and appearance with aneurysms near patch boundaries.

Therefore, initial segmentation using the proposed multi-class segmentation network

(step 2 in Fig. 2) is prone to incorrectly labeling tortuous vessels and vessels near patch

boundaries as aneurysms (example in the third column of Fig. 10). These false-positive

predictions for aneurysms are artifacts of patch-based learning due to the limited spatial

context available to the network during feature learning and can be effectively reduced

using majority voting (described as part of the post-processing step earlier in section 2.3-

C). The resulting aneurysm segmentation following the suppression of false positives by

majority voting (see the fourth column of Fig. 10) is used to provide aneurysm location

and extract patches in the neighborhood, which are fed back into the multi-class network

to refine the segmentation near the aneurysm (called’ self-refinement). The improvement

in aneurysm segmentation accuracy afforded by these two post-processing steps involving
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Figure 9. 3D renderings of obtained segmentations. These data samples were selected

from different centers.

majority voting and self-refinement is also highlighted for the test set in Fig. 10.

Figure 10. 3D renderings of obtained segmentations after different steps.
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Figure 11. Maximum intensity projection for vessel segmentation. The yellow box

is the golden standard area, where all quantitative evaluations are carried out. Our

method captures more fine vascular structures than its state-of-the-art counterparts.

Figure 12. Surface-to-surface error. Upper left: vessel overlap of ground-truth (blue)

and prediction (translucid white). Upper right: surface-to-surface vessel error. Bottom

left: aneurysm overlap of ground truth (red) and prediction (orange). Bottom right:

aneurysm surface-to-surface error.

Visual comparisons of the maximum intensity projections of segmentations

predicted using our approach, and those predicted by state-of-the-art techniques for two

samples from the @neurIST test set are presented in Fig. 11. These figures highlight

our approach’s ability to preserve fine vascular structures greater than its state-of-the-

art counterparts. In the @neurIST dataset, ground-truth masks are available only

for large vessels near the aneurysm in the second column of Fig. 11. Therefore, for

every case, after getting the final segmentation result, we cropped the prediction into

a mask with the same size and position as the ground truth. Then the cropped mask
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is quantitatively evaluated with ground truth. Due to the lack of annotation of small

vessels, the image-based assessment does not provide the most reasonable evaluation of

the segmentation effect. In addition to evaluating segmentation quality using image-

based metrics such as Dice, we computed the surface-to-surface distance error between

the predicted and ground-truth meshes by reconstructing the former just within the

field of view of the corresponding ground-truth mask. The surface-to-surface error

metric also provides information regarding the spatial distribution of errors across

the anatomical structures of interest, i.e., mapping the vertex-wise nearest neighbor

distances between the predicted and ground-truth meshes onto each former vertex (as

shown in Fig. 12). Evaluation of surface-to-surface errors in this manner thus provides

spatial context to where segmentation errors are incurred and help quantify localized

errors, complementing other global image-based metrics (such as Dice) used to evaluate

segmentation performance.

Figure 13. Comparison of maximum intensity projection between multi-view block

(yellow), three conv3D-3×3×3 layers, and one conv3D-5×5×5 layer (green). The

multi-view block can predict more small vessels even not annotated in the label.

Each block of our encoder is dual-path, one for 3D convolution and the other for

2D convolution in multi-view blocks. In Fig. 13, to verify that the role of the multi-view

block is to provide additional fine features to the 3D convolution backbone pathway

rather than adding more parameters, we replaced the three orthogonal 2D convolution

layers in the multi-view block with three 3D convolution layers in kernel size 3 or one

3D convolution layer in kernel size 5. The multi-view block has fewer parameters than

the other two settings but can mine additional features that are different from the 3D

convolution features. Comparing the predictions in the red box, the multi-view block

can predict more small vessels even those not annotated on the label. We have also

performed an ablation study with and without the cascaded transformer and visualized

the attention maps overlaid on the original images, as shown in Fig. 14. As can be seen

by comparing each case in the same column, with the cascaded transformer, the model
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reduces focus on irrelevant context structures like vessel bend and bifurcation. Besides,

the aneurysm necks are better identified with the attention of the cascaded transformer.

Figure 14. Visual comparison of attention maps with and without cascaded

transformer. The first, second, third, and fourth rows are the image MIPs, vessel

and aneurysm segmentation ground truth, attention maps without the cascaded

transformer, and attention maps with the cascaded transformer, respectively. As can

be seen by comparing each case in the same column, with the cascaded transformer, the

model reduces focus on irrelevant context structures like vessel bend and bifurcation.

4.2. Quantitative evaluation

Table 3. Compare with state-of-the-art on whole @neurIST dataset. 5-fold cross-

validation experiments were conducted for each method. The results were calculated

in the golden standard area. Our method outperforms other methods on the main

evaluation metrics of segmentation and is statistically significant on most items.
Method U-Net++[21] Dual Attention Net[22] DeepVesselNet[23] nnUNet[1] Ours

Anatomical Structure Vessel Aneurysm Vessel Aneurysm Vessel Aneurysm Vessel Aneurysm Vessel Aneurysm

Dice Similarity Index
0.8982 ±

0.1091

0.5980 ±

0.3398

0.8893 ±

0.1380

0.5949 ±

0.3372

0.8918 ±

0.0968

0.1558 ±

0.2347

0.8687 ±

0.1197

0.6686 ±

0.3190

0.9125 ±

0.0759

0.8163 ±

0.2672

Jaccard Index
0.8271 ±

0.1225

0.5035 ±

0.3216

0.8184 ±

0.1453

0.4993 ±

0.3205

0.8147 ±

0.1174

0.1083 ±

0.1899

0.7820 ±

0.1371

0.5745 ±

0.3058

0.8455 ±

0.0935

0.7486 ±

0.2655

Volume Similarity
0.9461 ±

0.0999

0.6579 ±

0.3372

0.9453 ±

0.0951

0.6634 ±

0.3338

0.9455 ±

0.0740

0.2619 ±

0.2767

0.9131 ±

0.1074

0.7321 ±

0.3072

0.9525 ±

0.0489

0.8693 ±

0.2520

Surface-to-surface error (mm)
0.3441 ±

0.4422

1.1398 ±

2.3495

0.3518 ±

0.4668

1.0623 ±

2.3829

0.4227 ±

0.7354

4.3694 ±

7.4209

0.8903 ±

1.2450

1.0611 ±

2.9100

0.2586 ±

0.3066

0.2021 ±

0.1790

p-value (Dice vs ours) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 / /

p-value (Surf vs ours) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 / /

Quantitative metrics summarize our approach’s segmentation performance and the

state-of-the-art, namely, U-Net++, Dual Attention Net, DeepVesselNet, and nnUnet,

across all test samples from the 5-fold cross-validation experiments conducted using

the @neurist dataset is presented in Table 3. All the quantitative evaluation results

were calculated within a bounding box encapsulating the GT labeled region (yellow

box in Fig. 11). These results indicate that our method consistently outperforms all

competing methods in the Dice score, Jaccard index, VS index, and the average surface-

to-surface error across the 5fold cross-validation experiments conducted. The statistical
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Table 4. Ablation study. These models are in the same pre-processing and post-

processing method (proposed). The experiments remove different modules separately.

Due to the dataset being partially labeled, the Dice values can not measure unlabeled

fine vessels and small aneurysms, so we use surface-to-surface error to measure the

performance on labeled parts.

Surface-to-surface error (mm)

Model Model 1 Model 2 Model 3 Model 4 Model 5 Ours

Absent module Nested Block Multi-view Transformer L-Down Wide

Modules

UNet

Multi-view

Transformer

L-Down

Wide

U-Net++

Transformer

L-Down

Wide

U-Net++

Multi-view

L-Down

Wide

U-Net++

Multi-view

Transformer

Wide

U-Net++

Multi-view

Transformer

L-Down

U-Net++

Multi-view

Transformer

L-Down

Wide

Vessel
0.3127 ±

0.2462

0.3329 ±

0.3466

0.3327 ±

0.3258

0.3286 ±

0.2876

0.3137 ±

0.2536

0.2586 ±

0.3066

Aneurysm
0.4630 ±

1.0255

1.0878 ±

4.2235

0.3658 ±

0.7354

0.2738 ±

0.3327

0.3921 ±

0.6521

0.2021 ±

0.1790

significance of the obtained segmentation results was evaluated (using paired-sample

Student’s t-tests), revealing that our approach achieved significant improvements over

the state-of-the-art in terms of Dice and the average surface-to-surface error metrics

for both vessels and aneurysms. For vessel segmentation, all methods achieved a Dice

score higher than 0.85, indicating that all methods (including ours) were well suited

to this task. On the other hand, aneurysm segmentation was more challenging as

the target region often constitutes less than 1 % of the overall image volume. We

found that the state-of-the-art methods investigated in this study failed to perform

adequately on this task. nnUNet achieved the best results among the state-of-the-art

methods are dedicated pre-processing and post-processing approaches, with a Dice of

0.67 and surface-to-surface error of 1.06 mm. Our approach provided the best aneurysm

segmentation performance, achieving a 15 % and 0.86 mm improvement over nnUNet

in terms of aneurysm Dice and surface-to-surface error.

Tables 4 summarizes the results from the ablation study conducted to evaluate

the impact of each module included in the proposed multi-class segmentation network

on the quality of the predicted vessel and aneurysm segmentation, respectively. The

ablation studies which remove modules separately were conducted to verify whether

each module contributed positively to the final segmentation performance and determine

the importance of different modules. Due to the dataset being partially labeled, the

Dice values can not measure unlabeled fine vessels and small aneurysms, so we use

surface-to-surface error to measure the performance on labeled parts. Model 1 to Model

5 represent the cases where one module is removed from the final model. The results

comparison between ours with Model 1 to Model 5 show that the surface-to-surface error

is increased no matter which module is discarded, proving that each adopted technique

contributes to the improved accuracy of vessel segmentation. The final model yields

the smallest surface-to-surface error in aneurysm segmentation. The absence of certain
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modules can lead to completely incorrect segmentation results, thus reducing overall

segmentation performance on a test set, so each module is essential for aneurysm and

vessel segmentation.

We also compared single-class segmentation networks (trained individually for

aneurysm and vessel segmentation) with the multi-class network, where identical

network architectures were used except for the output layer. Results from this

comparison are presented in Table 5, which highlights the added advantage of multi-

class learning relative to training independent networks for segmenting each structure

individually. Our multi-class network significantly outperforms the single-class network

for aneurysm average surface-to-surface error (0.2021 vs 0.7051). However, for vessel

segmentation, the multi-class network only provided a marginal improvement over the

single-class network. Since aneurysms grow on blood vessels, the aneurysm part is also

labeled as part of the vessel during training, the learning of vascular features will have

a positive effect on the extraction of aneurysm features.

Table 5. Comparison between single-class and multi-class. The pre-processing and

post-processing of the experiments are the same.

Training type Single-class Multi-class

Anatomical Structure Aneurysm Vessel Aneurysm Vessel

Surface-to-surface error (mm)
0.7051 ±

0.9031

0.3024 ±

0.1641

0.2021 ±

0.1790

0.2586 ±

0.3066

The proposed approach was also trained and evaluated on the public cerebral

aneurysm segmentation (CADA-AS) challenge dataset [6]. The segmentation

performance of our approach was compared against the best-performing methods in this

challenge, 3DResUNet. When comparing these methods, instead of using 128×128×128

patch size described in the challenge paper, an input patch size of 64×64×64 was used

to analyze and segment the images due to limited computing resources of 1080ti GPU

card. Results summarizing aneurysm segmentation performance on test data from the

CADA-AS challenge are presented in Table 6. Since the data is fully labeled, we add

the Dice Similarity Index in addition to surface-to-surface error. These results indicate

that our approach outperforms 3DResUNet, in terms of both metrics.

Table 6. Compare our method on the cerebral aneurysm segmentation (CADA-AS)

dataset with its champion methods. All models were retrained and tested on this

single-class dataset.

CADA-AS 3DResUNet Ours

Dice Similarity Index
0.7464 ±

0.1379

0.8737 ±

0.0747

Surface-to-surface error (mm)
0.4102 ±

0.3924

0.3817 ±

0.3984
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A key aspect of quantitative analysis of cerebral aneurysms, either in assessing

cerebral hemodynamics or aneurysm rupture risk, is the precise characterization of

their morphological properties. Hence, besides evaluating aneurysm segmentation

quality using standard image-based and mesh-based metrics, we compared our approach

with state-of-the-art segmentation approaches to preserve each segmented aneurysm’s

maximum diameter and volume relative to the ground truth. The Bland–Altman

plots in Fig. 15, summarize the average errors between predicted and ground-truth

measurements for aneurysm maximum diameter and volume and their corresponding

95 % confidence intervals for each method investigated. These results indicate no

apparent bias in our model’s ability to preserve critical morphological characteristics of

aneurysms, unlike DeepVesselNet, for example. Additionally, the average errors incurred

by our approach regarding the ground-truth measurements are consistently lower than

all competing approaches.

Table 7. False-positive prediction rate for the aneurysm with or without post-

processing.

Post-processing False-Positive Rate Dice Similarity Index

✗ 65 / 223 0.6432 ± 0.3333

✓ 23 / 223 0.8163 ± 0.2672

In addition, Table. 7 has included the false-positive rate and Dice score for the

aneurysm segmentation before and after applying the post-processing technique. As

can be seen, the proposed post-processing can fix 42 over-segmented aneurysm cases

while improving the overall Dice for aneurysm by 15 %. Table. 8 illustrated the average

prediction time for one volumetric image generated by the proposed framework in

different steps. The proposed method uses an average of 1.5 minutes to process an

image volume for vessel and aneurysm segmentation.

Table 8. Average prediction time for one image volume.

Step Time

Step1: Preprocessing 5 s

Step2: Multi-class Segmentation 45 s

Step3: Post-processing 46 s

Total 96 s

5. Discussion

This paper presented a multi-class convolution neural network and a 3D patch-based

pipeline for cerebrovascular and aneurysm segmentation on 3DRA images. Vessel and

aneurysm segmentation in 3DRA is very challenging due to the small percentage of
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vessels and aneurysms and the interference of the skull. Compared to standardized,

homogeneous data, clinical data exhibit more noise, heterogeneous, diverse appearance

and resolution, making this task more challenging. With severe class imbalance,

automatic segmentation methods struggle to extract the complete contextual and

local information from images. To alleviate those issues, our proposed network has

a transformer block sensitive to small-scale features, multi-view blocks sensitive to

continuous features, the learnable downsample block that prevents subtle features from

being lost, and wide blocks that expand local perceptual fields. Besides, the dedicated

post-processing methods of majority voting and self-refinement can effectively suppress

the over-segmentation of the clinical aneurysm, enhancing the entire pipeline’s clinical

robustness.

5.1. Class imbalance

In whole brain tissue, the percentage of blood vessels is less than 6% [56], and the

proportion of aneurysms is less than that of vessels. Hence, U-Net++ and Dual

Attention Net are potent models that retain rich intermediate features and focus more

on critical target information. However, these models can only capture the main

vessels and obvious aneurysms. Still, these models lose subtle features during the

convolution operation, viz., small aneurysms whose diameter is less than 10 mm. Our

method designed multi-view blocks and wide blocks for the class imbalance problem by

extracting additional information to complement the backbone network feature. These

blocks can extract continuous information through cascade and parallel low-dimensional

convolution layers with large kernels. We also exploited a transformer block at the end

of the encoder to enlarge the proportion of target features. In Table 4, after adding

different new modules, the segmentation of both aneurysms and vessels is improved,

which also verifies that the proposed modules positively affect the final segmentation

results. In addition, in order to reduce the proportion of negative samples and thus

make the training converge, when preparing the training patches, we select the patches

around the aneurysm as input instead of feeding all patches obtained after cropping the

data to a model. This can increase the proportion of aneurysms and vessels in a single

patch.

5.2. Inter-class separability

Aneurysm segmentation usually suffers from inter-class interference. Due to the prior

knowledge that all aneurysms grow on vessels while extracting the vessel features,

the deep network also extracts and enhances more potential aneurysm features near

the vessels. Without proper guidance of vessel features in multi-class, the single-class

model may segment brain tissue or noise area into aneurysms. The multi-class learning

brings a huge boost to aneurysm segmentation. From Table 5, multi-class aneurysm

segmentation surface-to-surface error improved by 0.5 mm over single-class.
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5.3. Inter-institutional data variability

Our data were obtained from four institutions. While data from different sources are

all from the same modality, viz. 3DRA images, there are large differences in image

appearance, intensity distribution, resolution and aneurysm size (Fig. 8). This poses

a great challenge to the robustness of the model. Automatic models such as nnUNet

and Deep Vessel Net use pre-processing and post-processing methods like patch-based

learning and Gaussian standardization. These methods perform well on challenging

datasets with good pre-processing. However, these segmentation methods lead to

aneurysm over-segmentation in clinical data. To improve clinical robustness, we propose

majority voting, which returns the prediction most like an aneurysm to find the exact

aneurysm localization. Then, self-refinement further corrects the aneurysm contour

details. Through our experiment, we found the necessity of the post-processing step in

our current framework setting because 1) it helps to mitigate the over-segmentation of

aneurysms due to the similarity of closed vessels in patch boundary to aneurysms in

morphology; 2) it avoids to use of larger patch sizes that would further aggregate the

data imbalance and result in performance degradation in aneurysm segmentation.

The fourth column in Fig. 2 top shows majority voting returns the maximum

prediction probability and effectively suppresses over-segmentation. The later self-

refinement makes the aneurysm details more accurate. To validate the robustness of

the pipeline, besides clinical data, we also evaluated our method on the CADA-AS

competition dataset (c.f. Table 6). Our segmentation method yielded results close to

the championship method [27]. For in silico clinical trials, the accuracy of aneurysm

localization is as important as Dice and Surface-to-surface error. Table 9 shows the

success rate of aneurysm prediction for each algorithm. Only cases with a surface-

to-surface error of less than 1 mm were defined as success cases, which means that

such cases have accurate localization and segmentation. In 223 clinical cases from four

different data centers, our method yielded accurate aneurysm prediction in 190 cases.

However, among other methods, the best is nnUNet which only got 173 success cases.

In addition, our method outperforms these comparative methods in terms of clinical

indicators such as aneurysm diameter and volume. The Bland–Altman plots in Fig. 15

demonstrate that our method yields a difference of -0.03 ± 0.54 mm and -4.4 ± 71.1

mm2 in aneurysm diameter and volume with ground truth, which is the smallest (best)

compared to other methods.

Although our method achieved improved performance for automatic segmentation

of vessels and aneurysms, due to the limitation of incomplete labeling of 3DRA datasets,

the wrongly labeled background pixels for missing vessels could interfere with the overall

training process. Thus, future work would involve leveraging semi-supervised schemes

to enhance the learning of unlabelled parts, e.g., relabelling the missing annotations

during the training process by introducing pseudo-labels. Meanwhile, since there are

still a large number of unlabelled 3DRA image data in our clinical dataset, the joint

training of the labeled 3DRA data and unlabeled data under a semi-supervised setting
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Table 9. Compare our method on aneurysm segmentation success rate (surface-to-

surface error smaller than 1 mm) with SOTA methods.

Methods Aneurysm segmentation success rate

U-Net++ 150 / 223

Dual Attention Net 152 / 223

DeepVesselNet 144 / 223

nnUNet 173 / 223

Ours 190 / 223

Figure 15. Bland–Altman plots: Mean and difference of aneurysm radius and volume

between ground-truth and predictions. Our method has a more compact distribution.

In terms of clinical criteria, our predictions are much closer to the ground truth.

is also a worthy direction of research.

6. Conclusion

This work proposed a 3D patch-based multi-class model for vessel and aneurysm seg-

mentation on 3DRA images. The proposed approach addressed class imbalance prob-

lems and inter-class interference problems in multi-class segmentation. Experimental

results showed that the proposed method outperformed several popular state-of-the-

art approaches for tackling similar challenges, such as U-Net++, DeepVesselNet, and

nnUNet. This work aims to alleviate class imbalance and inter-class interference, which

are common and challenging problems in cerebrovascular and aneurysm segmentation.

The deliberately designed network architectures such as the cascaded transformer, multi-

view block, and wide block as well as the proposed post-processing strategies of the ma-

jority voting and self-refinement contribute positively to mining vascular and aneurysm

features through the proposed end-to-end trainable network. The aforementioned issues

are also present in brain MRA and CTA when it comes to cerebrovascular and aneurysm

segmentation. The proposed model is generic and can be applied to mitigate the issues

of class imbalance and inter-class interference in brain MRA and CTA, promising to fa-
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cilitate accurate clinical analyses. The systematic evaluation of the model performance

on other modalities would be the scope of future work.
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