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Abstract

Background and Objective: Most of the existing disease prediction meth-
ods in the field of medical image processing fall into two classes, namely
image-to-category predictions and image-to-parameter predictions. Few works
have focused on image-to-image predictions. Different from multi-horizon
predictions in other fields, ophthalmologists prefer to show more confidence
in single-horizon predictions due to the low tolerance of predictive risk.

Methods: We propose a single-horizon disease evolution network (SHENet)
to predictively generate post-therapeutic SD-OCT images by inputting pre-
therapeutic SD-OCT images with neovascular age-related macular degener-
ation (nAMD). In SHENet, a feature encoder converts the input SD-OCT
images to deep features, then a graph evolution module predicts the process of
disease evolution in high-dimensional latent space and outputs the predicted
deep features, and lastly, feature decoder recovers the predicted deep features
to SD-OCT images. We further propose an evolution reinforcement module
to ensure the effectiveness of disease evolution learning and obtain realistic
SD-OCT images by adversarial training.

Results: SHENet is validated on 383 SD-OCT cubes of 22 nAMD patients
based on three well-designed schemes (P-0, P-1 and P-M) based on the
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quantitative and qualitative evaluations. Three metrics (PSNR, SSIM, 1-
LPIPS) are used here for quantitative evaluations. Compared with other
generative methods, the generative SD-OCT images of SHENet have the
highest image quality (P-0: 23.659, P-1: 23.875, P-M: 24.198) by PSNR.
Besides, SHENet achieves the best structure protection (P-0: 0.326, P-1:
0.337, P-M: 0.349) by SSIM and content prediction (P-0: 0.609, P-1: 0.626, P-
M: 0.642) by 1-LPIPS. Qualitative evaluations also demonstrate that SHENet
has a better visual effect than other methods.

Conclusions: SHENet can generate post-therapeutic SD-OCT images
with both high prediction performance and good image quality, which has
great potential to help ophthalmologists forecast the therapeutic effect of
nAMD.

Keywords:
nAMD, Generative Adversarial Network, Graph Neural Network, Predictive
Generation

1. Introduction

1.1. Application Background

Neovascular age-related macular degeneration (nAMD) is a main subtype
of AMD. As the intravitreal vascular endothelial growth factor (VEGF) level
elevates, choroidal neovasculars invade the avascular outer retina and severely
damage photoreceptors, resulting in rapid vision loss [I]. At present, anti-
VEGF injection is considered the preferred nAMD therapy [2]. Although
ophthalmologists always give anti-VEGF injections after nAMD diagnosis,
nAMD does not always respond satisfactorily to treatment. Besides, due to
the lack of uniform guidelines, it is difficult for ophthalmologists to predict
the short-term therapeutic response after anti-VEGF injection according to
their subjective experiences [3]. This results in huge economic pressures and
waste of resources [4]. Therefore, based on the known pre-therapeutic status
of nAMD at time point t;, predicting the post-therapeutic status of nAMD
at time point ty = t; + At can effectively forecast the efficacy of anti-VEGF
injection for each patient. This can promote better clinical decision making.

1.2. SD-OCT Imaging Brief

Spectral-domain optical coherence tomography (SD-OCT) is a noninvasive,
depth-resolved, high-resolution, and volumetric imaging technique. SD-OCT
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Figure 1: Clinical Application of Our Proposed Approach. (a) shows the workflow of
neovascular age-related macular degeneration (nAMD) therapy. Ophthalmologists diagnose
nAMD by SD-OCT imaging at time point ¢; and then give anti-VEGF injection for
treatment. Generally one month later (to = ¢1 + At), ophthalmologists can estimate the
therapy response by SD-OCT imaging again. Red line and green line indicate two retinal
layer surfaces, which will be used for data pre-processing (flatten and alignment). (b) shows
the clinical application of our proposed approach. Based on pre-processed SD-OCT images
at time point ¢;, our proposed approach predictively generates SD-OCT images at time
point to to help ophthalmologists forecast the therapy response of anti-VEGF injection,
and consequently make more reasonable treatment decisions.

has become a pivotal diagnostic tool to visualize and quantitatively evaluate
retinal morphological changes [5], including the diagnosis and tracing of
nAMD [6, [7]. Each SD-OCT imaging can produce 3D volumetric images, also
known as a cube. As shown in Fig. [I(a), we take Cirrus SD-OCT device
as the example, each SD-OCT cube contains 1024 x 512 x 128 voxels with
a corresponding trim size of 2mm x 6mm x 6mm on the retina. In a cube,
each slice along the vertical direction, with the size of 1024 x 512, is known
as a B-scan. A complete SD-OCT cube contains 128 continuous B-scans in
space.

1.3. Dilemma of Multi-horizon Predictions on Medical Images

Diseases-associated predictions are more restrictive than general predic-
tions. In the field of pattern recognition, multi-horizon predictions have been
widely applied for natural language predictions, action predictions, video pre-
dictions, traffic predictions and etc. Given Xy, .1y = [Xiy, Xigy -+, Xiy] € R
as the historical N observations, each observation is obtained at the differ-
ent time point and the time interval between any two adjacent time point
is uniform. The actual future M observations are formally expressed as

Kinirtnanr = Xinrrr Xingar > Xenyar] € R We expect multi-horizon pre-



dictions to learn a mapping function F : X, .+, — thv+1:tN+M to obtain the
prediction result XtNJrl:tNJrM as close as Xy .y, as shown in Fig. (a).
However, when applying multi-horizon predictions on medical images, several
actual challenges raise:

e Obtaining long-series observations from the same patient is intractable
in practical clinical scenes, and it also is necessary to make effective
predictions for a new patient with only one observation at the current
time point.

e For serial medical data, given any two different time points t;,t; €
(t9, ty], time intervals from adjacent time points may be different, namely
ti — ti—l §é tj — tj—l-

e Most medical observations generate 3D data and it is expensive for
GPUs to learn from serial 3D data.

e Therapeutic intervention dependent on medicine injection at a random
time point is a key factor that cannot be ignored for diseases-associated
predictions, and most medicine injection treatments only work for a
short period of time.

e [t is well-known that the prediction accuracy decreases over time and
risk tolerance on medical predictions is lower than other predictions,
so clinicians always pay more confidence on the short horizon than the
longer horizon.

These difficulties make it difficult for multi-horizon predictions to be
really applied to medical images, thus learning a single-horizon prediction for
medical images is more practical and realistic. Given one historical observation
X4, € R at time point ¢;, single-horizon prediction learns a mapping function

F Xy, = iti ., to obtain the prediction result at time point #;,1, as shown

in Fig. 2(b).
1.4. Target of Our Work

Nowadays, most existing disease prediction methods in the field of medical
image processing fall into two classes, namely classification-based image-to-
category (I2C) predictions, and regression-based image-to-parameter (I12P)
predictions. Few works have focused on generation-based image-to-image (12I)
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Figure 2: Prediction Visualization. (a) is multi-horizon prediction, (b) is single-horizon
prediction.

predictions, even though generative adversarial networks (GANs) have been
widely used for modality transformation between medical images from different
imaging devices. The aim of post-therapeutic prediction is to generate an
image that explains how the anatomical appearance changes after treatment.
We consider that the predictive post-therapeutic SD-OCT images would
enable a better understanding of nAMD and clinical decision-making by
presenting a visual post-therapeutic status of nAMD. According to the above,
the target of our work is defined as:

Given a serial SD-OCT cubes with fixed time interval At, writing as
X =[X4,, X4y, -+, Xiy o] € R, and any time point ¢; can be represented as
ti =t + (i —1)At, i € [1, N + M]. Anti-VEGF injection is given at each
time point. For any SD-OCT cube X;,, we hope to learn a mapping function
F Xy, — )Nitl. ., to predictively generate )Nitl. ., as close as X, .

However, learning the mapping function F directly based on a 3D SD-
OCT cube is difficult and cost-consuming. Thus, for the SD-OCT cube
X, = [z}, x}, -, 22, where 2] is j-th B-scan in X,,, we learn the 2D
mapping function Fyp : aci — fi:{+ .- JFap is carried out 128 times until the
SD-OCT cube is predicted completely.

1.5. Contributions

In this paper, we present a Single-Horizon disease Evolution Network
(SHENet) to predictively generate the post-therapeutic SD-OCT images based
on pre-therapeutic SD-OCT images with nAMD. SHENet can help forecast
the short-term response of anti-VEGF injection for individual nAMD patients.
The main contributions in this paper are summarized as:

e We explore the possibility of predictively generating post-therapeutic



SD-OCT images based on pre-therapeutic SD-OCT images with nAMD,
and further propose SHENet to solve this problem.

e Graph evolution module (GEM) is proposed to imprison the process
of disease evolution in the high-dimensional latent space by graph
representation learning.

e Evaluation reinforcement module (ERM) is proposed to reinforce the
disease evolution process by combining an additional reconstruction
generator and contrastive learning.

e We design targeted experimental schemes according to actual clinical
realities, and the results demonstrate that SHENet has great potential
to generate post-therapeutic SD-OCT images with both high prediction
performance and good image quality.

2. Related Work
2.1. Predictions on AMD

In clinical scenarios, several prediction requirements have been raised
around AMD by ophthalmologists. In present, there are no uniform guidelines
to be helpful for making predictions and ophthalmologists rely only on their
own rich clinical experiences. Thus, ophthalmologists warrant the need for
objective outcomes of subjective predictions. AMD typically develops from
an early to an advanced form and advanced AMD is difficult to be cured
effectively. When AMD is in its early stage, ophthalmologists predict the risk
of progression to advanced AMD within the future short term in order to
adapt therapies, recommendations, and follow-up frequency [8 9} 10}, 11, 12].
For advanced nAMD), ophthalmologists predict best-corrected visual acuity
(BCVA) outcomes in patients receiving standard therapy [13], 14} [15]. For
geographic atrophy (GA), as non-neovascular advanced AMD, there is a
lack of effective treatments for retinal areas that have progressed to GA.
But predicting the GA progression [16, 17, 18, 19, 20], 21] could allow for a
better understanding of the pathogenesis and forewarn preventive treatment
to normal retinal areas that are at high risk of developing GA in the future.
Besides, several other predictions also reveal clinical needs. Bogunovic et al.
[22] predicted low and high anti-VEGF injection requirements based on sets
of SD-OCT images acquired during the initiation phase in nAMD. Liu et al.
[23] and Lee et al. [24] exploringly generated individualized post-therapeutic
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SD-OCT images that could predict the short-term response of anti-VEGF
injection for nAMD based on pre-therapeutic images using Pix2Pix. Forshaw
et al. [25] predicted the visual gain from cataract surgery when the main
cause of vision loss is nAMD. Pham et al. [26] generated future fundus images
for early age-related macular degeneration based on generative adversarial
networks.

2.2. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [27] have become one of the
widely leveraged techniques for generating images that look like the real
thing. Traditional L1 or L2 supervision often results in blurred images
[28], but GANs introduce an additional discriminator to play a min-max
game with the generator that enforces the generator to output more realistic
images. The discriminator is mainly used to estimate the divergence difference
between generated fake images and real images. Different adversarial losses
estimate different divergences between Wasserstein divergence distribution
[29] and f-divergence family distribution [30]. If target domains own multiple
distributions, conditional GAN (cGAN) [31] uses conditional labels to guide
the generator to produce the images by fitting the specified distribution. For
example, Yoo et al. [32] proposed a postoperative appearance prediction
model for orbital decompression surgery for thyroid ophthalmopathy using a
conditional GAN. GANs are also used for image-to-image (I2I) translation,
in which pixel-level losses or feature-level losses are embedded to ensure the
quality and stability of the generated image [26], B3, [34]. Besides, literatures
[35], 36] explored the impact of discriminator architecture on GANs.

3. Methods

This study was approved by the ethic committee of the First Affiliated
Hospital with Nanjing Medical University.

3.1. Pre-processing: Voxel-wise Serial Alignment

The random deviation of rotation angle and displacement among SD-OCT
cubes at different time points caused by human operations cannot be learned,
which further limits the I2I prediction. In other words, for two original
SD-OCT cubes from the same patient captured at different time points, the
B-scan with the same index in two cubes may not correspond to the same
anatomical tissue. Thus, we perform voxel-wise serial alignment, including



image flattening in vertical direction and image alignment in horizontal-axial
directions, for all SD-OCT cubes before running SHENet. In this way, all
SD-OCT cubes at different time points are aligned in the 3D space. The
aligned SD-OCT cube can be seen in Fig. [I{b).

Image Flattening in Vertical Direction. We first obtain the locations
of Bruch’s membrance (BM) of all B-scans by layer segmentation approach
[37], and then all B-scans are flattened based on BM. Finally, we crop the
B-scan restricted to the region from 0.75mm above BM to 0.25mm below BM.
In this processing, negligible vitreum regions and sclera regions are removed as
much as possible. Image flattening also reduces the size of the input SD-OCT
images to alleviate the memory pressure of hardware.

Image Alignment on Horizontal-Axial Directions. We first generate
the 2D vessel fundus images of each SD-OCT cube by restricting the projection
region between inner segments/outer segments (IS/OS) and BM. The vessel
fundus images are aligned using a scale-invariant feature transform (SIFT)
flow method to obtain the transformation matrixes. Lastly, the transformation
matrixes are applied to horizontal-axial directions of SD-OCT cubes to obtain
the aligned SD-OCT cubes.

3.2. Querview of SHENet

Pix2Pix [38] has been a great success to apply conditional GAN (cGAN)
to supervised 121 translation. It regards input images as additional conditions
to learn an I2I mapping, consequently producing specified output images.
SHENet further extends Pix2Pix for our nAMD prediction task and its
overview is illustrated in Fig. [3] In terms of model architecture, SHENet
consists of:

(1) Prediction Generator G? is the core of SHENet, including a feature
encoder, a graph evolution module (GEM), and a feature decoder, which
can predictively generate post-therapeutic SD-OCT images by inputting
pre-therapeutic SD-OCT images with nAMD.

(2) Reconstruction Generator G” is an auxiliary generator in the
training process and will be removed in the model inference stage. G" removes
GEM from GP and utilizes a reconstruction task to help GP imprison the
process of disease evolution in the high-dimensional latent space, and further
to distill the function of feature encoder and decoder.

(3) Evolution Reinforcement Module (ERM) reinforces the process
of disease evolution by working with G" based on contrastive learning.
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Figure 3: Overview of SHENet in Training Stage. SHENet consists of a prediction
generator GP, a reconstruction generator G”, an evolution reinforcement module (ERM), a

quality discriminator D? and a pair discriminator DP. A little piece of B-scans XE;AS] € Xy,
as multi-channel inputs are sent to GP to predictively generate 5{2, meanwhile a little

piece of B-scans X,[SJ;ASJ € X, as multi-channel inputs are sent to G" to reconstruct 5{2.
ERM reinforces the disease evolution in the high-dimensional latent space. D? ensures the
image quality of ], and Z, is realistic, and G” decides whether Z;, and %, are paired
with w{l in terms of pathological characterization that reflects therapy response. In the
inference stage of SHENet, only prediction generator GP remains and other all components
are removed.

(4) Quality Discriminator D? ensures that the predicted and recon-
structed images look realistic.

(5) Pair Discriminator D? determines whether predicted and recon-
structed images are paired with input images in terms of pathological charac-
terization that reflects therapy response.

3.2.1. Motivation: Why learn the disease evolution in the high-
dimensional latent space?

Liu et al. [23] and Lee et al. [24] have preliminarily used Pix2Pix to
generate post-therapeutic SD-OCT images and show the feasibility, but
learning a pixel-to-pixel prediction on SD-OCT images seems not to be a
delicate work. Severe speckle noise in SD-OCT images and the imbalanced
proportion of foreground pixels (i.e. nAMD) relative to the background
pixels (i.e. non-nAMD) degenerate the pixel-to-pixel prediction performance.
Compared with Pix2Pix, SHENet imprisons the process of disease evolution



in the high-dimensional latent space:

Generqtor ~j

Pix2Pix :x}, ~— T,

.  peng ~ . (1)
SHENet : ], 2% 51 U< f, 25 &l

where f{l is the encoding features of mfl and }12 is the predicted features of
a:{l. The high-dimensional features are more condensed and effective, because
the invalid background and noise information are removed, and distinct disease
information is retained. Therefore, we consider that learning the process of
disease evolution after treatment in the high-dimensional latent space is more
reasonable than performing a pixel-to-pixel prediction.

3.2.2. Multiple B-scans As Model Input.

Given an SD-OCT cube at time point ¢ as Xy, = &, xf, -+ ,2;*%] and
aligned SD-OCT cube at time point to = t1 + At as Xy, = [z, @7, -+, ;2]
In general, we should train a 2D mapping JF»p to predictively generate fﬁ{Q as
close as real a:{Q:

Fop : Q?gl — 5/3%2 (2)

However, in SD-OCT images, zc{l with similar pathological characterization
may develop to m{Q with different pathological characterization, resulting
in difficult model convergence and random prediction results. For example,
for patient-1, a healthy SD-OCT B-scan at time point t; evolves to an
SD-OCT B-scan with nAMD at time point t,. However, for patient-2, a
healthy SD-OCT B-scan at time point ¢; may remain its healthy status
at time point ¢5. Thus, to speed up the model convergence and improve
the model robustness, we choose to stack a little piece of B-scans of Xy, as

XE{;AS] = [w{l_ As L ,m{l, e ,:cif 2%) € X,, as multi-channel inputs to predict
x):
A »
Fop : XU 5 &) (3)

Fop slides on each B-scan of X, until itQ is predicted completely.

3.3. Prediction Generator GP of SHENet

The prediction generator G of SHENet consists of three modules: feature
encoder (Gg), graph evolution module (GEM), and feature decoder (Gp). The
pre-therapeutic SD-OCT images are mapped to high-dimensional latent space

10
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Figure 4: Details of Prediction Generator GP. (a) is feature encoder Gg consisting of
several customized encoding blocks. (b) is channel attention block (CAB), where GAP
indicates global average pooling. (c) is graph evolution module (GEM) that stacks three
multi-head GAT modules. (d) is feature decoder Gp consisting of several customized
decoding blocks.

by Gg, then GEM predicts the process of disease evolution after treatment,
and finally, Gp recovers the predicted features to post-therapeutic SD-OCT
images.

Feature Encoder (Gg). Fig. [{fa) illustrates the architecture of feature
encoder G that stacks several encoding blocks (EncBlock) and a mapping
layer. Each EncBlock consists of two 3x3 convolutional layers with ReLLU
activation, one channel attention block (CAB) [39], and one max-pooling
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layer for down-sampling. CAB (Fig. [|(b)) improves the quality of features
by explicitly modeling the interdependencies between the channels of its
convolutional features. Through CAB, informative features are selectively
emphasized and less useful ones are suppressed.

Graph Evolution Module (GEM). Given the encoding features f7, €
RN xw'xd’ by Gg, where P = h' x w' is feature numbers and d’ is feature
dimension. We consider the evolution of each feature should be related to
other features. Intuitively, a series of convolution layers or a linear regression
is easier to implement to predict the change in the feature level. However, a
series of convolution layers or a linear regression defaults that all other features
contribute equally to the targeted feature. In fact, the contributions of all
features are unequal due to their different semantic information. Graph neural
networks can model the contributions of all features automatically, which
is more reasonable than a series of convolution layers or a linear regression.
Let each feature be the vertex of the graph, and we can represent f{l as a
fully-connected undirected graph R = (V, &), where V is vertex set and £ is
edge set. Further given the adjacency matrix A, the diagonal degree matrix
D and the identity matrix I, the relation of features can be extracted by the
following formula:

H"' = g(AH'WY,A=D :(A+I)D 2 (4)
where W' € Rén*dout ig the learnable weight, and o is the Mish function
[40]. H' € RP*dn H'™ ¢ RP*dout are the input features and the updated
features at [-th layer. Intuitively, for p-th vertex V,, its all neighbors contribute
unequally to the evolution of V,. To model this, we introduce the multi-
head GAT [41] to explicitly consider the importance of the neighbors. Take

independent GAT as an example, we calculate the attentive score -, of the
vertex pair (h,, h,):

_ exp(LReLU(a" [Wh,, Wh,]))
T S en, cap(LReLU(aT [Why, W hy]))

()

where N, is the neighbors of p-th vertex in the graph, and [-] is a concatenation
operation. W € Rut*din indicates a linear mapping and o € R??ut indicates
a single-layer fully-connected layer. LReL U is the nonlinear activation. Then,
we compute the average of multi-head GAT for the output of vertex V,:

G
hy=o(5 > S 4, Wrh) (©

g=1 Zq@j\[i

12



where G=5 is the number of heads. Similarly, we repeat the GAT computation
on each vertex to obtain the complete output. Considering the powerful ability
of graph neural networks for information inference, GEM is only composed of
3 multi-head GATs with the channel numbers 1024, 1024, 1024. The overview
of GEM is shown in Fig. [4](c).

Feature Decoder (Gp). Fig. [4(d) illustrates the architecture of feature
decoder Gp that stacks several decoding blocks (DecBlock) and a mapping
layer. Each DecBlock consists of one de-convolution layer with ReLLU activa-
tion, and two convolutional layers with ReLU activation.

3.4. Evolution Reinforcement Module (ERM)

To reinforce the process of disease evolution, we introduce reconstruction
generator G* that removes GEM from GP to reconstruct @, by inputting
XP;AS}:

As] G GEM 3] Gp ~j
G X 5 L5 fL -

. lisAs] 9B, pj 9p, —j
g . th H t2 H .’BtQ

Prediction generator GP and reconstruction generator G* share feature encoder
Gk and feature decoder Gp. We use the project head h(-) [42] to map f7,,

};, {2 to ng E{Q, z{z for evolution reinforcement learning:
z=h(f)=WEB(ReLUWW . GAP(f))) (8)

where W, W® are weight matrixes, GAP(-) indicates global average
pooling. We hope predicted zj, and real z{, should be as similar as possible,

while predicted zj, and real z] should be different. Thus, we build the
evolution reinforcement learning based on contrastive loss:

exp(S (ztgﬂzt2>/7—)
€.§L’p(S (zt27 zt1)/T)
where 7=1 is the temperature factor, Sim(-) is the cosine similarity metric.

ERM also further distills the function of the feature encoder and feature
decoder.

Lrrm(GP,G") = —log (9)
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3.5. Discriminators of SHENet

For the predictively generated %{2 and the reconstructed 5{2, we firstly
use a quality discriminator D? to ensure their image quality is realistic:

DY(z]) — T/F, D'(z],) = T/F (10)

Furthermore, we consider that pathological manifestation of 5:{2 and 5{2
should show the response of m{l after anti-VEGF injection. In other words,
5{2 and E{Q should be paired with zc{l. Thus we also use a pair discriminator
DP to make the decision:

Dr(z],x]) — T/F, D'(z,,x])—T/F (11)
In SHENet, both D? and DP follow the popular PatchGAN [3§].

3.6. Adversarial Training

In the training process, we use L;; measures the L1 distance between
output images and ground truth:

L11(G7) = E[||&], — g?(XTAN)|1,]

. " (12)
L1(") = E[l|&], — ¢" (X)) ]

A pair discriminator D? makes the decision whether (x],, 7 ) and (%], =, )
are paired:

Lany(G7, D) = EllogD?(a], , 2,)] + Ellog(1 — DP(a], , 67 (X))

S : A (13)
Laan(G,D?) = EllogD" (i, @],)] + Ellog(1 — D’ (a,. G (X};*)))]
A quality discriminator D? ensures EEi , and f{z are realistic:
Laany(6", D) = EllogD*(a3,)] + Ellog1 — DG X5 ™)) |

Lcang(G", DY) = EllogD"(x},)] + Ellog(1 — DU(G" (X))

We combine all losses together and the complete optimization can be
represented as:

G" =arg min max|[Leany(G", D¥) + Laany(G", D7)

+ Leang(GP, D) + Laang(G", DY) (15)
+ AMLri(G°) + L11(G")) + uLerm(GP,G7)]
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4. Results

4.1. Data Acquisition

According to clinical research, the therapeutic effect of anti-VEGF injec-
tion for nAMD lasts about one month, so nAMD patients treated should be
followed up one month later to evaluate the therapeutic response of nAMD.
Then, ophthalmologists can make the decision on whether further treatment
is needed. However, to the best of our knowledge, there are no large-scale,
public, and annotated SD-OCT datasets that can be acquired for our model
validation due to the differences in imaging protocols, privacy problems, and
lack of medical integration. This is also a common problem in the field of
medical image processing.

The experimental data includes 46208 paired SD-OCT images obtained
from 383 SD-OCT cubes of 22 nAMD patients. Only one eye per nAMD
patient is included in the dataset, namely 22 eyes are included. Each patient
contains about 17 serial SD-OCT cubes captured at different time points.
During the SD-OCT imaging performed once a month, ophthalmologists gave
anti-VEGF injections for nAMD treatment. The time interval between any
adjacent time points is about one month, that is to say, the predictive single
horizon is fixed to one month. These SD-OCT cubes were captured by Cirrus
SD-OCT device Carl Zeiss Meditec, Inc., Dublin, CA. The size of an SD-OCT
cube is 1024 x 512 x 128. Detailed attribute descriptions are presented in
Table [

Table 1: Detailed attribute descriptions of materials.

Attributes Values

Cube Number 383

Patient Number 22

Time Range Jan 2012-Dec 2015

Time Interval 1 month

Patient Age Avg: 70 years (range: 45-84 years)
Patient Gender 17 males, 5 females

Type nAMD

Volume Avg: 0.8024 mm? (0.0133-7.1147 mm?)
SD-OCT Device Carl Zeiss Meditec, Inc., Dublin, CA
Cube Size 1024 x512x128

Trim Size 2mm x 6mm X 6mm
Injection anti-VEGF
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4.2. Evaluation & Comparison

For the predictively generated post-therapeutic SD-OCT images, qualita-
tive evaluation using human subjective judgment is the most straightforward
and effective way to verify the prediction performance of SHENet. Besides, we
also use three metrics, peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) and learned perceptual image patch similarity (LPIPS), to evaluate
the prediction performance quantitatively. These three metrics have been
previously used for the evaluation of image generation [43]. PSNR measures
the image quality and higher PSNR means less distortion. SSIM measures
the structure similarity and higher SSIM means higher structure similarity.
LPIPS measures the similarity of deep visual features and lower LPIPS means
higher feature similarity. To make LPIPS keep the consistency with PSNR
and SSIM, namely higher value indicates better performance, here we use
1-LPIPLS to replace LPIPS.

To highlight the advantages of SHENet in terms of 12I prediction per-
formance, we choose four GANs-based methods for competitive comparison,
namely Pix2Pix [38], Pix2PixHD [44], Fundus2Angio [45], Att2Angio [40].
Pix2Pix and Pix2PixHD have become popular baselines and are widely used
for image generation. Fundus2Angio and Att2Angio are the latest GANs-
based methods for modality transformation in the field of medical image
processing.

tyam ty t; 3 tyim ty, t; U3 tyim
PN

4 L 3
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O3 O G0 O 00050 00 © 0050505005050
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Figure 5: Experimental Designs on P-0 evaluation, P-1 evaluation and P-M evaluation.
Each row denotes the serial SD-OCT observations of a nAMD patient and the time interval
is one month.

4.3. Experimental Designs

In order to conform to real clinical application scenes, we design our
experiments from three sub-evaluations:
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P-0 Evaluation. For the new nAMD patients that only have one SD-
OCT imaging at time point t;, we want to predict post-therapeutic SD-OCT
images at time point t5. Thus, the SD-OCT images from all other patients are
used for training SHENet. We use five-fold cross-validation until all patients
are tested, as shown in Fig. [5fa).

P-1 Evaluation. For the nAMD patients that have two SD-OCT imaging
at time points t; and 9, we would like to predict post-therapeutic SD-OCT
images at time point t3. Thus, we transfer the model parameters from
P-0 evaluation and fine-tune SHENet only using (X;,, X;,). In the model
inference stage, we take X;, as model input to predictively generate X;,. We
use five-fold cross-validation until all patients are tested, as shown in Fig.
Blb).

P-M Evaluation. For the nAMD patients that have owned multiple
regular SD-OCT imaging, we would like to predict consequent post-therapeutic
SD-OCT images. Thus, we remain the last two SD-OCT cubes of all patients
for model validation and the remaining SD-OCT cubes are used for training
model, as shown in Fig. [f(c).

4.4. Implementation Details

The experiment is constructed in a hardware condition with Intel Xeon
CPU, one GeForce RTX 3090 GPU and 128 GB RAM, and a software
condition with Python3.5 and Pytorch.

For the input multiple B-scans, we choose As = 3 and zero-padding
operation is used if j — As < 0 or j + As > 128, thus the model input is a
three-channel SD-OCT image. The number of encoding blocks and decoding
blocks is 5. The output dimensions of 5 encoding blocks are {128, 256, 512,
1024, 2048} respectively. The output feature size of the feature encoder is
16 x 16 x 2048, which means the vertex number of a fully-connected graph
in GEM is 16 x 16. In the loss function, A = 100 and p = 10 balance the
weights among GAN losses, L1 losses and contrastive loss. Flip and rotation
operations are used here for data augmentation.

Adam optimizer with initial learning rate of 0.0001 and weight decay of
0.1 is chosen for model optimization. The batch-size is set to 2. SHENet was
trained for 100 epochs and the training was properly completed.

4.5. Qualitative Fvaluation.

We qualitatively compare our SHENet with competing methods by visual-
izing the examples from two different nAMD patients based on P-0, P-1 and
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Figure 6: Qualitative Comparison by visualizing the examples from two different nAMD
patients. We respectively input a little piece of B-scans Xg 23] 40 Pix2Pix [38], Pix2PixHD

[44], Fundus2Angio [45], Att2Angio [46] and the proposed SHENet to predictively generate
x], based on three experimental designs (P-0, P-1 and P-M), and further evaluate them

with ground truth 33{2.

P-M evaluations, as shown in Fig. [6] In terms of image quality, benefiting
from adversarial training, all methods can produce clear and unblurred SD-
OCT images. Besides, SHENet can stably maintain the structural integrity of
the retina to achieve the better visual effects and actually predict the status
of nAMD one month later after anti-VEGF injections.
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Table 2: Quantitative Comparison with Other Competing Methods, based on
three experimental designs.

Method P-0 P-1 P-M
erhods PSNR. SSIM 1-LPIPS|PSNR SSIM 1-LPIPS|PSNR SSIM 1-LPIPS
Pix2Pix [38] 21.114 0.273  0.552 [21.272 0.276 0.559 |21.481 0.284 0.568

Pix2PixHD [44] 21.415 0.286 0.581 |21.525 0.290 0.585 |[21.764 0.299 0.591
Fundus2Angio [45]|21.333 0.288 0.569 [21.471 0.293 0.568 [21.679 0.301 0.576
Att2Angio [46] 21.466 0.294 0.589 |21.716 0.311 0.591 |22.149 0.321 0.607
SHENet (Ours) 23.659 0.326 0.609 |23.875 0.337 0.626 |24.198 0.349 0.642

4.6. Quantitative Evaluation.

We quantitatively evaluate the prediction performance based on P-0, P-1
and P-M evaluations using PSNR, SSIM and 1-LPIPS metrics, as shown in
Table2] For P-0 and P-1 evaluations, we calculate the average of five-fold cross-
validation as the final results. Overall, SHENet obtains consistently superior
results than competing methods on three experimental designs. Among three
experimental designs, SHENet achieves the best prediction performance on
P-M evaluation (PSNR: 24.198, SSIM: 0.349, 1-LPIPS: 0.642), followed by P-1
evaluation (PSNR: 23.875, SSIM: 0.337, 1-LPIPS: 0.626), and P-0 evaluation
(PSNR: 23.659, SSIM: 0.326, 1-LPIPS: 0.609) has the worst results, which
shows the consistency with qualitative evaluation in Fig. [ That is because
the difference among patients is significantly greater than that among serial
SD-OCT observations from the same patient. We consider that the gap will
narrow by further collecting more samples from more patients.

4.7. Ablation Analysis

Evaluation of Hyper-parameter Values. We analyze the influence
of hyper-parameters A and g in loss function with the experiment. We first
fix p to be 1 and vary A from 10 to 190 with interval 10. As shown in Fig.
[(a), 1-LPIPS metrics of three evaluations are consistently increasing when
rising the of A from 10 to 100 and consistently decreasing when further rising
A. We then fix the value of A to 100 and vary u from 1 to 19 with interval
1. As shown in Fig. [7[(b), the performance of SHENet achieves the highest
values when p = 10.

Evaluation of Model Inputs. In terms of model input, we investigate
the difference between single B-scan and multiple B-scans, and the quantitative
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Figure 7: Hyper-parameter Tuning. Disease evolution prediction 1-LPIPS values with
different hyper-parameters A and p based on three experimental designs.

Table 3: Results Comparison with Different Inputs (single B-scan and multiple
B-scans), based on three experimental designs.

Model Inputs PSNR SSIM 1-LPIPS
P-0 Single B-scan 17.542 0.242 0.513
) Multiple B-scans 23.659 0.326 0.609
P-1 Single B-scan 17.567 0.244 0.515
Multiple B-scans 23.875 0.337 0.626
P-M Single B-scan 17.585 0.250 0.521
Multiple B-scans 24.198 0.349 0.642

comparisons are recorded in Table [3] We find that the prediction results
using multiple B-scans as model input demonstrate significant improvements
to those using a single B-scan as model input on three experimental designs.

Table 4: Results Comparison by Stacking GEM, G" and ERM One by One, based
on three experimental designs.

P-0 P-1 P-M
PSNR SSIM 1-LPIPS|PSNR SSIM 1-LPIPS|PSNR SSIM 1-LPIPS

21.188 0.276 0.559 [21.277 0.281 0.563 |21.485 0.288 0.574
21.842 0.285 0.571 [21.943 0.289 0.577 |22.197 0.295 0.588
22.648 0.292 0.588 [22.791 0.298 0.594 |23.016 0.309 0.611
23.659 0.326 0.609 [23.875 0.337 0.626 [24.198 0.349 0.642

GEM ¢ ERM

LU X
< < X X
<X X X
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Evaluation of Model Architecture. In the training process, we build
our single-horizon disease evolution in the high-dimensional latent space based
on the cooperation of GEM, G" and ERM. We investigate the impact of three
components by stacking them one by one. As shown in Table [d, SHENet
achieves better results than others when considering these three components
jointly. This evidences that SHENet effectively imprisons the process of
disease evolution in GEM and further reinforces the process by G"+ERM.
Therefore, adopting all three can improve prediction performance.

Evaluation of Discriminator. To verify the relevance of two discrim-
inators (D7, DP), we separately analyze the prediction results of SHENet
when one of them is reserved. When only using one of the two, quantitative
metrics in Table |5 show performance degradation. Besides, we also observe
that single DP performs better than single D?, as DP can also control the
image quality to a certain extent. Thus, it shows the necessity to use two
independent discriminators to respectively control the image quality and the
pathological characterization.

Table 5: Results Comparison using DP, D9 or the both, based on three experimental
designs.

D1 Do P-0 P-1 P-M

PSNR SSIM 1-LPIPS|PSNR SSIM 1-LPIPS|PSNR SSIM 1-LPIPS
V% 23574 0320 0602 |23.783 0.325 0.618 |24.088 0.337 0.633
x /23613 0322 0607 |23.820 0331 0622 |24.165 0.346 0.639
vV V/ |23.659 0326 0.609 |23.875 0.337 0.626 |24.198 0.349 0.642

5. Discussion

In this paper, according to the actual clinical requirement, we explore
the possibility of predictively generating post-therapeutic SD-OCT images
based on pre-therapeutic SD-OCT images with nAMD, and propose a single-
horizon disease evolution network (SHENet) to solve it. SHENet learns the
process of disease evolution in the high-dimensional latent space, rather than
performing pixel-to-pixel prediction. This has the advantage of eliminating
the influence of speckle noise and redundant background context on the
prediction. Considering several inherent characteristics of medical images
different from other modal data, we choose single-horizon prediction rather
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than multi-horizon prediction to simplify the problem. In other words, we
only predictively generate post-therapeutic SD-OCT images with a one-month
time interval, and would not continue to predict the nAMD status of the
third month.

From Fig. [0}, we can observe structural damage of the retina from compet-
ing methods, but SHENet can stably maintain the structural integrity of the
retina to achieve a better visual effect. This benefits from two improvements
to the proposed model: 1) SHENet uses two discriminators to respectively
manage image quality and pathological characterization, but other competing
methods only use one discriminator; 2) SHENet imprisons the process of dis-
ease evolution in the high-dimensional latent space, which makes the feature
encoder and feature decoder concentrate on the restoration of image details.

Furthermore, we should pay more attention to the correctness of predictive
generation of nAMD, namely whether SHENet can actually predict the status
of nAMD one month later after anti-VEGF injection. Generally speaking,
reduction of nAMD volume is the best indicator of therapeutic response,
but texture change and improvement of additional diseases also need to be
taken into account. In example-1 in Fig. [ by comparing the pre-therapeutic
SD-OCT image with the post-therapeutic ground truth, nAMD is significantly
reduced in size, which shows an excellent therapeutic response. In example-2
in Fig. [6] although the nAMD volume does not change significantly, the
thickness of the retina becomes thinner, which still indicates an effective
treatment as additional diseases are improved. By qualitative comparisons,
the predicted visual nAMD of SHENet is closer to ground truth than that
of competing methods, demonstrating that SHENet owns a more powerful
ability to learn the disease evolution. We also visualize the latent space of
Pix2Pix and our SHENet from sequential observations for further comparison.
As observed in Fig. |8 the image features generated by our SHENet are more
high-density than those generated by Pix2Pix. That is because our designed
GEM and ERM can filter out disease-unrelated information effectively. High-
quality image features can provide a good basis for disease evolution learning
in the latent space.

From Tables 23], we also observe lower PSNR & SSIM metrics than
1-LPIPS metric, and we consider this is caused by inherent severe speckle
noise of SD-OCT images. Although denoising techniques can reduce the
impact of speckle noise, the image quality would also become more blurry
and the image details would be lost. Considering that the feature encoder
owns the denoising ability, we do not apply any denoising technique during
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Figure 8: Visualization of latent space of Pix2Pix method and our SHENet from sequential
observations.

the pre-processing, avoiding an overly prediction model. In SHENet, to make
the predicted images look realistic, the feature decoder adds random speckle
noise to the generated SD-OCT images. PSNR & SSIM metrics are evaluated
based on the whole SD-OCT images, thus speckle noise can result in low
quantitative values, but 1-LPIPS metric is evaluated based on the deep visual
features that show higher values than PSNR & SSIM.

To explore the influence of the number of historical observations on
predictive results, we conducted P-0 evaluation, P-1 evaluation and P-M
evaluation in our experiments. These three evaluations used zero, one and
multiple historical observations respectively from the testing patients for
model training. From Table [2, we can find that all methods achieve the
best results on P-M evaluation and have the worst results on P-0 evaluation,
demonstrating that more historical observations of the same patients can
improve their own prediction performance. Although our dataset contains
only 22 nAMD patients, each patient contains about 17 sequential SD-OCT
cubes captured at different time points with regular medicine injections. A
total of 46208 SD-OCT image pairs are used for our model validation. Besides,
common data augmentation operations (rotation and horizontal flipping) are
used. Therefore, our method does not occur the overfitting phenomenon,
which could be observed from the results of P-0 evaluation. In the future, we
will validate our method on other medical images, such as fundus photos for
AMD and OCT for DME.

Fig. [9 shows more cases of predicted post-therapeutic SD-OCT images
from P-0 evaluation, where green dotted box denotes the best results and
crimson dotted box denotes the worst results. Overall, SHENet has the
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Figure 9: Cases of predicted post-therapeutic SD-OCT images from P-0 evaluation, where
(1-4) show the best results and (5-8) show the worst results.

ability to predict the change trend of nAMD status with high image quality,
but several flaws still appear. First, SHENet fails to predict the dramatic
texture change of nAMD precisely, as shown in Fig. @(5) Second, due to
individual differences, SHENet is hard to model the personalized change rate
of nAMD after medicine injection. For example, SHENet overestimates the
effect of medicine injection in Figs. [9(6-7) and underestimates the effect
of medicine injection in Fig. [9(8). We consider the main reason is the
limited number of patients, leading to SHENet cannot learn comprehensive
information due to the complexity of nAMD. We believe that SHENet can
be improved significantly after learning from more nAMD patients, and we
will also continually validate SHENet by collecting more data in the future.

Although SHENet can produce high-quality SD-OCT images to visually
reflect the status of nAMD one month later after anti-VEGF injection, it also
has limitations. First, SD-OCT cubes at all time points need to be aligned
by manual or automated alignment methods, since SHENet cannot learn the
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random deviations caused by man-made operations. Second, the time interval
between the model input and ground truth must be consistent in the training
process. Thus, SHENet can only predict the nAMD status after a single
horizon and is incapable to predict longer horizons. Third, each time point
for model training must ensure the same treatment intervention. SHENet
can also be extended to train on the serial SD-OCT cubes without treatment
intervention for predicting the single-horizon progression of nAMD.
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