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Abstract

Background and Objective – In the field of medical image analysis, achieving high accuracy is not enough; ensuring well-calibrated
predictions is also crucial. Confidence scores of a deep neural network play a pivotal role in explainability by providing insights into
the model’s certainty, identifying cases that require attention, and establishing trust in its predictions. Consequently, the significance
of a well-calibrated model becomes paramount in the medical imaging domain, where accurate and reliable predictions are of utmost
importance. While there has been a significant effort towards training modern deep neural networks to achieve high accuracy on
medical imaging tasks, model calibration and factors that affect it remain under-explored.

Methods – To address this, we conducted a comprehensive empirical study that explores model performance and calibration under
different training regimes. We considered fully supervised training, which is the prevailing approach in the community, as well as
rotation-based self-supervised method with and without transfer learning, across various datasets and architecture sizes. Multiple
calibration metrics were employed to gain a holistic understanding of model calibration.

Results – Our study reveals that factors such as weight distributions and the similarity of learned representations correlate with the
calibration trends observed in the models. Notably, models trained using rotation-based self-supervised pretrained regime exhibit
significantly better calibration while achieving comparable or even superior performance compared to fully supervised models across
different medical imaging datasets.

Conclusion – These findings shed light on the importance of model calibration in medical image analysis and highlight the benefits
of incorporating self-supervised learning approach to improve both performance and calibration.

Keywords: Calibration, deep neural network, fully-supervised, self-supervised, transfer learning, medical imaging.

1. Introduction

Recent advances in deep neural networks have shown remark-
able improvement in performance for many computer vision
tasks like classification, segmentation, and object detection
(Krizhevsky et al., 2012; He et al., 2017). However, it is es-
sential that model predictions are not only accurate but also well
calibrated (Guo et al., 2017). Model calibration refers to the
accurate estimation of the probability of correctness or uncer-
tainty of its predictions. As calibration directly relates to the
trustworthiness of a model’s predictions, it is an essential factor
for evaluating models in safety-critical applications like medical
image analysis (Jiang et al., 2012; Kompa et al., 2021; Ma et al.,
2022; Tomani and Buettner, 2019).

Probabilities derived from deep learning models are often
used as the basis for interpretation because they provide a mea-
sure of confidence or certainty associated with the predictions.
When a deep learning model assigns a high probability to a par-
ticular class, it indicates a stronger belief in that prediction. For
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example, in medical diagnosis, a high probability assigned to a
certain disease can indicate a higher likelihood of its presence
based on the observed input data. However, it is important to
note that the reliability of interpretation based on probabilities
depends on the calibration of the model (Murphy and Winkler,
1977; Guo et al., 2017; Caruana et al., 2015). Calibration en-
sures that the assigned probabilities reflect the true likelihood
of events, allowing for accurate interpretation. Without proper
calibration, the interpretation based solely on probabilities may
be misleading or unreliable.

Apart from directly interpreting the probabilities as confi-
dence for decision process, several explainability methods (van
der Velden et al., 2022) have been proposed that depend on the
information extracted from the model predictions like weighting
random masks (Petsiuk et al., 2018), perturbation (Fong and
Vedaldi, 2017; Uzunova et al., 2019), prediction difference anal-
ysis (Zintgraf et al., 2017), contribution scores (Shrikumar et al.,
2017). The contribution of calibration to the model’s explain-
ability lies in providing reliable probability estimates, which aid
in understanding the model’s decision-making process and asso-
ciated uncertainties. It is observed that the improved calibration
has a positive impact on the saliency maps obtained as interpre-
tations, also improving their quality in terms of faithfulness and
are more human-friendly (Scafarto et al., 2023). This interplay
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between explainability and calibrated predictions emerges as a
pivotal factor in establishing a trustworthy model for medical
decision support systems.

In healthcare, even minor errors in model prediction can carry
life-threatening consequences. Therefore, incorporating uncer-
tainty assessment into model predictions can lead to more prin-
cipled decision-making that safeguards patient well-being. For
example, human expertise can be sought in cases with high
uncertainty. A model’s predictive uncertainty is influenced by
noise in data, incomplete coverage of the domain, and imperfect
models. Effectively estimating or minimizing these uncertainties
can markedly enhance the overall quality and reliability of the
results (Jungo et al., 2020; Jungo and Reyes, 2019). Consid-
erable endeavors have been dedicated to mitigating both data
and model uncertainty through strategies like data augmenta-
tion (Singh Sambyal et al., 2022; Wang et al., 2019), Bayesian
inference (Blundell et al., 2015; Gal and Ghahramani, 2016;
Jena and Awate, 2019), and ensembling (Mehrtash et al., 2020;
Lakshminarayanan et al., 2017)

Modern neural networks are known to be miscalibrated (Guo
et al., 2017) (overconfident, i.e., high confidence but low accu-
racy, or underconfident, i.e., low confidence but high accuracy).
Hence, model calibration has drawn significant attention in re-
cent years. Approaches to improve the calibration of deep neural
networks include post-hoc strategies (Platt, 1999; Guo et al.,
2017), data augmentation (Zhang et al., 2018; Thulasidasan
et al., 2019; Hendrycks et al., 2020) and ensembling (Laksh-
minarayanan et al., 2017). Similar strategies have also been
utilized in the domain of medical image analysis to explore
calibration with the primary goal of alleviating miscalibration
(Frenkel and Goldberger, 2022; Larrazabal et al., 2021; Muruge-
san et al., 2023; Stolte et al., 2022). Furthermore, recent research
has also investigated the impact of different training approaches
on the model’s performance and calibration. These include the
use of focal loss (Mukhoti et al., 2020), self-supervised learn-
ing (Hendrycks et al., 2019c), and fully-supervised networks
with pretraining (Hendrycks et al., 2019a). However, the scope
of these studies has been limited to exploring calibration in
the context of generic computer vision datasets like CIFAR10,
CIFAR100, and ImageNet (Ericsson et al., 2021; Wang et al.,
2023). Moreover, the majority of these studies have only uti-
lized Expected Calibration Error (ECE) as the calibration metric.
Unfortunately, ECE has several drawbacks, rendering it unfit
for tasks like multi-class classification and inefficient due to
bias-variance trade-off (Nixon et al., 2019). Nevertheless, as
reliable and accurate estimation of predictive uncertainty is im-
portant, measuring calibration is an ongoing active research area
resulting in many new metrics (Nixon et al., 2019; Singh et al.,
2021; Thulasidasan et al., 2019; Guo et al., 2017; Nguyen and
O’Connor, 2015).

Model calibration is tied to the training process that is inher-
ently challenging for medical image analysis applications. The
scarcity of labeled training datasets is a major cause for concern
(Langlotz et al., 2019; Rahaman and thiery, 2021). Gathering
labeled data for the medical domain is a daunting task due to
the complex and intricate annotating process requiring domain
expertise. Transfer learning is a popular learning paradigm to

circumvent the labeled training data scarcity (Mei et al., 2022;
Ma et al., 2022). Although transfer learning improves model
accuracy, especially for smaller datasets, it also improves the
quality of various complementary model components like adver-
sarial robustness, and uncertainty (Hendrycks et al., 2019a). Re-
markably, the literature suggests that the advantages of popular
methods such as transfer learning on classical computer vision
datasets do not extend to medical imaging applications (Raghu
et al., 2019). Self-supervised learning (SSL) is another promis-
ing training regime when learning from scarce labeled data in
classical computer vision applications (Tendle and Hasan, 2021;
Doersch et al., 2015). Though fully-supervised (pretrained) and
self-supervised approaches seem to improve various model per-
formance measures like accuracy, robustness, and uncertainty
(Hendrycks et al., 2019c; Navarro et al., 2021), the impact of the
training regime(s) on model calibration is under-explored.

Our current work addresses these crucial gaps in the litera-
ture – understanding the calibration of deep neural networks
for medical image analysis in the context of different training
regimes and several calibration metrics. Accordingly, our main
contributions are:

1. We study the effect of different training regimes on the per-
formance and calibration of models used for medical image
analysis. Specifically, we compare three different train-
ing paradigms: Fully-Supervised with random initializa-
tion (FS r), Fully-Supervised with pretraining (FS p), and
Rotation-based Self-Supervision with pretraining (S S Lp).

2. We leverage several complementary calibration metrics to
provide an accurate, unbiased, and comprehensive evalua-
tion of the predictive uncertainty of models.

3. We assess the influence of varying dataset sizes, architec-
ture capacities, and task complexity on the performance
and calibration of the models.

4. We identified some of the potential factors that are corre-
lated with the observed changes in the calibration of models.
These include layer-wise learned representations as well as
the weight distribution of the model parameters.

In general, we observe that the rotation-based self-supervised
pretrained training approach provides better calibration for med-
ical image analysis tasks than its fully supervised counterpart,
with on-par or better performance. Additionally, our findings
contradict recent literature (Raghu et al., 2019) that remarked

“transfer offers little benefit to performance” for medical datasets.
Furthermore, both the weight distribution and the learned repre-
sentation analysis indicate that self-supervised training provides
implicit regularization that in-turn achieves better calibration.

2. Methods

2.1. Training Regimes

2.1.1. Fully-Supervised and Transfer Learning
In a fully-supervised training regime, we use the given input
data and the corresponding target value to learn the task. We
can train models using two different ways, learning from scratch,
i.e., initializing model weights randomly, or pretraining, i.e.,
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Figure 1: Self-Supervised Learning Framework

transferring knowledge from one task to another by using the
learned weights. In the transfer learning approach, a model
is first pretrained using supervised learning on a large labeled
dataset (Krizhevsky et al., 2012; Donahue et al., 2014). Then the
learned generic representations are fine-tuned on the in-domain
medical data (Raghu et al., 2019; Wen et al., 2021). Generally,
fine-tuning a pretrained model achieves better generalized per-
formance and faster convergence than training a fully-supervised
network from scratch (Azizi et al., 2021; Girshick et al., 2014).
We have considered FS r as a baseline in our experiments where
the model is trained from scratch. ImageNet pretraining is used
as the default pretraining approach, which has shown remarkable
performance on medical imaging datasets (Wen et al., 2021).

2.1.2. Self-Supervised Learning
In self-supervised training regime (Hendrycks et al., 2019c;
Gidaris et al., 2018), Figure 1, we train a classifier network with
a separate auxiliary head to predict the induced rotation in the
image. The output of the penultimate layer is given to both the
classifier and the auxiliary module. The classifier predicts a
k-way softmax output vector based on the chosen task/dataset,
whereas the auxiliary module predicts a 4-way softmax output
vector indicating the rotation degree (0°, 90°, 180°and 270°).
Given a dataset D, of N training examples, D = {xi, yi}

N
i=1, the

goal is to learn representations using a self-supervised regime.
The overall loss during training is the weighted sum of vanilla
classification and the auxiliary task loss

L(θ) = L(y, p(y|Rr(x)); θ) + λLaux(r, p(r|Rr(x)); θ) (1)

where, Rr(x) is a rotation transformation on input image x and
r ∈ {0◦, 90◦, 180◦, 270◦} is the ground truth label for the auxiliary
task. Note that the auxiliary component does not require ground
truth training label y as input. Laux is the cross-entropy between
r and the predicted rotation.

2.2. Calibration Metrics

Perfect Calibration: In a multi-class classification problem, let
the input be X and the label Y ∈ {1, 2, · · · ,K} and f the learned
model. The model’s output is f (X) = (Ŷ , P̂) where Ŷ is a class
prediction and P̂ is its associated confidence. If P̂ is always the

true probability, then we call the model perfectly calibrated as
defined in (2).

P
(
Ŷ = Y | P̂ = p

)
= p, ∀p ∈ [0, 1] (2)

The difference between the true confidence (accuracy) and the
predicted confidence (output probability), |P

(
Ŷ = Y | P̂ = p

)
−p|

for a given p is known as calibration error or miscalibration.
Note that P̂ is a continuous random variable, the probability in
(2) cannot be computed using finitely many samples resulting in
different approximations for the calibration error as discussed
below.

2.2.1. Expected Calibration Error (ECE)
The most common miscalibration measure is the ECE (Naeini
et al., 2015; Guo et al., 2017), which computes the difference in
the expectation between confidence and accuracy. It is a scalar
summary statistic of calibration.

EP̂

[∣∣∣∣P (Ŷ = Y | P̂ = p
)
− p
∣∣∣∣] (3)

In practice, we cannot estimate ECE without quantization; there-
fore, the confidence scores for the predicted class are divided
into m equally spaced bins. For each bin, the average confidence
(conf) and accuracy (acc) are computed. The difference between
the average confidence and accuracy weighted by the number
of samples summed over the bins gives us the ECE measure.
Formally,

ECE =
M∑

m=1

nm

N
| acc(m) − conf(m)| (4)

where nm is the number of predictions in bin m. While ECE
is used extensively to measure calibration, it has some major
drawbacks (Nixon et al., 2019):

(i) Structured around binary classification, ECE only consid-
ers the class with maximum predicted probability. As a
result, it discounts the accuracy with which the model pre-
dicts other class probabilities in a multi-class classification
setting.

(ii) Deep neural network predictions are typically overconfi-
dent, causing skewness in the output probabilities. Con-
sequently, equal-interval binning metrics like ECE is im-
pacted by only a few bins.

(iii) The number of bins, as a hyperparameter, plays a crucial
role in the quality of calibration estimation. However, de-
termining the optimal number of bins is challenging due to
the bias-variance tradeoff.

(iv) In a static binning scheme like ECE, overconfident and
underconfident predictions occurring in the same bin result
in a reduction of calibration error. In such cases, it is
difficult to infer the true cause of improvement in model
calibration.

These issues have resulted in the development of novel calibra-
tion metrics discussed in the following subsections.
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2.2.2. Adaptive Calibration Error (ACE)
As ECE suffers from skewness in the output predictions, ACE
mainly focuses on the regions where the predictions are made.
It uses an adaptive binning scheme to ensure an equal number
of predictions in each bin (Nguyen and O’Connor, 2015; Nixon
et al., 2019). Formally,

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k) − conf(r, k)| (5)

where, acc(r, k) and conf(r, k) represent the accuracy and confi-
dence for the adaptive calibration range or bin r and class label
k, respectively. Due to adaptive binning, the bin spacing can be
unequal; wide in the areas where the number of data points is
less, and narrow otherwise.

2.2.3. Maximum Calibration Error (MCE)
It refers to the upper-bound estimate of miscalibration useful in
safety-critical applications. MCE (Naeini et al., 2015; Guo et al.,
2017) captures the worst-case deviation between confidence and
accuracy by measuring the maximum difference across all bins
m, as shown below:

MCE = max
m∈{1,...,M}

|acc(m) − conf(m)| (6)

2.2.4. Overconfidence Error (OE)
Modern deep neural networks provide high confident outputs de-
spite being inaccurate. Thus a metric that captures the model’s
overconfidence provides better model insights. OE (Thulasi-
dasan et al., 2019) captures the overconfidence in the model
prediction by penalizing the confidence score only when the
model confidence is greater than the accuracy.

OE =
M∑

m=1

nm

N

[
conf(m) ×max

(
conf(m) − acc(m), 0

)]
(7)

2.2.5. Brier or Quadratic Score
It is a strictly proper scoring rule that measures the accuracy of
the probabilistic predictions (Brier, 1950; Gneiting and Raftery,
2007; Kruppa et al., 2014). It is the mean squared difference
between one-hot encoded true label and predicted probability.
Formally,

Brier =
K∑

k=1

(1[Y=k] − P̂(Y = k | X))2 (8)

2.2.6. Negative Log Likelihood (NLL)
For safety-critical applications, using a probabilistic classifier
that predicts the correct class and gives the probability distri-
bution of the target classes is encouraged. Using NLL, we can
evaluate models with the best predictive uncertainty by measur-
ing the quality of the probabilistic predictions (Vaicenavicius
et al., 2019; Kull and Flach, 2015; Quiñonero-Candela et al.,
2006). Formally,

NLL = −
K∑

k=1

1[Y=k] log[P̂(Y = k | X)] (9)

Additionally, Root Mean Square Calibration Error (RMSCE)
(Nguyen and O’Connor, 2015; Hendrycks et al., 2019a,b) mea-
sures the square root of the expected squared difference between
confidence and accuracy. As it defines the magnitude of miscal-
ibration, it is highly correlated to ECE. Similar to ACE, Static
Calibration Error (SCE) (Nixon et al., 2019), extends ECE by
measuring calibration over all classes in each bin for a multi-
class setting but does not use an adaptive binning approach. As a
result, we exclude these metrics from our experimental analysis.
It can be observed from the above definitions that none of the in-
dividual metrics takes a holistic approach. Hence, it is important
to recognize that individual metrics are limited in their ability
to provide accurate estimates of calibration. Consequently, a
collective evaluation of these metrics is necessary for a better or
unbiased understanding of calibration performance.

2.3. Experimental Setup
2.3.1. Datasets
We used three different datasets to investigate the classification
performance and calibration of models trained under different
regimes. The datasets have varying characteristics such as differ-
ent imaging modalities, and sizes.

• The Diabetic Retinopathy (DR) dataset contains 35K high-
resolution (∼ 5000× 3000) retinal fundus scans (EyePACS,
Diabetic Retinopathy Detection). Each image is rated for
the severity of diabetic retinopathy on a scale of 0-4, which
makes it a five-class classification problem. The images are
captured under varying imaging conditions, like different
models and camera types.

• The Histopathologic Cancer dataset contains 220K im-
ages (patches of size 96 × 96) extracted from larger dig-
ital pathological scans (Ehteshami Bejnordi et al., 2017;
Histopathologic Cancer Detection: Modified version of the
PatchCamelyon (PCam) Benchmark Dataset; Veeling et al.,
2018). Each image is annotated with a binary label indi-
cating the presence of tumor tissue in the histopathologic
scans of lymph node sections.

• The COVID-19 is a small dataset consisting of 317 high-
resolution (∼ 4000 × 3000) chest X-rays images (Covid-
19 Image Dataset; Cohen et al., 2020a,b). This dataset
corresponds to a three-class classification problem.

Both DR and Histopathology cancer datasets are segregated into
four training datasets of sizes: 500, 1000, 5000, and 10000; and
a common test dataset of 2000 images. The Covid-19 dataset is
partitioned into 60/20 train/validation split and a separate 20%
test set for evaluation. The images in all the datasets are resized
to 224 × 224, which is the standard input resolution for ResNet
architectures.

2.3.2. Implementation Details
Architectures – Due to the popularity of ResNet architectures in
medical imaging for classification tasks (Azizi et al., 2021; Wen
et al., 2021; Mei et al., 2022), we choose the standard ResNet18,
ResNet50 (He et al., 2016), and WideResNet (Zagoruyko and
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Komodakis, 2016) architectures as the network backbone to sim-
ulate small, medium, and large architecture sizes, respectively.
For the training regimes relying on a pretrained model, we ini-
tialize the backbone architectures using ImageNet-pretrained
weights, and the classifier and self-supervised modules using the
Kaiming uniform initialization (He et al., 2015) variant.
Evaluation Metrics – We use two performance metrics - Ac-
curacy and Area under the Receiver Operating Characteristic
curve (ROC AUC); and six calibration metrics - ECE, MCE, ACE,
OE, Brier and NLL. The architecture details and hyperparameter
settings are presented in the supplementary material Section 5.1.

3. Results

3.1. Effect of Training Regimes on Calibration
In this study, we investigate the performance and calibration of
three different architectures - ResNet18, ResNet50&WideResNet
using three different training regimes - Fully-Supervised with
random initialization (FS r), Fully-Supervised with pretrain-
ing (FS p) and Rotation-based Self-Supervision with pretraining
(S S Lp).

For medical image analysis, both the accuracy and reliability
of the models are crucial. In this context, there are two key
scenarios we need to consider:

1. High accuracy and high calibration error – When a model
has high accuracy but is miscalibrated, the model’s predic-
tions may not be trustworthy. Both incorrect predictions
with high confidence and correct predictions with low con-
fidence are detrimental in healthcare applications. Reliance
on accuracy alone is hazardous.

2. High accuracy and low calibration error – This is the
ideal scenario, where a model has high accuracy and well-
calibrated confidence scores. Predictions from such a
model can be trusted in the decision-making process.

3.1.1. Effect of Architecture and Dataset Size
In this section, we present the findings of our analysis of the DR
dataset. The performance and calibration scores of various archi-
tectures, as well as the effects of increasing training dataset size,

Figure 2: Joint evaluation for performance and calibration across different dataset
sizes (x-axis) using WideResNet architecture on Histopathology dataset. The
shaded region corresponds to µ ± σ, estimated over 3 trials. ↑: higher is better,
↓: lower is better.

are depicted in Figure 3 for the three different training regimes.
Similar results and analysis of WideResNet architecture on the
Histopathology dataset is presented in Figure 2 and rest can be
found in the supplementary material (Figure 11). Owing to the
difficulty of the task, the performance of all training regimes
across all the models is not very high (≤ 75%). However, we do
see a clear improvement in performance as the training dataset
size increases across all architectures and regimes. Addition-
ally, we observe that initializing models with pretrained weights
(with S S Lp having an edge over FS p) offer a significant ad-
vantage over random initialization, which contradicts existing
assumptions that transfer learning from ImageNet models is not
beneficial. Both FS p and S S Lp result in similar performance
when using larger models (Raghu et al., 2019).

Comparing the effect of FS p and S S Lp training regimes on
calibration, we see that S S Lp significantly improves calibra-
tion across all metrics for all architectures and training dataset
sizes as illustrated in Figures 3(c)-(h). The gap in the cali-
bration metrics for S S Lp and FS p is highest when using the
largest architecture (WideResNet). While a randomly initialized
model (FS r) results in marginally better calibration (sometimes
even better than S S Lp), the performance is significantly poor.
Overall, we observe that models trained using self-supervision
with pretrained weights show better or similar performance
with a significant improvement in calibration error compared
to fully-supervised pretraining. These results suggest that self-
supervised training can help improve both performance and cali-
bration, leading to more robust and reliable models for medical
image analysis.

We discuss the results on the Covid-19 dataset separately
owing to its small size. Figure 4 depicts that all the models
result in high performance on this dataset indicating the ease of
learning the task. The superior performance of FS p and S S Lp

indicate a definite advantage of transfer through pretrained over
random initialization, contradicting the recent findings (Raghu
et al., 2019). It is also evident that larger models result in better
performance than shallow models. The negative impact of train-
ing from a random initialization (FS r) for over-parameterized
models is also evident from the drop in the performance and
calibration with the increase in architecture size. While we ob-
serve a significant difference in the performance, there is only a
marginal change in the calibration metrics. There is no definite
trend in the calibration across the three training regimes. Thus,
while transfer seems to have a positive impact on performance,
calibration does not enjoy a commensurate impact.

3.1.2. Issues with using Single Calibration Metric
In this section, we discuss the importance of collective evalua-
tion of calibration metrics. For this purpose, let’s consider the
question - Does transfer learning improve calibration? In the
context of DR dataset, we analyze the results in Figure 3. Com-
paring FS r and FS p using only Brier for all architectures and
dataset sizes, the general trend we observe is that transfer learn-
ing improves calibration. However, this observation fails when
we chose ECE metric, which gives us mixed results. Similarly,
incorrect conclusions could be drawn when using individual
metrics like NLL and ACE.
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Figure 3: Joint evaluation for performance and calibration across different dataset sizes (x-axis) and architectures for DR dataset. The shaded region corresponds to
µ ± σ, estimated over 3 trials. The underline shows the statistical significance between FS p and S S Lp. Black and Pink color signifies p < 0.05 and 0.05 < p < 0.1
level of significance, respectively. ↑: higher is better, ↓: lower is better.
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Figure 4: Comparing performance and calibration across different architectures and training regimes for Covid-19 dataset. The error bars correspond to µ ± σ,
estimated over 3 trials. Relying on a single calibration error metric, such as ECE or ACE, can lead to conflicting conclusions when it comes to model selection. By
considering a combination of metrics, we gain a more comprehensive understanding of the model’s calibration performance. ↑: higher is better, ↓: lower is better.

Likewise, we consider the effect of architecture on perfor-
mance and calibration in the context of the small Covid-19
dataset. From Figure 4, we observe that FS p and S S Lp have
comparable performances with nominal improvement with in-
creasing architecture size. In this case, using only ECE as the
calibration metric would lead us to infer that FS p provides better
calibration than S S Lp for large capacity models. In contrast,
ACE suggests the opposite. However, these two training regimes
are quite similar across most other metrics.

These examples further highlight that in scenarios where mod-
els provide mixed calibration results, selecting the best model is
non-trivial/subjective. In section 4, we discuss some potential
model selection criteria to address this issue.

3.2. Factors affecting Performance and Calibration

In this section, we explore two potential factors linked to the en-
hanced calibration of the self-supervised training regime. Firstly,
we examine the standard deviation of weight distributions and
calibration metrics across different training regimes. Secondly,
we investigate the similarity of learned representations in the
activations.

3.2.1. Weight Distribution
The weight distribution of a neural network can provide useful
insights into the model’s performance. Regularization schemes
like L1, L2, dropout (Ng, 2004; Srivastava et al., 2014) are of-
ten employed to find optimal parameters of a model with low
generalization error. By adding a parameter norm penalty term

to the objective function, the L1 and L2 norms encourage sparse
weights with many zero values and small weight values respec-
tively. Weighting the contribution of the penalty term controls
the regularization effect. For instance, with L2 norm, the his-
togram of weights tends to a zero-mean normal distribution with
a high penalty that causes the model to underestimate the weights
and hence leads to underfitting. In contrast, a low penalty yields
a flatter histogram that causes the model to overfit the training
data. To strike the right balance, careful hyperparameter tuning
is needed to determine the data-dependent optimal penalty term
contribution for better generalization. Based on this intuition, we
attempt to interpret the performance and calibration of networks
trained using different regimes using weight distribution analy-
sis. To the best of our knowledge, the calibration of a model has
not been explained in the context of the weight distribution of a
network, especially for medical image analysis.

The comparison of weight distributions between the models
trained using FS r, FS p, and, S S Lp for the DR dataset in Figure
5a-(1),(2) reveals some interesting observations. The weight
distribution of the model trained with FS p exhibits a higher
peak than S S Lp, indicating that most of the weights are small.
Conversely, the FS r model exhibits the highest standard devia-
tion, resembling a uniform distribution. Now, the question arises:
which distribution is preferable, and which scenario leads to bet-
ter generalization with improved calibration? To address this, we
analyze the impact of weight distribution on the performance and
calibration of FS p and S S Lp models using Figure 3 and Figure
5. We observe that both models show similar AUC performance,
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with S S Lp displaying a smaller peak in the weight distribution.
This difference in weight distribution influences the calibration
metrics, where S S Lp demonstrates significantly lower calibra-
tion error across most metrics. In other words, the predicted
probabilities align more closely with the true probabilities using
the S S Lp model.

For Histopathology dataset, the weight distribution of the
S S Lp model is similar to that of the FS p, as seen in Figure 5b-
(1),(2). This similarity in weight distribution could be attributed
to an easier task, leading to higher test performance. However,
despite the similarity in weight distribution, the S S Lp model
still provides better-calibrated outputs compared to the FS p,
but the difference in calibration error between these training
regimes is now smaller. Considering the standard deviation of
the weight distributions, it is suggested that a balance in the
spread of weights is important for achieving good performance
and calibration. It is important to note that the FS r model has
the highest standard deviation and comparable calibration error,
it exhibits low AUC performance, making it inconsequential
among other training regimes.

In Figure 5-(3),(4), we analyze the layer-wise standard de-
viation and Frobenius norm of the weights. In Figure 5a, we
observe S S Lp influence on the standard deviation and weight
magnitudes in every layer of the network. Additionally, we
notice that the standard deviation tends to be higher in the ini-
tial layers and decreases as we move towards higher layers of
the network. In Figure 5b, the standard deviation and magni-
tude of weights are similar for both S S Lp and FS p training
regimes. This suggests that the features extracted by each layer
of the network are similar, which could be attributed to the
high performance achieved by both training regimes. Despite
the similarity, the S S Lp training regime still produces a better-
calibrated model than the FS p, indicating the additional benefits
of self-supervised training. For a more comprehensive analysis,
Figure 6 further consolidates the trends between performance,
the standard deviation of the weights, and model calibration.
The figure highlights that achieving good performance and cali-
bration in a model necessitates finding a balance in the spread
of weights, a balance which the S S Lp training regime was able
to achieve successfully. Due to the different scales of the cal-
ibration metrics, we plot them on multiple axes. The weight
values and their standard deviation are very small; therefore,
we scaled them by 102. In Figure 6a, FS r (top left, orange)
has the highest standard deviation (wide distribution) and gives
us the best calibration error (x-axis) but the worst performance
compared to other training regimes. The standard deviation for
FS p (bottom right, red) is the lowest, but the calibration error is
still high, which is not ideal. On the other hand, S S Lp has a low
standard deviation but yields the best performance and calibra-
tion. So, when we encounter the gap in the standard deviation of
weights between different training regimes (S S Lp and FS p), we
observe the calibration error metrics are well separated (Figure
6a). Alternatively, when the gap is negligible, the calibration
error metrics overlap (Figure 6b). In summary, we observe that
the S S Lp training regime consistently provides better calibra-
tion than the FS p regime for both datasets. The magnitude of
improvement or change in calibration is directly related to the

(a)

(b)

Figure 5: Comparing different aspects of WideResNet learned weights for dataset
size 10000 on DR-(a) and Histopathology Cancer-(b) datasets. (1) and (2) the
normalized histogram of weights of three training regimes. (3) Layer-wise
comparison of standard deviation (SD) between FS p and S S Lp. (4) Layer-wise
comparison of Frobenius norm between FS p and S S Lp.

differences in weight distributions.

3.2.2. Learned Representation
In addition to the diversity of the whole weight space, we ex-
plore the impact of layer-wise, learned neural representations
on performance and calibration. Towards this end, we use the
widely popular Centered Kernel Alignment (CKA) (Kornblith
et al., 2019) metric that measures the similarity between the acti-
vations of hidden layers in a neural network. Literature suggests
that high representational similarity across layers indicates re-
dundancy in learned representations of a network. Furthermore,
redundant representations impact the generalizability due to the
influence of regularized training (Doimo et al., 2022), which in
turn improves the model calibration (Guo et al., 2017).

CKA analysis of WideResNet’s layer representations for dif-
ferent training regimes on the DR dataset is shown in Figure 7.
The CKA plots for FS p and S S Lp depict comparatively similar
patterns. However, the higher layers of FS p show a signifi-
cant decrease in representational similarity (darker region shown
in blue box) with increasing dataset size. The relatively high
CKA values of the deeper layers of S S Lp depict redundancy of
learned representations lighter regions) that provides implicit
regularization. This in turn explains the reduced calibration er-
ror of S S Lp compared to FS p as seen in Figure 3. A similar
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ACC: 73.5
ROC AUC: 52.54

ACC: 74.85
ROC AUC: 75.13

”clusters distinct”

”gap” ACC: 76.75
ROC AUC: 75.85

(a)

ACC: 84.6
ROC AUC: 91.98

ACC: 92.2
ROC AUC: 97.26

”clusters overlap” ACC: 90.05
ROC AUC: 96.28

(b)

Figure 6: Comparing calibration metrics (x-axis) vs. standard deviation (SD, y-axis) of WideResNet architecture for dataset size 10000 on DR and Histopathology
cancer datasets. Colors represent training regimes (orange for FS r , blue for S S Lp, and red for FS p), and markers are the lowercase initials of each calibration metric;
e – ECE, o – OE, a – ACE, m – MCE, b – Brier, n – NLL. Alongside each calibration error cluster, the performance is also reported. Ideally, the metrics should be at
the bottom left with comparable performance. (a) S S Lp has less calibration error with on-par performance than FS p training regime, indicating it to be a suitable
choice. Calibration error metrics clusters of S S Lp and FS p are noticeably well separated, correlating with the gap in their SD. (b) Here, S S Lp seems to be the best in
calibration and performance compared to other training regimes. The noticeable difference we observed here is that the calibration error metrics clusters of S S Lp and
FS p are close (somewhat overlapping) when the SD of their weight distributions are similar.

pattern is observed for ResNet18 and ResNet50 architectures
as depicted in Figure 10 of the supplementary material. For the
Histopathology dataset, the CKA plots (shown in Figure 12 of
the supplementary material) for FS p and S S Lp depict very simi-
lar patterns that explain comparable performance and calibration
afforded by these training regimes.

To facilitate quantitative comparison, we present the mean
CKA value as a summary statistic to represent the CKA plots of
individual networks in Table 2 of the Supplementary Material,
Section 5.5. While not very significant, these findings align with
the trends observed in Figure 7. Furthermore, the difference in
the mean CKA values of S S Lp and FS p fairly correlates with
the difference in the magnitude of the calibration metrics of these
regimes.

4. Discussion

For safety-critical applications like medical image analysis, it is
imperative to choose models with high accuracy and low cali-
bration errors. In this study, we investigate the performance and
calibration of three different architectures using three different
training regimes on medical imaging datasets of varying sizes
and task complexities. Furthermore, we use six complementary
calibration metrics that collectively provide a comprehensive
evaluation of the predictive uncertainty of the models.

Model selection with mixed calibration results – While using
multiple calibration metrics provides a more comprehensive
evaluation, deciding on the best model can still be challenging
as observed in Section 3.1.2. There are a few strategies that
can be employed to aid in the decision-making process. One
approach is to use a voting-based scheme, where each model is
assigned a vote based on its performance across the calibration
metrics. The model with the maximum number of votes is then
selected as the best choice. This approach treats all metrics
equally and can be useful when there is no significant variation
in the importance of different metrics.

Domain specific metric relevance – However, it is important
to consider that different calibration metrics may have different
objectives and importance in specific domains. For example,
metrics like OE (Overconfidence Error) explicitly measure the
overconfidence of the model predictions, while MCE (Maximum
Calibration Error) provides an upper bound on the mistakes
made by the model. In such cases, it might be necessary to assign
more weightage to these important metrics during the voting
process. The determination of metric importance is subjective
and can vary depending on the application. Expert knowledge
and domain expertise play a crucial role in assigning relative
importance to different metrics. By incorporating the opinions of
experts, the voting process can be tailored to reflect the specific
requirements of the application.

Margin for model selection – In addition to assigning weights
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Figure 7: CKA plots of trained WideResNet architecture using fully-supervised (pretrained, FS p) and self-supervised (pretrained, S S Lp) regime for DR dataset. The
plots represents similarity between representations of features. The range of the CKA metric is between 0 and 1, with 0 indicating two completely distinct activations
(not similar) and 1 indicating two identical activations (similar).

to metrics, introducing a margin or threshold in the voting
scheme can help refine the model selection process. This thresh-
old represents the minimum difference in calibration error be-
tween two training regimes that must be surpassed for a metric
to be considered in the model selection. By setting a threshold,
the metrics can be filtered out that do not exhibit significant
differences and focus on those that have a substantial impact on
model calibration.

It is worth noting that the difficulty of choosing a model also
arises when one model has higher accuracy but poorer calibration
while another model has lower accuracy but better calibration.
This dilemma has been discussed in the literature (Minderer
et al., 2021), highlighting the need for careful consideration of
calibration metrics during model selection. Selective predic-
tion is one scenario where we abstain the classifier that gives
us low-confident predictions based on some threshold or cost
structure of the specific application (Hernández-Orallo et al.,
2012). In such cases, low-confidence predictions are referred to
an expert for further analysis or diagnosis. This approach allows
for cautious decision-making when the model’s confidence is
not sufficient for reliable predictions. Overall, the selection of
the best model with mixed calibration results requires a com-
bination of objective evaluation, subjective judgment of metric
importance, and consideration of domain-specific requirements.

Calibration Metrics – While we have elaborated on the draw-
backs of ECE, it provides an intuitive and straightforward inter-
pretation, is simple to implement, and captures pure calibration.
Additionally, ECE is associated with the reliability diagram - a
powerful tool to visualize model calibration. It’s also worth not-
ing that alternative calibration metrics have their own shortcom-
ings. The majority of the existing metrics suffer from challenges
like scale-dependent interpretation, lack of normalized range,
arbitrary choice of number of bins, etc. (Matsubara et al., 2023).
Moreover, composite measures like NLL and Brier blend calibra-
tion and refinement, making it challenging to isolate calibration
effects. Multiclass settings introduce additional complexity due
to the multitude of classes, their diverse interrelations, and the

absence of a universally accepted metric for gauging refinement.
Moreover, the choice of calibration metric can also be domain
or application-dependent. As there is no universally applicable
or acceptable calibration metric, we proposed collective evalua-
tion of these metrics for a better or unbiased understanding of
calibration performance.

Limitations – Our current study focused on medical image
classification tasks across three different benchmark datasets.
However, due to limited computational resources, we selected
datasets with 2D images. Extending this work to 3D datasets
as well as other tasks like medical image segmentation and
registration, can help broaden our understanding of calibration
in the general context of medical image analysis. Additionally,
our study highlights that using the rotation-based self-supervised
learning (SSL) approach gives better-calibrated results compared
to the usual fully-supervised learning. A comparison of other
SSL techniques, such as contrastive SSL or generative SSL,
would be interesting.

Conclusion – In general, for medical image classification
tasks, we observe that training regimes have a varying impact
on model calibration. Overall, we observe that across differ-
ent architectures, training regimes, datasets, and sample sizes,
(a) transfer learning through pretraining helps improve perfor-
mance over random-initialized models and (b) pretrained self-
supervised approach provides better calibration than its fully su-
pervised counterpart, with on-par or better performance. While
we notice a sizeable increase in performance with dataset sizes,
only nominal improvement is realized with increasing model
capacity.

Furthermore, we identified weight distribution and learned
representations of a neural network as potential confounding
factors that provide useful insights into model calibration, in
particular, to explain the superiority of a rotation-based self-
supervised training regime over fully supervised training.

Broader Impact – We anticipate that this analysis will offer
significant insights into calibration across datasets of varying
sizes and models of different complexities. This work raises a
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broader question regarding the search for a unified metric that
can provide a comprehensive understanding of model calibration,
thereby reducing the need to evaluate models based on multiple
criteria. Ensuring accurate and reliable probabilistic predictions
is vital for effective risk management and decision-making. It
is particularly important when relying on the outputs of prob-
abilistic models that require trust. Additionally, developing
well-calibrated models is essential for promoting the widespread
acceptance of machine learning methods, especially in fields like
AI-driven medical diagnosis, as it directly influences the level
of trust in new technologies and improves their explainability.
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5. Supplementary Material

The supplementary material is organized as follows: Section 5.1 contains architectures and hyperparameters Details. Section 5.2
investigates the effect of domain-specific transfer learning using RadImageNet pretraining. Section 5.3 consists of the standard
deviation of weights distribution vs. calibration scores analysis and CKA plots of ResNet18 and ResNet50 architectures for Diabetic
Retinopathy dataset. Section 5.4 contains performance and calibration plots (Figure 11) and CKA plots (Figure 12) for Histopathology
Cancer dataset. Section 5.5 shows the quantitative results of the CKA analysis using mean CKA values. Section 5.6 compares
different training regimes with the reconstruction-based self-supervised task.

5.1. Architectures and Hyperparameters Details

5.1.1. Architecture Details
We choose three architectures from the ResNet family to evaluate the performance and calibration using three training regimes, FS r,
FS p, and S S Lp.

• WideResNet (WRN-d-k:) It is a variant of residual networks to simulate large architecture size. The depth and width of
WideResNet are regulated by a deepening factor d and a widening factor k. We used WRN-50-2 for our experiments, i.e.,
WideResNet with 50 convolutional layers and a widening factor of 2.

• ResNet50 & ResNet18: We choose the standard architectures to simulate medium and small architecture sizes, respectively.

Table 1: Overview of the models used in this study.

Model Name Number of Layers Parameters
ResNet18 18 layers 11M
ResNet50 50 layers 23M
WideResNet ResNet50, 2×width 66M

5.1.2. Hyperparameter Details
We used the following parameter values for FS r, FS p, and S S Lp training regimes across all datasets and architecture sizes for our
experiments. We set batch size=16, epochs=300, optimizer=SGD, learning rate=0.001, momentum=0.9, and weight decay=0.0005.

For pretrained setups, FS p and S S Lp, we trained the classifier and auxiliary module for the first 30 epochs with a learning
rate=0.001 and then fine-tuned the complete network with the learning rate=0.00001. In S S Lp training, λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}
is empirically chosen for different datasets and architectures sizes based on the best validation accuracy.
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5.2. RadImageNet Pretraining

To investigate the effect of domain-specific transfer learning, we conducted experiments using RadImageNet Mei et al. (2022) – a
pretrained neural network (ResNet50) trained only on medical imaging datasets shown in Figure 8. Overall, we notice consistent
patterns in calibration, where S S Lp either outperforms or matches FS p, in line with our observations from other experiments. In
this context, we observe that FS p and S S Lp exhibit comparable performance in (a) and (b). However, in the MCE plot (e), S S Lp

demonstrates superior calibration compared to FS p. For the remaining metrics, S S Lp tends to show marginal improvement or
comparable calibration. Taken together, these findings provide additional evidence that S S Lp consistently delivers calibration models
on par with, or sometimes even superior to, those produced by FS p.

Figure 8: Joint evaluation for performance and calibration across different dataset sizes (x-axis) of DR dataset using ResNet50 architecture with RadImageNet
pretraining. The shaded region corresponds to µ ± σ, estimated over 3 trials. ↑: higher is better, ↓: lower is better.
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5.3. Diabetic Retinopathy Dataset

Figure 9: Standard Deviation of Weights distribution vs. Calibration scores analysis. (a), (b), (c), and (d) depict the relationship between the SD of weights distribution
and calibration metrics from the smallest dataset size to the largest one (500, 1000, 1000, 10000), respectively of the DR dataset. Additionally, the corresponding
weight distribution plots have been overlaid for convenience of reference. Considering the four plots, we can observe the trend that the calibration metrics of different
regimes are segregated when there is a difference in the spread of their distributions (as shown in plots c & d) and overlapping when there is no difference in the SD of
weights distribution (as shown in plots a & b). Based on the characteristics of S S Lp (shown in blue), it can be remarked that a balance in the spread of weights is
necessary to achieve both good performance and calibration.

Figure 10: CKA plots of trained ResNet18 and ResNet50 architectures using FS r , FS p, and S S Lp regimes for DR dataset.
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5.4. Histopathology Cancer Dataset

Figure 11: Joint evaluation for performance and calibration across different dataset sizes (x-axis) and architectures for Histopathology Cancer dataset. The shaded
region corresponds to µ ± σ, estimated over 3 trials. The underline shows the statistical significance between FS p and S S Lp. Black and Pink color signifies p < 0.05
and 0.05 < p < 0.1 level of significance, respectively.

5.5. Quantitative Comparison CKA

Table 2 presents the quantitative results of the CKA analysis, using mean CKA values. These findings align with the trends observed
in Figure 7. In the case of the DR dataset, the mean CKA values of S S Lp rise as the dataset size increases. This supports our previous
findings, where the calibration of S S Lp is superior to that of FS p, and this distinction grows more pronounced as the dataset size
becomes larger (Figure 6a). In the context of the Histopathology dataset, previous observations also indicated that S S Lp outperforms
FS p in terms of calibration, although the difference in calibration metrics values’ magnitude is less (6b). Consequently, we notice
that there is no significant difference in the mean CKA values between the two training approaches indicating the representations
learned are quite similar.
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Table 2: Mean CKA values of different training regimes across varying architectures, datasets and their sizes.

Architecture
Training
Regime

Diabetic Retinopathy Histopathology Cancer

500 1000 5000 10000 500 1000 5000 10000

ResNet18
FS p 0.86 0.84 0.85 0.85 0.76 0.76 0.75 0.75

S S Lp 0.85 0.85 0.88 0.88 0.76 0.75 0.74 0.75

ResNet50
FS p 0.84 0.84 0.84 0.84 0.74 0.75 0.74 0.73

S S Lp 0.85 0.85 0.86 0.87 0.75 0.74 0.74 0.73

WideResNet
FS p 0.84 0.83 0.81 0.81 0.70 0.69 0.69 0.71

S S Lp 0.84 0.85 0.86 0.87 0.69 0.70 0.69 0.71

Figure 12: CKA plots of trained architectures using different regimes for Histopathology Cancer dataset.
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5.6. Comparison of Fully-Supervised and Reconstruction-Based Self-Supervised Task

Figure 13: Comparison of fully supervised (FS r , random initialization), fully supervised (FS p, pretraining), and reconstruction-based auxiliary SSL task (S S Lp,
pretraining) on DR dataset. Notably, the calibration of models achieved through the auxiliary task does not precisely align with that of the rotation task. Remarkably,
the plots reveal a notable contrast: very low OE (f) but high ECE (c). This discrepancy could hint at potential underconfidence, stemming from substantial
regularization induced by the reconstruction-based auxiliary SSL task. However, drawing definitive conclusions is premature, as further experiments, encompassing
various architectures and hyperparameter tuning, are necessary. Relying solely on the plots, we abstain from making a judgment regarding the superiority of either
FS p or reconstruction-based S S Lp.
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