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ABSTRACT

Background: Epilepsy is a neurological illness affecting the brain that makes people more likely
to experience frequent, spontaneous seizures. There has to be an accurate automated method for
measuring seizure frequency and severity in order to assess the efficacy of pharmacological therapy
for epilepsy. The drug quantities are often derived from patient reports which may cause significant
issues owing to inadequate or inaccurate descriptions of seizures and their frequencies.
Methods and materials: This study proposes a novel deep learning architecture based lightweight
convolution transformer (LCT). The transformer is able to learn spatial and temporal correlated
information simultaneously from the multi-channel electroencephalogram (EEG) signal to detect
seizures at smaller segment lengths. In the proposed model, the lack of translation equivariance
and localization of ViT is reduced using convolution tokenization, and rich information from the
transformer encoder is extracted by sequence pooling instead of the learnable class token.
Results: Extensive experimental results demonstrate that the proposed model of cross-patient learning
can effectively detect seizures from the raw EEG signals. The accuracy and F1-score of seizure
detection in the cross-patient case on the CHB-MIT dataset are shown to be 96.31% and 96.32%,
respectively, at 0.5 sec segment length. In addition, the performance metrics show that the inclusion of
inductive biases and attention-based pooling in the model enhances the performance and reduces the
number of transformer encoder layers, which significantly reduces the computational complexity. In
this research work, we provided a novel approach to enhance efficiency and simplify the architecture
for multi-channel automated seizure detection.

Keywords Epilepsy · Seizure detection · Vision Transformer · Convolutional Neural Network · Electroencephalogram

1 Introduction

Epilepsy is a non-infectious, recurring, chronic neurological condition marked by abnormal and sudden alterations in
brain electrical activity [WHO, 2023]. Recent statistics suggest that around fifty million persons are suffering all over
the world from epilepsy, resulting in one of the most frequent neurological illnesses globally [Rukhsar et al., 2019].
Drug-resistant epilepsy is diagnosed when two or more effective trials of anti-epileptic medication fail to control the
seizure of patients [López González et al., 2015]. The neurological examination is performed on certain patients to see
if they are good candidates for non-pharmacological alternative treatments such as neurosurgery, the ketogenic diet,
or responsive neurostimulation. In spite of these options, there is still a sizable population of people who continue to
experience recurrent seizures. There is a strong correlation between the severity of seizures and the severity of their
effects on these patients’ quality of life and mortality rates. This is something that can affect both women and men of
any age, class, race, or location [Hu et al., 2020]. Nonetheless, it has a major impact on the lives of both young adults
in their twenties (the prime of their productive life) and the elderly (due to higher risk). The risk of early death for

∗Corresponding Author: Salim Rukhsar (rukhsar.1@iitj.ac.in)

ar
X

iv
:2

30
5.

04
32

5v
1 

 [
ee

ss
.S

P]
  7

 M
ay

 2
02

3

https://orcid.org/0000-0002-3503-5380
https://orcid.org/0000-0000-0000-0000


LIGHTWEIGHT CONVOLUTION TRANSFORMER FOR SEIZURE DETECTION

those with epilepsy is three times higher than that of the general population [Lachake et al., 2021, WHO, 2023, López
González et al., 2015].

It is estimated that seventy-eighty percent of seizures can be managed and twenty five percent of seizures can be
prevented with the help of anticonvulsant medication [Yuan et al., 2017a]. Protecting the head from harm and reducing
the incidence of epilepsy in children caused by birth injuries are the most effective ways to prevent post-traumatic
epilepsy. The anomalies in electroencephalogram (EEG) signal pattern and a well-documented aetiology of the seizure
are the two most dependable indications of seizure recurrence [Siddiqui et al., 2020, Rukhsar et al., 2019]. A reliable
automated approach for the estimation of seizure frequency and severity is essential in assessing the efficacy of drug
treatment in epilepsy. These quantities are often derived from patient reports which may result in significant issues owing
to inadequate or inaccurate descriptions of seizures and their frequencies. Seizure detection needs a comprehensive
inspection and analysis of huge quantities of EEG data by neurologists, but the quality of the analysis is heavily reliant
on their expertise and experience of the neurologist. Examination using sight alone takes a lot of time and might lead to
erroneous conclusions because of human subjectivity [Peng et al., 2021, López González et al., 2015]. Consequently,
an accurate seizure detection system for epilepsy is necessary for clinical and scientific applications.

There has been a lot of focus and significant advancement in recent years on the development of new technology for
automated seizure event identification. Several methods based on linear and non-linear properties have been developed
since J. Gotman proposed the first automated seizure detection system in 1982 [Gotman, 1982]. Many supervised
and unsupervised "machine learning" algorithms have been developed for seizure classification from EEG signals of
interictal states. The ability of support vector machine (SVM) techniques to decrease structural risk has led to their
greater popularity in recent years for the classification of manually produced features [Goshvarpour and Goshvarpour,
2022, Fu et al., 2014, Rukhsar and Tiwari, 2023]. Using ANNs, [Yavuz et al., 2018] were able to accurately distinguish
between seizure and non-seizure cases. During the past few years, much of the focus has been on deep learning (DL)
approaches due to their effective results in solving such problems [Rasheed et al., 2021]. The end consequence of
using DL approaches to find an incorporate patterns from processed or raw data in a system that is highly reliable but
at a significantly higher computational cost. In addition, because EEG data are time-series signals, i.e., progressively
monitored across time, temporal and spatial correlation can be found for seizure identification. Fortunately, Deep
Learning has shown to be a method with substantial promise for evaluating such sort of data, as it permits the learning
of long-term properties and represents the state-of-the-art (SOTA) for many works of time series classification [Fawaz
et al., 2019].

Convolutional neural networks (CNN) [Jemal et al., 2021],[Acharya et al., 2018] to analyse visual images and recurrent
neural networks (RNN) [Hussein et al., 2019] for sequential data are the widely used deep learning methods. These
techniques will automatically identify and extract the essential features from unprocessed data to produce the required
results. In an RNN, the hidden state at each time step depends on the previous time step’s hidden state and the
current input. As a result, RNNs are limited in their ability to process long sequences, as the hidden state must retain
information from previous time steps, and this information can be lost or diluted over time. [Vaswani et al., 2017]
developed a transformer architecture to perform sequential data processing in parallel, which is inherently impossible
with the RNN and solves the long training time problems of CNN. The transformer uses a self-attention mechanism to
compute the importance of each element in the input sequence. This allows the model to attend to all elements in the
sequence simultaneously, regardless of their position. As a result, the transformer can process long sequences of data
more efficiently and effectively without losing important information or experiencing the vanishing gradient problem.
Additionally, the transformer’s architecture allows for more parallelism than an RNN. In an RNN, the computation at
each time step depends on the previous time step, making it difficult to parallelize the computations across different
time steps. In contrast, the transformer’s self-attention mechanism allows for parallel computation across all elements
in the sequence, making it possible to process the sequence much more quickly. Currently, the transformer has become
a de-facto standard for natural language processing (NLP) tasks but its application in computer vision is limited.
Because of the limited application, [Dosovitskiy et al., 2021] proposed a vision transformer to classify images into
their categories. Despite the fact that multi-channel EEG signals contain sequential data, the transformer design has not
yet been applied to their processing for seizure. Regarding EEG signal processing, Krishna et al. [2020] presented a
transformer-based approach for automated speech recognition based on EEG characteristics. Using a transformer model
to predict the response to several anti-epileptic drugs in people with a new diagnosis of epilepsy yielded promising
results [Choong et al., 2020]. [Sun et al., 2022] used a traditional vision transformer for seizure detection in long-term
iEEG, in which classification tokens are utilised to categorise the data. These latest developments provide a broader
scope of applications, which in turn helps to defend the use of transformers for time series data.

Although some encouraging results have been documented employing such approaches, there are still certain challenges
that need to be overcome. To begin with, most static models do not take into account the dynamic correlations between
each channels and timestamp data, thus fail to identify spatial and temporal correlations simultaneously. Second, the use
of traditional deep learning features with a simplistically designed architecture may lose information and thus cannot

2



LIGHTWEIGHT CONVOLUTION TRANSFORMER FOR SEIZURE DETECTION

guarantee reliable results. This is especially true when dealing with datasets that are not evenly distributed. Lastly,
developing a cross-patient detector is challenging since seizure patterns in EEG data can vary greatly between patients
and even over time for the same patient.

To address the aforementioned issues, we present a novel seizure detection method that utilises the spatial and temporal
information of multi-channel EEG data from both intra and inter-patient groups. The proposed framework is described
in Figure 3. We extracted ictal and interictal data of equal length from each patient and concatenated them respectively
to make a cross-patient dataset. The prepared dataset is normalized and segmented with different segment lengths at
25% overlapping. Here are the contributions in a nutshell:

• The proposed framework is capable of learning spatial and temporal correlated information simultaneously
from multi-channel EEG signals for cross-patient seizure classification.

• We developed a novel lightweight convolution transformer (LCT) by introducing inductive biases, which the
transformer lacks compared to CNN and attention-based pooling. The developed architecture used convolution
tokenizer instead of patches and attention-based pooling instead of classification token. The LCT is able to
escape from the big data paradigm of transformers and is successful in the effective classification of smaller
data. The results show that the proposed method outperforms the state-of-the-art methods with less learnable
parameters.

The remaining portions of this work are divided as follows: Section 2 is dedicated to the EEG dataset, pre-processing,
and transformer architecture. The proposed architecture of the lightweight convolution transformer (LCT) is elaborated
deeply in section 3. The experimental results are presented in section 4. An in-depth discussion and comparison with
other methods are presented in section 5. Finally, section 6 outlines concluding remarks.

2 Methodology

In this research work, an automated seizure detection system using a novel lightweight convolution transformer (LCT)
is proposed. The EEG data is initially processed and then segmented in a multi-channel form that makes the window in
a 2D form similar to images. LCT consists of two novel architectures compared to ViT, these two are sequence pooling
and convolutional tokenizer. The LCT is evaluated on the segmented ictal and interictal portion of CHB-MIT scalp
multi-channel EEG dataset.

2.1 Data description

Long-term scalp EEG recordings were obtained at the Children’s Hospital Boston and made available to the public
through https://physionet.org as a CHB-MIT scalp EEG dataset. This dataset was utilised to assess the efficacy of the
study described by [Shoeb et al., 2004]. Twenty-three paediatric patients with intractable seizure disorders provided
the data for this recording. The 21 electrodes used to record 18-23 channels of electrical brain activity are labelled
according to the international 10-20 electrode placement standard. The signal has been band-pass filtered between 0
to 128 Hz and sampled at 256 Hz. Chb-24 data is excluded from the experiment due to the unavailability of suitable
interictal periods. Patients diagnosed with epilepsy often experience seizures that last for a considerably shorter amount
of time in comparison to their interictal period. A common problem in detecting seizures in EEG data is an imbalance
between the number of ictal and interictal periods [Yuan et al., 2017a]. Classifiers tend to favour the class that has the
most data segments due to a bias introduced during the training process of classification models. In order to create a
balanced dataset, it was decided that there should be the same amount of interictal as ictal segments. For this reason,
only eighteen consistent channels C3-P3, F7-T7, P7-O1, FP1-F7, FP1-F3, P3-O1, FP2-F8, T7-P7, F3-C3, T8-P8, F4-C4,
F8-T8, FP2-F4, CZ-PZ, P8-O2, C4-P4, FZ-CZ, and P4-O2 are considered in this work [Rukhsar et al., 2019].

2.2 Data preprocessing and segmentation

Before the training phase, the EEG dataset is pre-processed by applying z-score normalisation to the stacked datasets of
each individual patient for normal and seizure class. This normalization is performed on all channels simultaneously to
ensure that data has mean µX and standard deviation σX , according to (1).

X̂ =
X − µX

σX
(1)

A single EEG segment is represented as a matrix of dimension (N × L) where N denotes the number of channels,
and L is the sequence length = 256× segment duration. Segment length of [0.0625, 0.125, 0.25, 0.50, 0.75, 1.0, 1.5,
and 2.0] sec with 25% overlapping segment is used for evaluating the proposed architecture. As an example, a 1 sec
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Figure 1: The detailed structure of transformer module: (a) Scaled dot-product attention, (b) Multi-head attention

segment is represented as an 18× 256 dimensional matrix, with N = 18 chosen for the reasons explained earlier. The
segments of the EEG dataset are then formed by putting all the ictal and interictal of all 23 patients in one matrix whose
dimension is (2K ×N × L), where K represents the number of the interictal or ictal segments.

2.3 Transformer Architecture

Transformers are structures designed to handle sequential signals and are the cutting edge for natural language processing
(NLP) jobs. Despite the fact that the current research has explored its applications from computer vision [Dosovitskiy
et al., 2021] to drug response prediction [Ott et al., 2018], the same is yet not much explored with multi-channel
time series signals, such as scalp EEG. When comparing NLP with EEG processing, it can be seen that both include
sequential data, and an event from a short-term EEG segment of a time series signal can be understood in the context of
the word vectors in NLP. Similarly, the representation of a sentence in matrix form can be similar to a multichannel
EEG segment, where the single channel data can be considered as a one-hot vector.

The transformer is free from any convolution or recurrence architecture and it simply relies on attention mechanism.
This architecture uses an encoder and decoder with an attention mechanism to concentrate on the regions that are
of utmost importance for a particular input and thus devote more computing resources to these regions. [Vaswani
et al., 2017] used the Scaled Dot-Product attention as depicted in Fig.1(a). The attention mechanism multiplied the
input vector by three weight matrices [WQ,WK ,WV ] to produce the queries vector, keys vector, and values vector
designated as Q, K, and V, respectively, is described in (2). The dimensions of the three vectors are denoted by dq, dk,
and dv respectively. The self-attention (SA) of data sequence X̂ can be calculated by taking the softmax of scaled
dot-product of the queries (Q) and keys (K) by

√
dk and multiplying the values vector (V), as expressed in (3).

[Q,K, V ] = X̂[WQ,WK ,WV ] (2)

SA(X̂) = softmax

(
QKT

√
dk

)
V (3)

Where the projections are parameter matrices WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and WV ∈ Rdmodel×dv . The
“Scaled Dot Product Attention" layers that comprise multi-head attention allowed the model to jointly focus on data
from several representation sub-spaces at various places [Vaswani et al., 2017]. This “Multi-Head Attention" is shown
in Fig 1(b) and can be expressed as:

MultiHead(X̂) = Concat(SA1(X̂), . . . , SAh(X̂))W o (4)

Where the projections are parameter metric W o ∈ Rh×dv×dmodel . In this encoder architecture, the vector dimensions
dk = dv = dmodel/h = 64 for h=2.
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Figure 2: In the transformer encoder, norm stands for normalization, and MLP as multilayer perceptron

2.4 Vision Transformer

Vision transformer (ViT) is a transformer architecture that has been modified to take images as input. ViT can therefore
handle 2D images as input rather than 1D sequential data. It begins by generating 2D patches from the input, and
then sends these patches and their associated positional embeddings onto a transformer encoder (see Fig. 2). A class
token was used by [Dosovitskiy et al., 2021] for classification by adding it to the linear projection of the flattened
patches. This input stack of the sequence is processed by the transformer encoder, and then the class token is used by
the multilayer perceptron (MLP) layer for the classification of the corresponding class labels. The Multi-Head Attention
mechanism in ViT stacks data from each head of the model and concatenates it into a single output.

3 Lightweight Transformer

We adopt the original transformer [Dosovitskiy et al., 2021] and vision transformer [Vaswani et al., 2017] models
to create the proposed model architecture. The transformer encoder consists of a normalization layer, multi-head
self-attention layer, dropout layer, and MLP layer. To mitigate the vanishing gradient, residual connections are present
in the encoder. The transformers do not generalise well when trained on an insufficient quantity of data because they
lack several of the inductive biases present in CNNs, such as translation equivariance and localization [Sun et al.,
2022] [Hassani et al., 2022]. Therefore, the inclusion of CNN layers in the transformer may lead to a lightweight
transformer. Extraction of relevant information from the encoder output by using attention-based pooling may enhance
the performance and eliminate the use of class token from ViT.

3.1 Sequence Pooling

Learnable class token has been used in ViT and other common transformer-based classifiers to map the sequential
output to a singular class index, and later feeding it to the classifier. Global average pooling is another frequent
approach that has been demonstrated to be superior in various circumstances. We present sequence pooling (SeqPool),
an attention-based technique that pools over the output token sequence. Motivation for the use of SeqPool is that the
output sequence contains relevant information across different channels of the EEG signals. Therefore, preserving this
information can enhance performance with no additional requirements of the class token. Additionally, by forwarding
one less token, this adjustment somewhat reduces computation. The output sequence mapped in this operation using the
transformation T : Rb×n×d → Rb×d, can be expressed:
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Figure 3: Proposed lightweight convolution transformer (LCT) architecture and flow diagram

YL = f(X̂) ∈ Rb×n×d (5)

where aL is the result of an L-layer transformer encoder f , b is the size of the batch, n is the number of sequences,
and d is the overall dimension of the embedding. aL is fed to a linear layer g(aL) ∈ Rd×1, and softmax activation is
applied to it, as expressed in (6)

Ŷ = softmax(g(YL)
T ) ∈ Rb×1×n (6)

This provides a significant weighting for each input sequence, which can be expressed as in the case of self-attention as
expressed in (7).

S = Ŷ YL = softmax(g(YL)
T )× YL ∈ Rb×1×d (7)

By reshaping the output to S ∈ Rb×d and the reshaped output is then sent to MLP for classification. The SeqPool is
able to make the model to weigh the embedding of latent space produced by transformer encoder and correlate data
across the different input sequence. This may be understood as paying attention to the sequential data, where important
weights are assigned to the sequence of data after the encoder has processed it. The addition of the SeqPool block to the
ViT eliminates the need of a class token. Consequently, a computationally efficient architecture is created that can be
denoted as a lightweight vision transformer (LVT).

3.2 Convolution Tokenizer

We altered the LVT by replacing its patch embedding approach with a straightforward convolution block in order to
incorporate an inductive bias into the model. This block follows a conventional design, which consists of two single
convolution layers, ReLU activation, and a max pool layer. For a given 2D signal or feature map X̂ ∈ RH×W×C :

X̂0 = maxpool
(
ReLU(conv2d(X̂))

)
(8)
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Where H , W , and C represent the height, width, and channel respectively in case of image. In this work, H represents
the number of EEG Channels, W is the length of the segment, and C = 1. Here the 2D convolution (Conv2d) operation
has d filters, the same number as the embedding dimension of the transformer architecture. Furthermore, the max
pool and convolution operations may overlap, which might boost the performance by adding inductive biases. This
enables the proposed model to preserve local spatial information. Furthermore, by incorporating this convolutional
block, the model have more flexibility than models like ViT. Because of the convolution tokenizer, the LCT is no
longer restricted to input resolutions that are precisely divided by the pre-set patch size. As the convolutions will be
more effective, and hence resulting into richer tokens for the transformer, we employed to embed the multi-channel
EEG signal into a latent representation. The down sampling of the input feature map results in fewer tokens, which
significantly reduces computations since self-attention has a quadratic time and space complexity with respect to the
token size. The proposed model architecture and its flow diagram are shown in Fig. 3

The lightweight convolution transformer (LCT) is created by the novel convolutional tokenizer along with sequence
pooling. We used the notation of LCT variants with the number of transformer encoder layers and heads of MHA. For
instance, LCT-3/2 has three encoder layers, and two heads of MHA.

4 Experimental Results

The ictal and interictal data are extracted from all patients and concatenated in single seizure and interictal class except
chb-24 due to insufficient interictal data in it. To ensure consistency, channels are chosen that are common among all
patients. There are only eighteen such channels, namely P7-O1, FP1-F7, FP1-F3, C3-P3, F7-T7, P3-O1, FP2-F8, T7-P7,
F3-C3, F8-T8, FP2-F4, T8-P8, F4-C4, CZ-PZ, P8-O2, P4-O2,C4-P4, and FZ-CZ, considered in this work. The processed
multi-channel EEG dataset is segmented using different time durations [0.0625, 0.125, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0]
secs with 25% overlapping. For a single segment of length 1 sec of data, the segment dimension can be 18× 256 with
64 overlapping data points. The segmented dataset, in this case, is reshaped into (Number of segments, 18, 256, 1).
Furthermore, the segmented dataset is split into 75% and 25% for training and testing respectively. The 10% of the
raining data is furthermore assigned for validating the model, and the remaining is used for fine-tuning of weights and
biases.

To achieve optimal performance and prevent over-fitting, the training process is repeated multiple times, upto 300
epochs, and is stopped when the specified stopping criteria is met. Further, the optimization of the model during the
training process is accomplished by adjusting the hyperparameters, as given in Table 1. One optimization technique that
is used is step decay, which gradually reduces the learning rate at set intervals (every 25 epochs) by a specific factor
(0.1) starting from the initial value (0.001) using the Adam optimizer. Lastly, the model is updated after processing a
batch of 300 input segments.

Input Size Optimizer Learning rate Learning rate schedule Learning rate drop Batch size Epochs
(18× 256× 1) Adam 1e−3 Step decay 1e−1 300 300

Table 1: Hyperparameters used for optimization during training the models for one second segment length

To show that vision transformers can perform better than convolutional neural networks, even when the data sets are
small, we compare the ViT with and without convolution tokenizer. Initially, ViT is modified by adding sequential
pooling (SeqPool) to the transformer encoder instead of a class token. After that, the resulting vision transformer is
further modified with the convolution tokenizer instead of patches. Addition of SeqPool in ViT results in a lightweight
vision transformer (LVT), and further modification of the convolution tokenizer results in a lightweight convolution
transformer (LCT).
Vision Transformer (ViT): In this work, we implemented the vision transformer proposed by [Dosovitskiy et al.,
2021] for seizure detection using the multi-channel time series data. The number of samples in the segment is taken
252 samples ≈ 1 sec with 0.25 sec overlapping. The dimension of the constructed EEG segmented data is (Number of
segments ×18× 252× 1). One segment is treated as 2D images, and 14 patches of dimension 18× 18 are extracted.
The extracted patches are flattened (18× 18 = 324) and projected into 529 to make the dimension consistent (Number
of segments ×14× 529). Furthermore, a learnable class token is concatenated with the reshaped patches.
Lightweight Vision Transformer (LVT): The performance of ViT with very few number of encoder layers is relatively
not good even though it has a lot of parameters. To make the ViT able to escape from the big data paradigm, we need to
boost the performance of ViT by making appropriate modifications to its architecture. The first modification introduced
in the ViT is the sequence pooling (SeqPool). The SeqPool processing can be thought of as paying attention to the
sequential data, where importance to the weights are being assigned across the sequence of data of different channels,
after the transformer encoder has processed it. The SeqPool extracts relevant information and eliminates the use of the
class token.
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Figure 4: Performance parameters of the proposed models with ViT

Lightweight Convolution Transformer (LCT): Since the ViT and LVT used the patches of 2D EEG signal, there is
an inherent issue of information loss between the edges of the patches. This issue is resolved by using a max pooling
with overlapping convolution layers as described in section 3.2. The proposed model should have some relational bias,
as a result, the transformer becomes capable of learning from the information that is more thoroughly integrated. In this
convolution tokenization, we used two blocks of overlapping convolution followed by a maxpool with 32 and 128 filters
in the respective blocks. The 2D conv layer is constructed using kernel size = (3× 3), stride = (1× 1), padding = valid,
and activation = Relu with max pool parameters of kernel size = (3× 3), stride = (2× 2), and padding = same. This
layer transforms one segment EEG data of dimension (18× 256× 1) to (189× 128).

To evaluate the performance, the findings are reported using standard performance indicators so that we may assess how
well the proposed model works. The performance indicators used are accuracy, precision, recall, and F1-score. We have
evaluated the proposed models on the publicly available CHB-MIT dataset. Table 2 summarizes the performance of the
VIT and two modified version of it with different encoder layers and multi-head attention. From this table, it can be
observed how well SeqPool and then convolution tokenizer enhance the performance of the transformer for seizure
detection. A detailed performance analysis as a function of different segment lengths is presented in Fig. 5. From this,
it can be observed, that a consistent performance is found for the segment length 0.5 sec for different variants of LCT as
given in Table 3. From the performance for the two variants, i.e. LCT 1/2 and LCT 2/2, the best segment length for the
detection found is 0.5 sec because the performance at this length is consistent among all variants. The best performance
and faster responses of LCT are at smaller segment lengths due to the quadratic computational complexity of MHA.
This is also a desired characteristic of a model for seizure detection to provide a response at a faster rate.

Based on these observations, a comparative analysis of the performance of the proposed model with state-of-the-art
methods on the same dataset is shown in Table 4. As far as we are aware, very few studies have been conducted using
the CHB-MIT dataset for cross-patient seizure detection. [Yuan et al., 2017b] used a context-learning based approach
for fusing multi-features. The fused features are classified using SVM method and reported 95.71% accuracy. On the
same dataset, another cross-patient detection work was reported by Jemal et al. [Jemal et al., 2021]. In this work, a
CNN based on separable depthwise convolution is proposed for automatic cross-subject seizure detection. The proposed
LCT model outperformed the SOTA methods with less computational complexity and higher detection accuracy. There
are many seizure detection works on the same CHB-MIT dataset reported, but these works are for patient-specific
cases only. [Deng et al., 2018] developed an improved transductive transfer learning Takagi-Sugeno-Kang fuzzy
system (ETTL-TSK-FS) and obtained a classification accuracy of 94.00%. The channel-embedding spectral-temporal
squeeze-and-excitation network (CE-stSENet) was introduced by [Li et al., 2020], reported detection accuracy of
95.96%. Recently, [Zhao et al., 2023] proposed a model based on CNN and transformer to detect seizures. They
reported an accuracy of 98.76%, by using CNN for local feature extraction, and the transformer for global features. The
comparative performance of the proposed model with ViT is shown in Fig. 4. In conclusion, our system provided a
higher sensitivity, recall, and F1-score for cross-patient seizure detection on the CHB-MIT dataset.
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Model Parameters Accuracy (%) Precision (%) Recall (%) F1-score (%)

ViT

1/2 86.19 87.28 86.65 0.869
2/2 89.07 90.52 89.56 0.900
3/2 83.73 85.43 81.79 0.836
4/2 73.88 74.67 73.21 0.739
4/3 71.69 73.17 77.06 0.751

LVT

1/2 94.93 94.64 94.45 0.945
2/2 94.47 93.72 95.28 0.945
3/2 90.41 91.22 89.49 0.903
4/2 84.34 85.01 83.42 0.842
4/3 81.12 81.50 80.58 0.810

LCT

1/2 95.91 94.87 95.23 0.951
2/2 94.73 95.11 94.12 0.946
3/2 94.15 94.43 93.13 0.938
4/2 93.79 92.62 93.29 0.929
4/3 93.70 92.52 92.42 0.925

Table 2: The performance of each model with a different number of encoder layers and heads for 300 epochs and 1 sec
segment length.

Model Performance parameters W= 0.5 sec/OL=0.125 sec W= 1 sec/OL=0.25 sec W= 2 sec/OL= 0.5 sec

LCT 1/2

Accuracy 96.31 95.97 93.03
Precision 95.81 97.34 95.37

Recall 96.82 94.56 92.67
F1-score 0.963 0.959 0.940

LCT 2/2

Accuracy 95.06 96.07 93.01
Precision 95.61 94.74 92.55

Recall 94.38 97.58 92.71
F1-score 0.949 0.961 0.926

LCT 3/2
Accuracy 95.16 95.77 92.26
Precision 95.41 95.25 92.49

Recall 94.81 96.38 93.16
F1-score 0.951 0.958 0.928

LCT 4/2
Accuracy 94.61 93.69 92.15
Precision 93.57 93.71 91.12

Recall 92.55 93.05 90.81
F1-score 0.930 0.934 0.909

W denotes the length of the segment and OL is the length of overlapping .
Table 3: The performance of LCT variants at different window lengths with 25% overlapping.

5 Discussion

In the proposed method, a novel lightweight convolution transformer is proposed based on a vision transformer. The
proposed work shows that a ViT can be more effective with a smaller dataset by combining the attention-based pooling
and the ability of feature extraction by convolutional tokenizer. Since the use of transformers in natural language
processing has been found to be effective, we explored it for EEG time series signals. The ability of transformer
architecture to extract relevant information available in different EEG channels at different time instants, is explored for
seizure detection. Although transformer models perform well on their own, in this work, it is found that fusion models
that include convolutional layers and sequence pooling further boost their performances. This is likely attributable to
the fact that CNN adds inductive biases in the model and is, therefore quite effective in feature extraction. Including
positional embedding (PE) prior to the transformer processing has been shown to considerably enhance the accuracy
of the model. The results on the CHB-MIT dataset by the proposed model, show significant better performance as
compared to competitive methods for cross-patients cases.
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Figure 5: Performance indicators at different segment lengths by the proposed model (a) LCT 1/2, and (b) LCT 2/2.

Several researchers have trained seizure classification algorithms using EEG data from individual patients [Rukhsar
et al., 2022]. Patient-specific detection often involves combining data from many channels to gather additional samples
and splitting it into multiple trials of the same subject to a training and testing set. While the patient-specific approach
yields better accuracy, the trained model is not well suited on other patients. In this work, a generalized model
for seizure detection is developed by working on cross-patient data for the training and validation, on twenty-three
patients. Adaptability and resilience are key features of this extended model, making it suitable for usage with diverse
characteristics of patients and more general-purpose EEG dataset-based tasks.

Prior transformer-based approaches for seizure detection work mostly focused on patient-specific cases, and not
on cross-patient seizure identification, with smaller learnable parameters of the transformer. In this work, we have
introduced inductive biases as present in CNNs, such as translation equivariance and localization, by using a convolution
tokenizer instead of patches. An attention-based pooling technique is used to extract relevant information from the
output token sequence that contains relevant information across different channels of the EEG signal. Therefore the
inclusion of SeqPool and convolution tokenizer makes the ViT capable of learning the relevant information quickly and,
therefore, effectively classifies the ictal and interictal with a single encoder layer.

Initially, the raw dataset is normalized by applying z-score normalization. To prepare the data into 2D form, multi-
channel EEG data at different segment lengths are prepared with 25% overlapping. We presented ViT and modified
forms of it, namely LVT, and LCT, for seizure detection. The performance parameters of all the variants with different
encoder layers and heads are given in Table 2. From these results, it can be seen that the inclusion of SeqPool and
convolution tokenizer significantly improved the classification result. The best result by ViT model at two encoder
layers and two heads (ViT 2/2) is 89.07%. Addition of SeqPool before the classification MLP highly improved the
classification results with only one encoder layer. The results show that the token-based ViT looses information, and
hence more encoder layers are required. Also, this shows the superiority of attention-based pooling that leads to
lightweight transformers due to the reduction in the number of encoder layers. Furthermore, improvement is seen by the
inclusion of inductive biases of CNN layer as a convolution tokenizer instead of patches. Moreover, the proposed model
gains flexibility by employing this convolutional tokenizer block as opposed to models like ViT, which are limited to an
input segment length that is exactly divided by the preset patch size. The addition of SeqPool and convolution tokenizer
transformed the ViT into a lightweight convolution transformer (LCT). The details of performance of LCT 1/2 and LCT
2/2 as a function of different segment lengths is shown in fig. (5). At 0.5-sec segment length, a performance of 96.31%
accuracy and 0.9632 F1-score is achieved by LCT 1/2. The performance of different variants of LCT is shown in Table
3. It is observed that LCT performs better at smaller segment lengths, consequently, the computation speed is faster due
to the quadratic computational complexity of MHA O(P 2), where P is the the patch size.This is advantageous in the
case of seizure detection because we are able to detect seizures at smaller intervals, i.e., 0.5 sec. While classification
with small segment data is challenging, LCT at a smaller input segment improved the detection accuracy of the seizure
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detection system. This demonstrates the robustness and reliability of LCT for other applications based on multi-channel
EEG signals.

Authors Year Method Classification case Accuracy Precision Recall
[Li et al., 2020] 2020 CE-stSENet patient-specific 95.96 96.05 92.41

[Deng et al., 2018] 2018 TTL-FSs patient-specific 94.00 93.20 91.90
[Zhao et al., 2023] 2023 CNN+Transformer patient-specific 98.76 97.60 97.70

[Yuan et al., 2017b] 2017 WT-CtxFusionEEG cross-patient 95.71 96.08 98.65
[Jemal et al., 2021] 2021 CNN cross-patient 91.82 - 91.93

Ours 2023 LCT cross-patient 96.31 95.81 96.82
Table 4: Analysis of the proposed work in comparison to other SOTA methods on the same CHB-MIT dataset.

6 Conclusion

In this work, a lightweight convolution transformer (LCT) architecture that automatically learns spatial and temporal
information from multi-channel scalp EEG signals simultaneously is proposed. The raw multi-channel scalp EEG
data is used as the input for the model, and it does not require any extra feature engineering, pre-set patching, and
learnable classification token. The proposed model included inductive biases and attention-based pooling to extract
relevant information and eliminates the information loss at the edge of patches. It is also reduced to a single encoder
layer, and working better on smaller segment lengths, consequently reducing the computational cost. The LCT model
is capable of learning the correlated information between channels and different time instants simultaneously. Tests
results of the cross-patient cases on the CHB-MIT dataset at different segment lengths and LCT variants validate the
reliability and robustness of the model. It is hoped that the findings of this study will encourage the further development
of technologies for real time seizures detection system. This LCT model has the potential to meet the strong need for a
simpler architecture for seizure prediction. The proposed method is generic enough that can be adopted for other tasks
based on EEG data-base as well.
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