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Abstract

Background and Objective: Comorbidities, defined as the presence of
co-existing diseases, progress through complex temporal patterns among pa-
tients. Learning such dynamics from electronic health records is crucial for
understanding the coevolution of diseases. In general, medical records are
represented through temporal sequences of clinical variables together with
their diagnosis. However, we consider the specific problem where most of
the diagnoses are missing. We present a novel probabilistic generative model
with a three-fold objective: (i) identify and segment the medical history of
patients into treatments associated with comorbidities; (ii) learn the model
associated with each identified disease treatment; and (iii) discover subtypes
of patients with similar coevolution of comorbidities. Methods: To this
end, the model considers a latent structure for the sequences, where patients
are modeled by a latent class defined by the evolution of their comorbidities,
and each observed medical event of their clinical history is associated with
a latent disease. The learning process is performed using an Expectation-
Maximization algorithm that considers the exponential number of configu-
rations of the latent variables and is efficiently solved with dynamic pro-
gramming. Results: The evaluation of the method is carried out both on
synthetic and real world data: the experiments on synthetic data show that
the learning procedure allows the generative model underlying the data to
be recovered; the experiments on real medical data show accurate results
in the segmentation of sequences into different treatments, subtyping of pa-
tients and diagnosis imputation. Conclusion: We present an interpretable
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generative model that handles the incompleteness of EHRs and describes
the different joint evolution of coexisting diseases depending on the active
comorbidities of the patient at each moment.

Keywords: Comorbidity Modeling, Electronic Health Records, Latent
Variable Model, Markov Model, Probabilistic Generative Model

1. Introduction

Electronic health records (EHRs), which contain large amounts of infor-
mation about patients and their treatments over time, provide the opportu-
nity to build models which are able to extract knowledge about diseases and
their evolution. EHRs can be represented as temporal sequences of clinical
variables (e.g., diagnosis, procedures, medical services), where each sequence
chronologically collects the information of medical events from a single pa-
tient. Due to the increasing availability of medical data, disease progression
modeling has attracted a great deal of interest in two broad directions: the
discovery of meaningful patterns and intelligible representations of disease
dynamics through unsupervised learning [1, 2]; and the prediction of out-
comes with labeled information [3, 4, 5, 6].

In this work, we address the specific problem of modeling the joint pro-
gression of coexisting diseases when most of the diagnoses in EHRs are miss-
ing. Probabilistic models are a practical solution to face this challenge, not
only because they can handle missing data, but also because they account for
temporal relationships in data and are interpretable models that can extract
clinically meaningful representations from the inferred latent variables. In
the literature, most probabilistic models developed for disease progression
are based on variants of Hidden Markov models [2, 7, 8, 9, 10, 11, 12] or
are extensions of latent Dirichlet allocation [13, 14] that capture the evolu-
tion of disease trajectories through latent states. While medical events are
time-dependent variables, these models generally ignore the direct stochastic
dependence between such observations and are limited to modeling sequential
correlations of data only through latent states [11].

In general, existing models describe the evolution of single-disease trajec-
tories instead of their evolution in multiple co-existing diseases (comorbidi-
ties) settings [8, 10, 15, 16]. Including comorbidities in the structure of the
methods is crucial for a detailed insight into the co-occurrence patterns of
diseases, and in this sense, there still remains a need for developing an inter-
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pretable framework to capture and explain their joint progression patterns
[17]. The works that model the coexistence of diseases [2, 9, 13, 14, 18, 19] as-
sume that diagnosis labels are available at each patient visit, which might not
be true in reality in the EHRs. Moreover, diagnostic information is recorded
at the specific time the diagnosis is reported, however, in the records which
follow it might not be specified.

There also exist some comorbidity progression approaches based on deep
learning techniques that have been specifically built for predicting future out-
comes [20]. Some of them construct comorbidity networks or learn multilevel
embeddings of hospital visits to predict the onset of new diseases without pro-
viding insights into disease coevolution patterns over time [18, 19, 21, 22].
The main purpose of these latter models is to recognize the underlying struc-
ture within each hospital visit rather than identifying the hidden diagnosis of
most of the visits based on the dynamics of the clinical history. Some other
works have attempted to create interpretable Recurrent Neural Network-
based models [4, 5, 23] using attention mechanism to interpret hidden disease
dynamics and provide an explanation of their discriminative predictions. In
general, these methods are not motivated from a generative perspective and
do not face common challenges in the healthcare setting, such as limited data
availability, missingness or uncertainty in medical data [16, 17].

We propose a novel probabilistic generative model to address the chal-
lenges posed by EHRs, paying special attention to missing data. The ob-
jective of such a model is threefold: (i) identify and segment the medical
history of patients into treatments associated with each disease they suffer
from; (ii) learn the model associated with each identified disease treatment;
and (iii) discover subtypes of patients with similar patterns of coevolution
of comorbidities. For this purpose, the model considers a latent structure
for temporal sequences, where patients are modeled by a latent class defined
by the evolution patterns of their comorbidities, and each observed medical
event of their clinical histories is associated with a latent diagnosis. In other
words, we seek to extract diagnosis-associated subsequences from the com-
plete sequence of medical events (i.e., from the clinical history), where classes
represent similar coevolution of these subsequences of latent diagnoses.

The main contributions of this work are as follows:

• We propose a probabilistic generative model of medical treatments for
patients suffering from several comorbidities. The model builds on
Markov models to capture the transitions between medical events.
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• The generative model is trained on EHRs that are characterized by a
significant amount of missing data related to the diagnosis variable.

• The model allows different subtypes of patients to be identified accord-
ing to their evolution patterns of comorbidities and includes a genera-
tive submodel for the treatment of each comorbidity.

• We propose an Expectation-Maximization (EM) scheme with a dy-
namic programming-based method as an efficient learning algorithm
for the parameters of the model.

We use synthetic and real-world data to demonstrate the validity and
practical significance of the model. The experiments show the ability of
our method to model the progression of coexisting diseases and to extract
meaningful and individualized representations of the different treatments.

The remainder of this paper is organized as follows. Section II describes
the problem and the probabilistic generative model. In Section III, we present
the results of the synthetic data experiments that evaluate the performance
of the proposed method and the application of the model to real-world EHRs.
Section IV discusses the contributions and limitations of our approach and
draws the conclusions.

2. Methods

2.1. Problem formulation

A patient’s clinical history, denoted by h, is a sequence of medical data
collected during repeated hospital visits. Let A be the set of medical activities
and D the set of diagnoses, we define a patient’s EHRs as

h = (h1, ..., hm),

where ht = (at, dt) represents the t-th medical event of the patient, at ∈ A
is the medical specialty (for instance, oncology, hematology, cardiology, etc.)
attended and dt ∈ D the diagnosis/disease, for t = 1, ...,m. The sequence
of medical specialties a = (a1, ..., am) is an observable variable, while the
sequence of diagnoses d = (d1, ..., dm) is partially observed since it often
presents missing values.

The ultimate objective is to capture the different subtypes of joint evo-
lution of comorbidities in EHRs. For that, we first seek to identify and
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segment the medical history of patients into treatments associated with each
comorbidity d ∈ D. This is not a straightforward task as d is incomplete
(Fig. 1), and therefore, requires to estimate the diagnosis dt ∈ d for each
medical specialty visit at ∈ a. Furthermore, the priority of treating a disease
or ongoing medical therapies often involves the modification or interruption
of other treatments. For instance, the majority of anticancer therapies are
associated with some cardiovascular toxicities, ranging from asymptomatic
and transient to more clinically significant and long-lasting cardiac events
[24]. Depending on the previous existence of cardiovascular diseases and
their progression, patients are at higher risk for the development of subse-
quent cardiovascular injuries (e.g., heart failure), which would lead to closer
and more intense monitoring of such pathology and may affect the cancer
treatment. This means that the transition dynamics of comorbidities de-
pends not only on the subtype of patient, but also on the coexisting diseases
of the patient at each moment.

Radiology Gynecology Cardiology Gynecology Oncology
Intensive
Medicine

Cardiology
Radio-
therapy

C50 ? I42 ? ? ? ? C50

a

d

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 7 Visit 8 Visit 9

1

Figure 1: Example of EHRs with missing diagnosis information. ICD-10 code C50 corre-
sponds to breast cancer diagnosis and I42 is a cardiomyopathy diagnosis.

The problem can be seen as an unsupervised classification of a set of
treatments with different progression dynamics of their comorbidities.

2.2. Model definition

Our proposed generative model is built on a Markov model that enables
the description of the sequential evolution of data through a series of transi-
tions between medical events (see Fig 2). Let a = (a1, ..., am) be the observed
sequence of medical actions that describe a patient’s trajectory, where at be-
longs to the set of medical specialties A. We assume that a has an associated
hidden structure of comorbidities that relates medical actions to diseases.
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Figure 2: Proposed comorbidity model defined by the conditional distributions
p(adt:t|adt:t′ , dt), p(dt|c, st) and p(st|st−1, dt−1, at−1) for observed sequences of actions a,
latent sequence of active disease states s, latent sequences of diseases d and latent classes
c.

This means that a patient trajectory consists of subsequences of medical ac-
tions associated with different diseases, ad for d ∈ D, and these subsequences
are mixed in a way that constitutes the clinical history h. However, extract-
ing the subsequences ad for d ∈ D is not trivial since most of the diagnosis
are missing.

In this hidden structure, the presence or absence of comorbidities over
time is captured by a sequence of active disease states s = (s1, ..., sm) asso-
ciated with a, where each state st is the set of active diseases at each time
t = 1, ...,m and represents the comorbidity patterns of a patient in t. The
set of active disease states is defined as S = {0, 1}|D| where 1 indicates that
the disease d ∈ D is active at a specific time and 0 means that disease is
not active in the patient at that time. The transition dynamics of these
active disease states define the activation and deactivation of diseases, and
therefore, the possible occurrence of diseases over time. Let d = (d1, ..., dm)
be the latent sequence of diseases, where dt belongs to the set of diagnoses
D = {1, ..., r} for t = 1, ...,m. The active disease states determine the
distribution of such diseases over time, since the dynamics of the diseases
depend on which comorbidities are active at the same time. Therefore, when
a comorbidity is activated or deactivated, the distribution of the remaining
active diseases changes. We further consider that once an active disease is
deactivated, it cannot be present in the patient again.

Finally, let c be the latent class which a belongs to. The class c belongs
to a set C = {1, ..., k}, which represents the subtypes of similar coevolution
patterns of comorbidities among patients. The role of this latent variable is
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to capture the heterogeneity among the clinical histories based on the joint
evolution of diseases. By doing so, it enables the classification of patients into
distinct groups characterized by diverse comorbidity patterns over time. The
classes influence the distribution of diseases but do not affect the transition
dynamics of medical actions. That is, the generative model assumes that the
stochastic model of the treatment of a disease is common to all patients, while
it is the evolution of diseases over time that creates the different subgroups
of patients.

The proposal for the generative model is as follows (see Fig. 2):

a) Draw a class c ∼Mult(θC)

b) Sample the initial active disease state (set of potential comorbidities),
the initial disease, and the initial medical action,

s1 ∼ Cat(πS),

d1|s1, c ∼ Cat(πs1,c
D ), a1|d1 ∼ Cat(πd1

A )

c) For each time t:

i) Sample an active disease state from p(st|st−1, dt−1, at−1), that is,

st|st−1, dt−1, at−1 ∼ Cat(θ
st−1,dt−1,at−1

S )

ii) Sample a disease dt from p(dt|st, c),

dt|st, c ∼ Cat(θst,c
D )

iii) Sample an action adt:t from p(adt:t|dt, adt:t′), that is,

adt:t|dt, adt:t′ ∼ Cat(θ
dt,adt:t′

A )

where ad:t is the t-th action associated with the disease d and ad:t′ the previous
action associated with the same disease d, so that ad is the treatment of the
disease d.

Translating the generative process into a joint probability model results
in the following expression (Fig. 2):

p(a, s,d, c) = p(c)
m∏
t=1

p(st|st−1, dt−1, at−1) · p(dt|c, st) · p(ad:t|dt, ad:t′) (1)
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where p(s1|s0, d0, a0) = p(s1) and p(ad:t|d, ad:0) = p(ad:t|d) for any value of
t = 1, ...,m.

In light of the above, p(c) is a discrete probability distribution that de-
scribes the probability of drawing a class from the set of classes of treatments
C. We define θC as the set of such probabilities that we have to learn:

θC = {p(c) : c ∈ C}.

The active disease states determine the coexisting diseases at each time
t. The probability of transition from a state s to s′ is defined by a Markov
model, whose parameters are:

θS = {θs,d,a
S : s ∈ S, d ∈ D, a ∈ A} = {p(s′|s, d, a) : s, s′ ∈ S, d ∈ D, a ∈ A}.

Diseases follow a categorical distribution conditioned to the set of coex-
isting diseases st ∈ S at time t and the class of patient c ∈ C. Thus, for
each active disease state s ∈ S and each class c ∈ C, we have the following
parameters:

θD = {θs,c
D : s ∈ S, c ∈ C} = {p(d|s, c) : d ∈ D, s ∈ S, c ∈ C}.

In addition, we define a Markov model from which the medical actions are
drawn. The conditional distributions of this model are given by a set of |D|
transition matrices of size |A| × |A| whose model parameters are:

θA = {θd,a
A : d ∈ D, a ∈ A} = {p(a′|a, d) : a, a′ ∈ A, d ∈ D}.

Finally, πS, π
s,c
D and πd

A are the parameters of the initial model for the
active disease states, diseases and medical actions, respectively.

2.3. Maximum likelihood parameter estimation

In this section, we introduce the learning procedure of the model param-
eters. Let A = (a1, ..., aN) be the set of observed sequences of actions and let
S = (s1, ..., sN) be the associated set of sequences of active disease states. As
we mentioned in Section 2.1, the sequence of diseases d is partially observed,
providing an intuition about the onset and end of the diseases, and therefore,
about their activation and deactivation timestamps. However, note that the
activation time of a disease tends to be inherently unobservable in EHRs
since the first and last records of a diagnosis may not reliably indicate the
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real time of disease onset and end. We define a time parameter τ to deter-
mine the time interval in which a disease is active (tinit − τ, tend + τ), where
tinit and tend are the first and last time a diagnosis is observed in EHRs,
respectively. Thus, we determine the sequence of active disease states for
each sequence of actions a ∈ A in such a way that the corresponding set of
sequences of diseases, Da, is limited to all the possible sequences of diseases
that coherently fit the existing diagnoses in EHRs.

To learn the distribution underlying the sequences, we seek to maximize
the following weighted log-likelihood of the data:

max
Θ

∑
a∈A
s∈S

∑
d∈Da

∑
c∈C

p(s,d, c|a) · log p(a, s,d, c;Θ) (2)

where Da is the set of sequences of diseases for a, p(s,d, c|a) is the con-
tribution of the tuple (a, s,d, c) to the model, and Θ = {θA,θD,θS,θC}.
The reason for weighting the log-likelihood is to make each sequence a ∈ A
contribute to the model regardless of its length, and this is achieved because∑

c∈C

∑
d∈Da

p(s,d, c|a) = 1. (3)

Note that the maximum size of the set Da is |D||a| and exponentially
increases with the length of the sequence a. Indeed, the parameters depend
on the number of diseases we jointly model, and, in this work, we assume
that the number of coexisting diseases at a specific time, st, is moderate even
though the total number of diseases |D| can be large.

To find the parameters that maximize the log-likelihood in Eq. 2, we use
the iterative EM algorithm.

E-step: In this step, we have to consider all the possible configurations of
latent diseases d ∈ Da for the observed sequences of actions a ∈ A and
compute their probability for all the classes in C (Eq. 1). A brute force
approach would require an exponential number of computations due to the
exponential size of Da, hence, we propose an algorithm based on dynamic
programming (Appendix 4) that allows us to solve it in polynomial time.
Instead of computing the probability of all the configurations (d, c) for each
a one by one, the proposed learning method computes given a sequence of
actions a, a sequence of co-occurrence states s and a class c, the probability of
all the sequences of diseases that have the disease d at time t, p(dt = d|c, st, a).
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M-step: In the maximization step we have to update the parameters of the
model with the probabilities computed in the previous E-step. If θd,a

′
a , θs

′,d,a
s , θs,cd ,

θc denote a component in θd,a′

A , θs′,d,a
S , θs,c

D , θC , respectively, the parameters
of the model are updated as follows:

θd,a
′

a =

∑
a∈A

∑|a|
t=1

∑
t′<t 1a′,a(ad:t′ , ad:t) · p(dt = d|a, s)∑

a∈A
∑

a∈A
∑|a|

t=1

∑
t′<t 1a′,a(ad:t′ , ad:t) · p(dt = d|a, s)

(4)

where

1a′,a(ad:t′ , ad:t) =

{
1 if ad:t′ = a′, ad:t = a

0 otherwise.
(5)

θs
′,d,a

s =

∑
a∈A

∑|a|
t=1 1a,s′,s(at−1, st−1, st) · p(dt−1 = d|a, s)∑

s∈S
∑

a∈A
∑|a|

t=1 1a,s′,s(at−1, st−1, st) · p(dt−1 = d|a, s)
(6)

where

1a,s′,s(at−1, st−1, st) =

{
1 if at−1 = a, st−1 = s′, st = s

0 otherwise.

θs,cd =

∑
a∈A

∑|a|
t=1 1s(st) · p(dt = d, c|a, s)∑

d∈D
∑

a∈A
∑|a|

t=1 1s(st) · p(dt = d, c|a, s)
(7)

θc =

∑
a∈A p(c|a, s)∑

c∈C
∑

a∈A p(c|a, s)
(8)

The proposed learning algorithm based on dynamic programming allows
the E-step to be polynomially solved, where the exponential number of con-
figurations of diseases and classes for a given sequence of actions is considered.
Furthermore, the complexity of the M-step is of order O(

∑
a∈A |a|), that is,

the total number of medical actions of the set A.
A large amount of configurations of diseases, classes, and actions creates

problems of sparsity in the parameters of the model. Once a parameter
reaches a value of 0, that parameter cannot obtain a different value in the
subsequent iterations. We add a smoothing parameter to the model in each
iteration of the EM algorithm to prevent this sparsity problem.
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3. Experimental evaluation

We present two sets of experiments to validate the model. The goal of the
first set of experiments is to evaluate the ability of our learning algorithm to
recover the original generative model underlying the data, for which we use
synthetic data. The second set of experiments show some applications of the
generative comorbidity model on real-world data, such as the segmentation of
the medical history of a patient into different treatments, the identification of
the different classes based on the joint progression of comorbidities, and the
imputation of missing diagnoses. The corresponding source code is publicly
available1.

3.1. Results on synthetic experiments

We perform experiments on synthetic data to show the behavior of the
learning algorithm in controlled environments. In these experiments the di-
agnoses are considered unknown in the learning process. Since this is an
artificial domain, the evaluation of the learned model is carried out using the
log-likelihood in training and test data so that we can quantify the fitting
and generalization abilities, respectively.

To this end, the first step of the experiment is to build a original generative
model. In order to do that, we consider random parameters. For simplicity,
we perform experiments with 2 and 3 comorbidities. In both cases, we set 2
classes and 10 medical actions. The parameters of the generative model are
created as follows: p(c), p(a′|a, d) and p(d|s, c) are sampled from a uniform
Dirichlet distribution for c ∈ C, a, a′ ∈ A and d ∈ D; and p(s′|s, d, a)
is also sampled from a Dirichlet distribution with α = 1 but limiting the
active disease states to only activate or deactivate a single disease in each
transition. To avoid the generative model taking values too close to 0, we
smooth the sufficient statistics p(c), p(a′|a, d) and p(d|s, c) by adding 10−2,
and p(s|s′, d, a) by adding 10−3.

From the generative model we sample training sets of sizesN = {100, 300,
500, 800, 1000, 1200, 1500} and a test set of size 1500. We learn the parame-
ters of the model Θn = {θn

C ,θ
n
S,θ

n
D,θ

n
A} for each training set of size n ∈ N

using the EM algorithm proposed in Section 2.3. At each iteration of the
EM algorithm the sufficient statistics are smoothed by adding 10−2 to p(c),

1https://github.com/onintzezaballa/ComorbidityGenerativeModel
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Figure 3: Fitting and generalization of synthetic generative models with 2 comorbidities.

p(a|a′, d) and p(d|s, c), and 10−3 to p(s|s′, a, d). Once the model has con-
verged, we measure the quality of these learned models with the log-likelihood
of the data (Eq. 2) normalized by the total number of actions in each dataset
of size n ∈ N to make the results comparable.

This experiment is repeated five times, considering, for each of them, a
different original generative model. Fig. 3 and Fig. 4 show the fitting and
generalization ability of the method through the average log-likelihood of 2
and 3 comorbidities. The average log-likelihood of the learned models on
the training sets (orange solid line) quantifies the fitting of the models to
the data, while on the test set (blue solid lines) it measures its ability of
generalization. The dotted lines correspond to the average log-likelihood of
the 5 original generative models evaluated in the training (orange) and test
(blue) datasets. We can see that as the sample size increases, the curves
that quantify the fitting and generalization of the learned models converge
to the curves of the original generative models. This means that, given
a sufficiently large dataset, the proposed learning algorithm can reach the
original generative model underlying the data.

3.2. Results on real data

We show the utility of the generative model on patients with breast can-
cer and cardiovascular diseases, which are highly related comorbidities [24].
We use the generative model in two different applications: we first perform
an experiment to show the segmentation of individual clinical histories into
disease treatments; and then, a population-level experiment to obtain the co-
evolution patterns of these two comorbidities. We further assess the results
of these experiments by predicting the diagnosis of unseen instances.
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Figure 4: Fitting and generalization of synthetic generative models with 3 comorbidities.

3.2.1. Data description

We use a dataset provided by the public healthcare system of the Basque
Country, Spain. These EHRs cover every hospital visit of patients from
2016 to 2019. As a use case, we focus our attention on the comorbidities of
the breast cancer population, specifically on cardiovascular diseases. These
diseases are biologically connected through some deleterious effects of cancer
treatment on cardiovascular health [24]. The resulting dataset consists of 90
clinical histories, whose average length is 140 medical actions, and they are
generated by 29 unique medical specialties (selected following the process in
[25]). The percentage of missing diagnoses of these EHRs is 81%.

3.2.2. Hyperparameters and model specifications

We consider breast cancer patients with any diagnosis related to cardio-
vascular diseases, that is, |D| = 2. According to clinical guidelines [24],
patients evolve according to their severity of short-term cardiotoxic effects
caused by anticancer therapies. In order to have a sufficient number of pa-
tients per class and after conducting experiments for different values of the
latent class, we have concluded that |C| = 2 is appropriate for the available
data.

Besides, since we are in a realistic scenario, we include prior diagnosis
knowledge in the model, so that we can obtain more accurate results and
reduce the model complexity. Since 19% of the diagnoses are available, we
force them to remain fixed in their original time position in the latent se-
quences of diseases. Varying the value of τ can have a significant influence on
both accuracy and computational efficiency. Through experiments conducted
with different values of τ = {90, 180, 360, 720, 1080, 1440}, we observed that
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setting τ to 720 days gets a good balance between computational efficiency
and model performance. Therefore, to establish the active disease states, we
assume that the transition between two medical actions of the same disease
may occur within a maximum interval of τ = 720 days.

ACTION 1 ACTION 2 ACTION 3 ACTION 4 ACTION 5 ACTION 6 ACTION 7 ACTION 8 ACTION 9 ACTION 10 ACTION 11

BREAST CANCER Radiology Oncology Oncology Oncology Oncology Oncology Oncology Oncology Radiology

CARDIOVASCULAR 
DISEASE

Cardiology Cardiology

ACTION 12 ACTION 13 ACTION 14 ACTION 15 ACTION 16 ACTION 17 ACTION 18 ACTION 19 ACTION 20 ACTION 21 ACTION 22

BREAST CANCER Gynecology Oncology Anesthesia Anesthesia Surgery Oncological 
gynecology

Pathological 
anatomy

Gynecology Radiotherapy

CARDIOVASCULAR 
DISEASE

Cardiology Radiology

ACTION 23 ACTION 24 ACTION 25 ACTION 26 ACTION 27 ACTION 28 ACTION 29 ACTION 30 ACTION 31 ACTION 32 ACTION 33

BREAST CANCER Oncology Radiotherapy Radiotherapy Cardiology Radiotherapy Radiotherapy Radiotherapy Radiotherapy

CARDIOVASCULAR 
DISEASE

Rehabilitation Rehabilitation Rehabilitation

Figure 5: Disentangle of a partial clinical history of a patient with the diagnosis of breast
cancer and cardiovascular disease. The bold medical specialties represent the real diagnosis
collected in EHRs. The results are obtained from the model learned in Section 3.2.3.

3.2.3. Individualized segmentation of clinical histories

The first objective of the model is to segment the sequence of actions, a,
into subsequences associated with the different comorbidities. This is useful,
for instance, for understanding the evolution of a single disease in a patient,
extracting its associated treatment dynamics from the clinical history, or even
for an informing forecast of expected costs of care and medical resources for
specific diseases and patients by simulating trajectories from each disease
related model.

In this experiment we train the model with the whole dataset. Then, the
association between medical specialties and diagnosis at each time t of the
sequence a ∈ A is given by the diagnosis of maximum probability at time t,
that is,

max
d∈D

p(d|a, st) (9)

where st is the set of active diseases at time t.
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Thus, we can extract the subsequence associated with each diagnosis from
a patient’s clinical trajectory h. An example of that is the segmentation of a
partial clinical history of a real patient that we show in Fig. 5. Although in
Fig. 5 we attribute a diagnosis to each medical event, the model allows us to
assign to each medical action the probability of belonging to any disease. In
reality, a fundamental aspect of caring for a patient undergoing potentially
cardiotoxic anticancer therapy is to be treated by a multidisciplinary team
of oncologists, cardiologists, and other healthcare professionals [24]. This
means that a medical event may not be the consequence of a single disease,
but is caused by a set of diseases that co-exist over time.

3.2.4. Representation of the joint progression of comorbidities at population-
level

The learned generative model enables knowledge to be extracted about
comorbidity evolution patterns at population-level regarding the subtypes of
treatments. This is a simulation experiment to provide a representation of
the different joint evolution of breast cancer and cardiovascular diseases.

Following the generative process in Section 2.2, we randomly sample a
set of 1000 clinical histories for each class from the learned model in the pre-
vious paragraph. The clinical histories are of variable length and we set the
maximum number of actions to be 140. We show the joint evolution of co-
morbidities by calculating the probability of a disease-related event occurring
at each time point, that is,

p(dt = d|c), for all t. (10)

In Fig. 6 we show the joint evolution of the breast cancer and cardiovascular
diseases for the 2 classes. Although breast cancer treatment clearly domi-
nates in both classes, the occurrence of cardiovascular treatment is different
depending on the class. The probability of treating cardiovascular diseases
remains constant in the first class (Fig. 6a), while it increases in the initial
part of the medical records in the second class (Fig 6b). Therefore, class 1
may refer to patients with pre-existing cardiovascular disease or cardiovas-
cular risk factors undergoing potentially cardiotoxic anticancer therapy that
requires routine monitoring [24]. On the contrary, class 2 may indicate more
severe cardiovascular complications as a consequence of the harmful effect of
anticancer therapies on the cardiovascular system [24].
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Figure 6: Joint evolution of comorbidities at a population-level.

3.2.5. Imputation of diagnosis

Another application of our generative model is the imputation of missing
diagnosis values of EHRs. In other words, we seek to label a new patient’s
medical events with a diagnosis for each timestep. To assess the diagnosis
assignment of the model, we carry out a 10-fold cross-validation, where we
split the dataset into training and test sets in a 90:10 proportion. We train
the model as in previous experiments, including the diagnoses collected in the
EHRs. However, in this experiment we propose the most complex scenario
for the test set, considering every diagnosis to be unknown. The problem
consists of setting a diagnosis label for each medical specialty of the test set
with Eq. 9, and afterward, checking them with 19% of available diagnoses as
ground truth.

We replicated the cross-validation experiment using two simplified ver-
sions of the model to demonstrate the significance and utility of the latent
class and activation state variables in the assignment of diagnoses to medical
events. On the one hand, the first simplification we carry out to our origi-
nal model is to delete the class information. In this sense, we assume that
there are no subtypes of progression in comorbidities, and therefore, there are
no patients with higher probability of developing one disease over another.
Then,

p(a, s,d) =
m∏
t=1

p(st|st−1, dt−1, at−1) · p(dt|st) · p(ad:t|dt, ad:t′).

On the other hand, in the second baseline model we eliminate the activa-
tion states from the original model, while still considering class information.
This model assumes that comorbidities are always active throughout the en-
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tire medical history of a patient. The joint probability of this model is defined
as

p(a,d, c) = p(c)
m∏
t=1

p(dt|c) · p(ad:t|dt, ad:t′).

Model AUC Accuracy F1-score
Breast cancer Cardiovasc.

Complete model 0.81 0.84 0.90 0.75
Model without classes 0.76 0.80 0.85 0.71
Model without activation states 0.75 0.78 0.83 0.68

Table 1: Comparative evaluation of the models.

We can observe in Table 1 the improved assignment performance of our
model, which achieves higher AUC, accuracy, and F1-score values. These
results highlight the significance of including both latent classes and acti-
vation states in our model. In addition, this experiment not only supports
the quality of the segmentation of clinical histories into treatments of indi-
vidual patients (Section 3.2.3), but also the comorbidity evolution dynamics
captured in the simulation experiment (Section 3.2.4).

4. Discussion and conclusion

This paper proposes a novel probabilistic generative model for patients
with co-existing diseases. Modeling comorbidity dynamics from EHRs is not
straightforward and involves addressing challenges such as small datasets,
uncertainty, and missingness [17, 26]. We face the particular problem where
the diagnosis is missing in most of the EHRs. Hence, the model is specifically
focused on the identification of the diagnoses associated with medical events
and the discovery of subtypes of similar disease coevolution patterns. To
the best of our knowledge, this is the first method to learn the dynamics
of underlying comorbidity without observing the entire clinical history of
diagnoses.

Experiments show that the generative model can accurately estimate the
diagnosis of medical records. These results emphasize the model’s ability to
extract treatment subsequences from EHRs and capture the main subtypes of
comorbidity evolution dynamics based on medical specialties. This correct
diagnosis imputation is of great interest for training models that require
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complete EHRs or avoiding loss of information observed in other imputation
methods [26].

Although we recognize that other real-world EHR data contain many
other types of information, our current scenario is based on a limited ad-
ministrative dataset with missing values. However, in future work, we plan
to incorporate additional clinical data such as medical procedures, medica-
tions, and laboratory results. One approach we plan to explore is taking the
Cartesian product of these variables, which would involve learning a larger
number of parameters, and therefore, a sufficient number of instances will
be necessary. The inclusion of this additional data would result in a more
informative model, particularly in tasks such as simulating clinical histories.

We build our model on Markov models to ensure interpretability. These
models are comprehensible because they can be summarized in probability
matrices that easily describe the transition rates between diseases and med-
ical events. However, a limitation of Markov models is their memoryless
assumption, where an individual’s current action depends on the previous
medical action, instead of considering his/her entire previous clinical history.
Future work will be focused on relaxing this memoryless characteristic.

Another limitation of our model is its complexity when the number of
diseases is too large. The number of parameters of the disease distribution
θD to be learned is 2|D|. Nevertheless, the number of coexisting comorbidities
that we consider is not so large as to become an intractable problem. An
alternative to deal with a larger amount of diseases would be to simplify
the model by assuming the same distribution of diseases through the whole
clinical history instead of being dependent on the active diseases at each
time.

In conclusion, this is an interpretable generative model to understand co-
morbidity dynamics that handles the incompleteness of EHRs. We demon-
strate the success of the model on both synthetic and real-world datasets.
The model is well-suited to the scenario where coexisting diseases evolve dif-
ferently depending on the active comorbidities of the patient and achieves
the objective of modeling such progression.
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Appendix A. Efficient learning of the model parameters with a
dynamic programming-based algorithm.

A brute force learning of the parameters of the model is computationally
expensive for large datasets and long sequences. We propose an alternative
learning algorithm based on dynamic programming to considerably reduce
the number of computations, and thus, the complexity of the model from ex-
ponential to polynomial. This inference plays an important role in the learn-
ing procedure of the model, particularly in the E-step. The computations
obtained in this step are then used in the M-step to update the parameters
of the model Θ = {θC ,θS,θD,θA}.

Let us assume that we have a training set A = {ai}Ni=1 of sequences
of actions, where ai = (ai1, ..., a

i
m) for all i. Suppose that each a has an

associated latent sequence of diagnoses d = (d1, ..., dm), where dt ∈ D for
all t = 1, ...,m, and belongs to a latent class c ∈ C. Let s = (s1, ..., sm) be
the sequence of active disease states associated with a, where st denotes the
active diseases at time t = 1, ...,m and belongs to the set of active disease
states S. The aim is to estimate the maximum likelihood parameters Θ of
the model in each iteration of the EM algorithm. Hence, our objective is to
learn the parameters of the model p(c), p(s|s′, d, a), p(a|a′, d) and p(d|c, s)
for any value of a, a′ ∈ A, d ∈ D, s, s′ ∈ S and c ∈ C, using the set of
sequences of observed actions in A. Suppose that, for a sequence of actions
a, we observe the transition from at′ = a′ to at = a in the training set
between two any time points t′ and t, t′ < t. We shall calculate the sum of
the probabilities of all the possible sequences of diseases for which dt′ = d,
dt = d and dt′+1, ..., dt−1 ̸= d in each class c. That is, the probability of all
the sequences of diseases with the form

(d1, ...dt′−1, d, dt′+1, ..., dt−1, d, dt+1, ..., dm),

where dt′+1, ..., dt−1 ̸= d.
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Let us define fc(t1, ..., tr) as the function that computes the sum of prob-
abilities of all the possible sequences of diseases d = (d1, ..., dt) in the class
c, where (t1, ..., tr) (r = |D|) indicates the last time that the diseases in D
appear in the sequence d. We compute the probability of all the sequences
of diseases that have the disease d ∈ D at time t as follows:

fc(t1, ..., tr) =
∑

d1,...,t−1

p(a1,...,t, s1,...,t,d1,...,t−1, dt = d|c)

where d1,...,t−1 = (d1, ..., dt−1), s1,...,t = (s1, ..., st) and a1,...,t = (a1, ..., at).
On the other hand, let us define gc(t1, ..., tr) as the function that com-

putes the sum of probabilities of all the possible sequences of diseases d =
(dt+1, ..., dm) in c, where (t1, ..., tr) (r = |D|) indicates the first time each
disease d ∈ D appears in the sequence d. That is,

gc(t1, ..., tr) =
∑

dt+1,...,m

p(at+1,...,m, st+1,...,m,dt+1,...,m|c, dt = d).

Using these functions, we can express the sum of the probabilities of all
the sequences for which dt = d as follows:

p(d1,...,t−1,dt = d,dt+1,...,m, a1,...,m, s1,...,m|c) = (11)

=fc(t1, ..., ti = t′, ..., tr) · p(st|st−1, dt−1, at−1)

· p(d|st, c) · p(ad:t|ad:t′ , d) · gc(t1, ..., ti = t, ..., tr)

where t′ is the previous time where the same disease d is allocated.
With this in mind, we propose to create a matrix of size |D|× |D| associ-

ated with each function fc and gc, each of them calculated with the recursive
functions in Algorithm 1 and Algorithm 2.
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Algorithm 1 Computation of fc matrix

Input: {t1, ...., tr}: set of the last time we saw each disease
Θ = {θC ,θS,θD,θA}: model parameters.

Output: fc(t1, ..., tr)
ti ← max{t1, ..., tr}
tj ← max{t1, ..., ti−1, ti+1, ..., tr}
t← ti
if ti − tj > 1 then
fc(t1, ..., tr) ← p(st|st−1, dt−1, at−1) · p(di|c, st) · p(adi:t|adi:t−1, d

i) ·
fc(t1, ..., ti−1, t− 1, ti+1, ..., tr)

else
fc(t1, ..., tr) ← p(st|st−1, dt−1, at−1) · p(di|c, st) ·

∑tj−1
t′=0 p(adi:t|at′ , di) ·

fc(t1, ..., ti−1, t
′, ti+1, ..., tr)

end if

Notice that in Algorithm 1 the statement ti−tj > 1 means that the action
at time ti = t comes from the same disease as the action in the previous time
t− 1, while the statement ti− tj = 1 means that we do not know from which
previous action (or time) the action at time t comes.

Algorithm 2 Computation of gc matrix

Input: {t1, ...., tr}: set of the first time we saw each disease
Θ = {θC ,θS,θD,θA}: model parameters.

Output: gc(t1, ..., tr)
ti ← max{t1, ..., tr}
t← ti + 1
gc(t1, ..., tr) ←

∑
i p(st|st−1, dt−1, at−1) · p(di|c, st) · p(at|adi:ti , di) ·

gc(t1, ..., ti−1, ti = t, ti+1, ...tr)

We can now compute Eq. 11 that allows us to update the parameters of
the model using Eq. 4, 6, 7 and 8. We have to calculate the probability of
the transitions between any two actions, that is, from a′ to a. If a appears
at time t in the sequence a, let t′ be the set of times such that we can find
the action a′ in the subsequence a1,...,t−1, that is, t

′ = {y < t : ay = a′}. We
learn the parameters of the model Θ, specifically for the transition from an
action a′ to the action a at time t, considering the different possibilities that
may occur that depend on the time position of a′.
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Let T = (t1, ..., tr) be the vector that indicates the last time each type of
disease di ∈ D, i = 1, ..., r, appears in the sequence d = (d1, ...., dt), and let
h = max t′ = max{y < t : ay = a′}.

For each time t where the action a is observed, and for each disease
di ∈ D, i = 1, ..., r, the two following options can occur:

1. If t− h > 1:

1.1) If at least one disease has already finished before t:

For the set of finished diseases before t, df ∈ D, we use their
endpoint in the sequence d to set in the vector T the last time we
have seen that disease.

For the set of unfinished diseases that are already initialized, we
fix each disease, dj ∈ D, at tj = t − 1 (j ̸= f, i) while we set
tr′ = 0, ..., t − 2 in the rest of the unfinished diseases (dr

′ ∈ D,
r′ ̸= j, i, f). Take into account that if any disease’s endpoint is
fixed at t − 1, we do not have to set any unfinished disease tj in
t− 1, rather they are all fixed at tr′ = 0, ..., t− 2 (r′ ̸= i, f).
For those diseases that have not already been initialized their po-
sition in T is fixed at 0.

1.2) If no disease has finished before t, we fix for each disease dj ∈ D
their last position in T as tj = t− 1 and the rest of the initialized
diseases’ position at tr′ = 0, ..., t− 2 (r′ ̸= j, i).

Let J = {1, ..., i− 1, i+1, ..., r}, then we can compute p(dt = di, a, s|c)
as ∑

y∈t′

∑
j∈J

∑
t1,...,tr
tj=t−1

tr′ ,r
′ ̸=j,i,f

fc(t1, ..., ti = y, ..., tr)

· p(st|st−1, dt−1, at−1) · p(dt = di|c, st)·
p(at|adi:t′ = a′, dt = di) · gc(t1, ..., ti = t, ..., tr)

2. If t− h = 1:
We fix for each disease dj ∈ D their position tj at the maximum position
t′, that is, tj = h. In addition, tr′ = 0, ..., t − 2 for all r′ ̸= i, j. Then,
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let J = {1, ..., i− 1, i+ 1, ..., r}, then we can compute p(dt = di, a, s|c)
as ∑

y∈t′

∑
j∈J

∑
t1,...,tr
tj=h

tr′ ,r
′ ̸=j

fc(t1, ..., ti = y, ..., tr)·

p(st|st−1, dt−1, at−1) · p(dt = di|c, st)
· p(at|adi:t′ = a′, dt = di) · gc(t1, ..., ti = t, ..., tr)
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