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Abstract
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1 Introduction:

The Whitham equation

ut + uux +

∫ +∞

−∞

K(x− y)uydy = 0 (1)

was introduced in [1] to model a wave equation containing both breaking and peaking. A good

discussion of equations (1) can be found in [2]. Here we are interested in equation (1) with the

kernel

K(x− y) =
1

2
|x− y| ,

which yields

ut + uux + ∂−1u = 0 , (2)

or in a local form

(ut + uux)x + u = 0 . (3)

Equation (3) also follows as a particular limit of the following generalized Korteweg-de Vries (KdV)

equation

(ut + uux − βuxxx)x = γu , (4)

derived by Ostrovsky [3] to model small-amplitude long waves in a rotating fluid (γu is induced

by the Coriolis force) of finite depth. For β = 0 (no high-frequency dispersion) the equation

(4) is known under different names in the literature, such as the reduced Ostrovsky equation, the

Ostrovsky-Hunter equation, the short-wave equation and the Vakhnenko equation. From now on we

will call (3) the Ostrovsky-Vakhnenko (OV) equation. This OV equation describes the short-wave

perturbation in a relaxing medium [4]. This equation has a purely dispersive term and although it

has the same nonlinearity of the KdV equation the dispersive terms are different. In [4] and in a

series of papers [5, 6, 7] it was established its integrability by deriving explicit solutions. Also, in

[8] the integrability via inverse scattering method was derived via a third-order eigenvalue problem

obtained after a Bäcklund transformation. However in [9] this Lax pair was written in its original

variables as a zero curvature condition

A1,t − A0,x − [A0,A1] = 0 ,
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with

A1 =
1

3




0 ux/λ −1/λ

−1 0 0

−ux −1 0




A0 =
1

3




0 3− uux/λ u/λ

u 0 3

3λ+ uux −2u 0




.

Also, they obtained the following third order Lax pair for the OV equation

ψxxx +
1

9λ

(
uxx +

1

3

)
Ψ = 0 ,

ψt − 9λψxx + uψx − uxψ = 0 , (5)

whose compatibility condition yields the x-derivative of the OV equation (3).

It turns out that the OV equation can be obtained as a short-wave limit of another integrable

equation, the Degasperis-Procesi (DP) equation [10, 11, 12]

ut − uxxt + 4uux = 3uxuxx + uuxxx . (6)

The authors of [11, 12] found a Lax pair, derived two infinite sequences of conserved charges for (6)

and proposed a bi-Hamiltonian formulation. Hone and Wang [9] have shown and explored the fact

that the OV equation can be obtained as a limit of the DP equation through the transformation

T :





x→ ǫx−
t

3ǫ
t→ ǫt

u→ u−
1

3
ǫ2

in the short wave limit ǫ→ 0,

DP
T
−→ OV − ǫ2(ut + 4uux) .

Using this short wave limit Hone and Wang obtained the scalar linear problem (5) from the corre-

sponding Lax pair of the DP equation. Also, from the bi-Hamiltonian study of the DP equation

performed in [11] they proposed two Hamiltonian operators for the OV equation but not in the

original variable u.

In this paper our main interest is to investigate the Hamiltonian integrability for the OV equa-

tion directly in its original variable and evolutionary nonlocal form (2). As far as we known this is

the simplest equation involving nonlinearity an nonlocality and will provide a good “laboratory”

for study of nonlocal equation.

Results on the OV equation frequently rely on the well known reciprocal transformation to the
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special case of Ito’s equation which can be written in Hirota’s bilinear form [6]. We point out

that a transformation between the OV equation and the Bullough-Dodd-Tzitzeica equation is also

known [13] but not explored in the literature. In this paper we will introduce and explore a new

third transformation. In Section 2 we find a fifth order symmetry to the OV equation and we show

in Section 3 that the evolution equation associated to this symmetry can be transformed to the

Caudrey-Dodd-Gibbon-Sawada-Kotera equation (CDGSK) [14, 15, 16] via a chain of Miura-type

transformations. In Section 2 we also find the first Hamiltonian structure for the OV hierarchy.

The transformations introduced in Section 3 transform dependent as well as independent variables

and we give in Section 4 a formula relating the Hamiltonian structures in this situation. This

formula is used in Section 5 to obtain the second Hamiltonian structure of the OV equation via the

well known CDGSK’s Hamiltonian structure. Our results are purely algebraic and no analytical

justifications are provided. Questions about wave breaking, blow-up rates, boundary conditions,

well-posedness and so on can be found, for instance, in [17] and references within.

2 Symmetries and a first Hamiltonian structure

First let us look for some symmetries of the OV equation (2). It is well known [18, 19] that a

symmetry σ of the evolution equation ut = K(u) should satisfy

∂σ

∂t
+ [σ,K] = 0 , (7)

where

[σ,K](u) ≡ σ′(u)[K(u)] −K ′(u)[σ(u)]

and

F ′(u)[X] =
d

dǫ
F (u+ ǫX)

∣∣∣
ǫ=0

(8)

is the Fréchet or directional derivative of F (u) in the direction of the vector field X. In the case

that F (u, v) depends on two variables we write Fu and Fv for the Fréchet derivative with respect

to u and v, respectively. If H is a functional then

H ′(u)[X] = 〈gradH,X〉 =

〈
δH

δu
,X

〉
, (9)

where 〈·, ·〉 denotes the usual scalar product between the dual spaces. In what follows, we indicate

by “∗” the transpose of a operator with respect to the duality. From (7) it is easy to check that

σ0 = 0 , σ1 = K(u) , σ2 = ux , σ3 = −
1

2

[
(1 + 3uxx)−2/3

]
xxx

(10)
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are symmetries for the autonomous OV equation (2). This means that the OV equation and the

local nonlinear equation

ut = −
3

2
D3

x

(
uxx +

1

3

)−2/3

, (11)

where the right-hand side is the generator σ3 of the higher symmetries and where the coefficient

−3/2 is taken for simplicity, are members of the same hierarchy of equations and share many

properties such as integrability. As far as we know this Ostrovsky-Vakhnenko fifth-order equation

(OVF) (11) is a new integrable equation but we will show that it can be transformed to the CDGSK

equation in the next Section.

By construction the OV equation (2) and the OVF equation (11) share the same conserved

charges as well Hamiltonian structures. Let us find the first Hamiltonian structure for these equa-

tions [20]. Introducing the Clebsch potential u = φx the equation (2) can be written as

φxt + φxφxx + φ = 0 .

This equation can be obtained from a variational principle, δ
∫
dtdxL, with the Lagrangian density

L =
1

2
φtφx +

1

6
φ3x −

1

2
φ2 . (12)

This is a first order Lagrangian density and we can use, for example, Dirac’s theory of constraints

to obtain the Hamiltonian and the Hamiltonian operator associated with (12). The Lagrangian is

degenerate and the primary constraint is obtained to be

Φ = π −
1

2
φx , (13)

where π = ∂L/∂φt is the canonical momentum. The total Hamiltonian can be written as

HT =

∫
dx (πφt − L+ λΦ) =

∫
dx

[
−

1

6
φ3x +

1

2
φ2 + λ

(
π −

1

2
φx

)]
, (14)

where λ is a Lagrange multiplier field. Using the canonical Poisson bracket relation

{φ(x), π(y)} = δ(x − y) , (15)

with all others vanishing, it follows that the requirement of the primary constraint to be stationary

under time evolution, {Φ(x),HT } = 0, determines the Lagrange multiplier field λ in (14) and the

system has no further constraints. Using the canonical Poisson bracket relations (15), we can now

calculate

K(x, y) ≡ {Φ(x),Φ(y)} =
1

2
Dyδ(y − x)−

1

2
Dxδ(x − y) . (16)
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This shows that the constraint (13) is second class and that the Dirac bracket between the basic

variables has the form

{φ(x), φ(y)}D = {φ(x), φ(y)} −

∫
dz dz′{φ(x),Φ(z)}J(z, z′){Φ(z′), φ(y)} = J(x, y) ,

where J is the inverse of the Poisson bracket of the constraint (16),

∫
dz K(x, z)J(z, y) = δ(x− y) .

This last relation determines DxJ(x, y) = −δ(x − y) or J(x, y) = Dδ(x− y) where

D = −D−1
x . (17)

We can now set the constraint (13) strongly to zero in (14) to obtain

HT =

∫
dx

(
−

1

6
φ3x +

1

2
φ2

)
.

Using (17) and the transformation properties of Hamiltonian operators (see (37)), we get

D = Dx (D) (Dx)∗ = Dx ,

and the OV equation (2) can be written in the Hamiltonian form as

ut = D1
δH1

δu
, D1 = Dx , H1 =

∫
dx

[
−

1

6
u3 +

1

2
(∂−1u)2

]
. (18)

It can be easily checked that H1 is conserved by both the OV and OVF equations for rapidly

decreasing or periodic boundary conditions. Taking the second x derivative of the OV equation we

obtain the trivial conserved charge

∫
dxuxx , (19)

and from this equation times (uxx + 1/3)−2/3 we also get

H2 = −
9

2

∫
dx

(
uxx +

1

3

)1/3

,

as conserved charge for both the OV and OVF equations. In this way the OVF equation has the

following Hamiltonian representation

ut = D1
δH2

δu
, D1 = Dx , H2 = −

9

2

∫
dx

(
uxx +

1

3

)1/3

.
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Multiplying the OV equation (2) by u and integrating we also get the following conserved charge

∫
dxu2 . (20)

3 Transformation to the CDGSK equation

The link between the KdV and modified KdV equations through a Miura transformation is not an

isolated result in the theory of integrable models. Very often a nonlinear equation is equivalent to a

known and well studied equation via a chain of Miura-type transformations and now we will show

that we can relate the OVF equation with the CDGSK equation using this procedure. We follow

the methods used in [21, 22, 23, 24].

The transformation

(x, t, u(x, t)) 7→ (x, t, v(x, t)) : v = (uxx + 1/3)−1/3 (21)

relates the OVF equation with

vt =
1

2
v4D5

xv
2 . (22)

The right-hand side of the transformation (21) is obtained from the separant of the OV equation.

(The separant of an evolution equation ut = f(u, ux, . . . , u(n)) is ∂f/∂u(n), where u(n) is the highest

derivative of u with respect to x.) Let us note that (22) is one of the non-constant separant evolution

Fujimito-Watanabe equations (see [21] and references within). The equation (22) has a separant

v5 and by the Ibragimov substitution

(y, t, w(y, t)) 7→ (x, t, v(x, t)) :

{
v(x, t) = wy(y, t)
x = w(y, t)

(23)

is related with the constant separant equation

wt = w5y − 5w−1
y w2yw4y + 5w−2

y w2
2yw3y , (24)

where wky = ∂kyw, k = 2, 3, 4, 5 (and similar notations for derivatives are used in what follows).

Finally, the transformation

(y, t, w(y, t)) 7→ (y, t, z(x, t)) : z = −w−1
y w3y (25)

relates (24) with the CDGSK equation

zt = z5y + 5zz3y + 5zyz2y + 5z2zy . (26)
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In summary, we have schematically

B(u, v) = 0 B(w, v) = 0 B(w, z) = 0
OVF −→ (22) ←− (24) −→ CDGSK,

where the implicit transformations are

B(w, z)(y) =
(
z + w−1

y w3y

)
(y) ,

B(w, v)(y) = (v(w) − wy) (y) ,

B(u, v)(x) =
(
v − (uxx + 1/3)−1/3

)
(x) . (27)

4 Hamiltonian structure behavior under change of variables

Transformations between two evolution equations generate transformations between the corre-

sponding structures such as recursion operators, Hamiltonian structures, conserved charges and

so on [25, 26]. Let be the change of variables among dependent and independent variables

{
y = P (x, u(n)) ,

v = Q(x, u(n)) ,
(28)

where u(n) represents all derivatives of u with respect to x of order at most n. We want to relate

the Hamiltonian representations

ut = D(u) δH

δu
= D(u)Eu(h) , (29)

vt = D̃(v) δH̃

δv
= D̃(v)Ev(h̃) , (30)

where

H[u] =

∫
dxh(x, u(n)) , (31)

H̃[v] =

∫
dy h̃(y, v(n)) , (32)

and Eu(h) is the Euler operator acting on the Hamiltonian density h. The transformation (28)

defines an implicit function B(u, v) = 0, and we have

Buut +Bvvt = 0 ,

or

vt = −Tut , (33)
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where

T = B−1
v Bu , (34)

and Bu and Bv are the Fréchet derivatives defined in (8). Now we use the following result (see [18],

Exercise 5.49, pg. 386) for the relation between the action of the Euler operator under a change of

variables

Eu(h) = OEv(h̃) , (35)

where

O(R) = Q∗
u(DxP ·R)− P ∗

u (DxQ ·R) . (36)

From (33), (29) and (35)

vt = −TD(u)OEv(h̃)

and comparing with (30) we finally get

D̃(v) = −TD(u)O . (37)

When the independent variable is not transformed Bu = −Qu, Bv = 1, T = −Qu and O = Q∗
u.

Also, when we calculate how a recursion operator R = D2D
−1
1 transforms under (28) the operator O

drops out. These are the usual results commonly found in the literature [25, 26]. The generalization

of (37) for a number of dependent and independent variables greater than one is straightforward.

5 Second Hamiltonian structure

We use the results of the last Section to obtain the second Hamiltonian structure of the OV equation

(2) from the known Hamiltonian structure of the CDGSK equation (26) given by [16]

D(z) = D3
y + 2(zDy +Dyz) , H(z) =

∫
dy

(
1

6
z3 −

1

2
z2y

)
. (38)

From (27) and (33) we have

zt = Awt , A = −w−1
y D3

y +w−2
y w3yDy = −v−1Dxv

3D2
x , (39)

vt = Bwt , B = Dy − w
−1
y w2y = v2Dxv

−1 , (40)
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vt = Cut , C = −
1

3

(
uxx +

1

3

)−4/3

D2
x = −

1

3
v4D2

x . (41)

From (39)–(41) we already see that is very convenient to use the variable v(x, t) because this

factorizes all the operators involved, via the relations Dy = vDx, wy = v, w2y = vvx, w3y = v(vvx)x,

z = −(vvx)x and uxx = v−3 − 1/3; note also that

D2
y + z = Dxv

3Dxv
−1 ,

D3
y + 4zDy + 2zy = v−1Dxv

3Dxv
3Dxv

−2 . (42)

Now using (35) and (36) we have

δH(w)

δw
= Ā

δH(z)

δz
, Ā = A∗ = D3

yw
−1
y −Dyw

−2
y w3y = vD2

xv
3Dxv

−2 , (43)

δH(w)

δw
= B̄

δH(v)

δv
, B̄ = −Dywy − w2y = −Dxv

2 , (44)

δH(u)

δu
= C̄

δH(v)

δv
, C̄ = C∗ = −

1

3
D2

x

(
uxx +

1

3

)−4/3

= −
1

3
D2

xv
4 . (45)

Therefore, the Hamiltonian operators transform as

D(w) = A−1D(z)Ā−1 , D(v) = BD(w)B̄ , D(u) = C−1D(v)C̄−1 , (46)

and as result of (42), (39)–(41) and (43)–(45) we obtain the operator of order minus five

D(u) = 9D−2
x v−2Dxv

−1D−3
x v−1Dxv

−2D−2
x , (47)

where now v is not a dependent variable but just a placeholder for the expression in (21), i.e.,

v ≡ (uxx + 1/3)−1/3.

Now, let us find the Hamiltonian H(u) corresponding to H(z) in (38). Its variational derivative

is

δH(z)

δz
= z2y +

1

2
z2 ,

and from (43) and (44) we can transform it into

δH(v)

δv
= B̄−1Ā

δH(z)

δz
=

= v3v6x + 9v2vxv5x + 17v2v2xv4x + 14vv2xv4x +
19

2
v2v23x +

+34vvxv2xv3x − 2v3xv3x +
20

3
vv32x − 10v2xv

2
2x + 5v−1v4xv2x −

5

6
v−2v6x ,
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and we can reconstruct the corresponding conserved charge using the homotopy formula

H(v) =

∫
dx

∫ 1

0
dλ v

δH(v)(λv)

δv
,

to finally obtain

H(v) =

∫
dx

(
−

1

2
v3v23x +

4

3
v2v32x − 2vv2xv

2
2x −

1

6
v−1v6x

)
, (48)

which is also H(u) if we make the substitution (21) to the right hand side of (48). Computationally,

this is easier than to directly perform the calculations in the u variable.

From (47) and (48) we obtain the following second Hamiltonian structure for the OVF equation

(11)

ut = D2
δH3

δu
,

D2 = 9D−2
x v−2Dxv

−1D−3
x v−1Dxv

−2D−2
x ,

H3 = −
1

2

∫
dx

(
−v3v23x −

8

3
v2v32x + 4vv2xv

2
2x +

1

3
v−1v6x

)
,

where v is given by (21). However, the second Hamiltonian formulation for the OV equation (2)

can be written formally as

ut = D2
δH4

δu
, D2 = 9D−2

x v−2Dxv
−1D−3

x v−1Dxv
−2D−2

x , H4 = −
1

2

∫
dxuxx , (49)

where we have used the trivial conserved charge (19) with −2δH4/δu = D2
x · 1 and D−2

x D2
x · 1 = 1.

This same charge and behavior appears in the pull-back of the Harry Dym equation to the Hunter-

Saxton equation [27] and is due to the nonlocality of the Hamiltonian operator D2.

From the CDGSK conserved charge H(z) =
∫
dy z we get

∫
dx v−1v2x ,

for the OV equation. In fact, from (18) and (49) we have the recursion operator

R = D2D
−1
1 = 9D−2

x v−2Dxv
−1D−3

x v−1Dxv
−2D−3

x ,

and this could be the starting point to generate a hierarchy of equations and charges for the OV

system of equations which we will explore in a future publication.
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