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ON ROGUE WAVE IN THE KUNDU-DNLS EQUATION
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Abstract. In this paper, the determinant representation of the n-fold Darboux transforma-
tion (DT) of the Kundu-DNLS equation is given. Based on our analysis, the soliton solutions,
positon solutions and breather solutions of the Kundu-DNLS equation are given explicitly. Fur-
ther, we also construct the rogue wave solutions which are given by using the Taylor expansion
of the breather solution. Particularly, these rogue wave solutions possess several free parame-
ters. With the help of these parameters, these rogue waves constitute several patterns, such as
fundamental pattern, triangular pattern, circular pattern.
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1. Introduction

It is well known that the derivative nonlinear Schrödinger (DNLS) equation

iqt + qxx − iα(|q|2q)x = 0 (1.1)

is one of the most important integrable systems in many branches of physics and applied
mathematics, particularly in optics, water wave and so on [1, 2]. In the eq.(1.1), q represents
complex field envelope and the subscripts imply the partial derivative with regard to x or t.
Considering the significance of the higher order nonlinearities in physical system, the DNLS
equation yields an integrable higher nonlinear equation, i.e. Kundu-DNLS equation [3, 4]

iQt +Qxx + iα(Q2Q∗)x − (θt + θ2x − iθxx)Q+ θx(2iQx − αQ2Q∗) = 0 (1.2)

by means of a nonlinear transformation of the field q → Q = qe−iθ with arbitrary gauge function
θ. Here Q∗ denotes the complex conjugate of Q, and α is a real parameter. For example, setting
θ = δ

∫
Q(x′)2dx′, Kundu-DNLS equation implies Eckhaus-Kundu (EK) equation [3]. There

are several method to solve the integrable equations, for instance, Hirota method [5], inverse
scattering transformation [6], bilinear method [7], Darboux transformation [8]. Among these
methods, the Darboux transformation has an old history, which originates from the paper of
Darboux in 1882 about the study of the Sturn-Liouville equation, and is a efficient method to
construct the solutions for the integrable systems. To a given equation, there are also many
approaches to find the corresponding Darboux transformation, such as the gauge transformation
method [8–11], the operator factorization method [12]. In this paper, in terms of the Darboux
transformation, we find that this equation can also be used to describe many intriguing physical
phenomena, and possessing the soliton solutions, breather solution, positon solution, the rogue
waves.

Before considering the Darboux transformation, let us briefly discuss the importance of rogue
waves in mathematical field and physical field. Rogue waves, appearing in oceans “appears from
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nowhere and disappears without a trace [13]”, which cause a large number of disasters for peo-
ple. Consequently, it appeals to much more and more attention for many scientists and has
been studied extensively in other fields such as optics [14–16], Bose-Einstein condensates [17],
femtosecond pulse [18,19] propagation due to the modulation instability [20]. The higher order
rogue waves of the nonlinear Schrödinger (NLS) equation have interesting patterns [21–25].
Recently, we have given the rogue waves of the DNLS and the coupled system of Hirota and
Maxwell-Bloch equations [2, 26], Inspired by the importance of these recent interesting devel-
opments about the analysis of rogue waves of the NLS-type equations, we shall also construct
the rogue wave solutions of the Kundu-DNLS equation with the help of the Darboux transfor-
mation.

The paper is organized as follows. In Section 2, the Darboux transformation and the Lax pair
of the Kundu-DNLS equation will be introduced firstly. We also derived the one-fold Darboux
transformation of the Kundu-DNLS equation. And the determinant-formed generalization of
one-fold Darboux transformation to 2-fold Darboux transformation of the Kundu-DNLS equa-
tion will be given. In Section 3, by making use of Darboux transformation, one soliton, two
soliton, positon solution, are derived. With the help of these formulas, breather solution, and
rogue waves are derived in Section 4. In Section 5, conclusions are given.

2. Darboux transformation and lax pair

The Darboux transformation is a powerful method used to generate the soliton solutions
for integrable equations. Inspired by classical Darboux transformation for the DNLS equation
[27–32], we consider the coupled Kundu-DNLS equation,

iQt +Qxx − iα(Q2R)x − (θt + θ2x − iθxx)Q+ θx(2iQx + αQ2R) = 0, (2.1)

iRt − Rxx − iα(R2Q)x + (θt + θ2x + iθxx)R + θx(2iRx − αR2Q) = 0, (2.2)

where θ is a arbitrary gauge function. This form of the equation is very extensive, which
is reduced to the eq.(1.2) for R = −Q∗ with the sign of the nonlinear term changed. The
Kundu-DNLS equation can be obtained if α is a real parameter.

We first present a general framework for deriving the required conservation rule for the DNLS
equation. We start with the linear set of Lax equations:

Φx = UΦ,Φt = V Φ, (2.3)

where U and V depend on the complex constant eigenvalue parameter λ

U = i
λ2

4

(
1 0
0 −1

)
+
i

2
λ
√
α

(
0 Re−iθ

Qeiθ 0

)
, (2.4)

V = i(
λ4

8
− α

4
λ2QR)

(
1 0
0 −1

)
+ i

(
0 G∗

G 0

)
,

with G = λ
4

√
α(−λ2Qeiθ + 2i(Qxe

iθ + iQeiθθx) + 2αQ2Q∗eiθ), where λ is the eigenvalue, Φ is
the eigenfunction corresponding to λ.

Next, we will give the detailed proof for the one-fold Darboux transformation of Kundu-DNLS
equation. Equations(2.1) and (2.2) are equivalent to the integrability condition Ut−Vx+[U, V ] =
0 of (2.3). we would like to introduce a simple gauge transformation of the spectral problem
(2.3) with the following form

ψ[1] = T ψ. (2.5)
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It can transform linear equation (2.3) into a new one possessing the same matrix form,
namely,

ψ[1]
x = U [1] ψ[1], U [1] = (Tx + T U)T−1, (2.6)

ψ[1]
t = V [1] ψ[1], V [1] = (Tt + T V )T−1, (2.7)

where U [1], V [1] have the similar forms as U , V . By cross differentiating (2.6) and (2.7), we
obtain

U [1]
t − V [1]

x + [U [1], V [1]] = T (Ut − Vx + [U, V ])T−1. (2.8)

2.1. One-fold Darboux transformation. In general, considering the universality of Darboux
transformation, according to the Kundu-DNLS equation (2.1) and (2.2), we can start from

T = T (λ) =

(
a2 b2
c2 d2

)
λ2 +

(
a1 b1
c1 d1

)
λ+

(
a0 b0
c0 d0

)
, (2.9)

where a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2 are functions of x, t. From

Tx + T U = U [1] T, (2.10)

comparing the coefficients of λj, j = 4, 3, 2, 1, 0, it yields

λ4 : b2 = 0, c2 = 0, (2.11)

λ3 : −d2
√
αQ+ c1e

iθ + a2
√
αQ[1] = 0, d2

√
αR[1] − b1e

−iθ − a2
√
αR = 0,

λ2 : −d1
√
αQeiθ + c0 + a1

√
αQ[1]eiθ = 0, d1

√
αR[1]e−iθ − b0 − a1

√
αRe−iθ = 0,

ic1
√
αR[1]e−iθ − 2a2x − ib1

√
αQeiθ = 0, ib1

√
αQ[1]eiθ − 2d2x − ic1

√
αRe−iθ = 0,

λ1 : ic0
√
αR[1]e−iθ − 2a1x − ib0

√
αQeiθ = 0, id0

√
αR[1]e−iθ − 2b1x − ia0

√
αRe−iθ = 0,

ia0
√
αQ[1]eiθ − 2c1x − id0

√
αQeiθ = 0, ib0

√
αQ[1]eiθ − 2d1x − ic0

√
αRe−iθ = 0,

λ0 : a0x = b0x = c0x = d0x = 0.

The last equation shows a0, b0, c0, d0 are functions of t only. Similarly, from

Tt + T V = V [1] T, (2.12)

comparing the coefficients of λj, j = 4, 3, 2, 1, 0, in the same way, we can get

b2 = 0, c2 = 0, a0t = b0t = c0t = d0t = 0. (2.13)

The last equation shows a0, b0, c0, d0 are functions of x only. Therefore, a0, b0, c0, d0 are con-
stants.

In order to get the non-trivial solutions, we present a Darboux transformation under the
condition a1 = 0, d1 = 0, b0 = 0, c0 = 0. Based on eq.(2.11) and eq.(2.13) and without losing
any generality, let Darboux matrix T be in the form of

T1 = T1(λ;λ1, λ2) =

(
a2 0
0 d2

)
λ2 +

(
0 b1
c1 0

)
λ+

(
a0 0
0 d0

)
. (2.14)

Here a2, d2, b1, c1 are undetermined functions of (x, t), which will be expressed by the eigenfunc-
tion associated with λ1, λ2 in the Kundu-DNLS spectral problem. First of all, we introduce n
eigenfunctions ψj as

ψj =

(
φj

ϕj

)
, j = 1, 2, ....n, φj = φj(x, t, λj), ϕj = ϕj(x, t, λj). (2.15)
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The elements of one-fold Darboux transformation are parameterized by the eigenfunction
ψ1, ψ2 associated with λ1, λ2 as

d2 =
1

a2
, a2 =

ϕ1φ2λ1 − φ1ϕ2λ2

φ1ϕ2λ1 − ϕ1φ2λ2
, b1 =

φ1φ2(λ
2
1 − λ22)

ϕ1φ2λ2 − φ1ϕ2λ1
, (2.16)

c1 =
ϕ1ϕ2(λ

2
1 − λ22)

φ1ϕ2λ2 − ϕ1φ2λ1
, a0 = d0 = λ1λ2.

Note that (a2d2)x = 0 is derived from the eq.(2.11), Then we take a2 =
1

d2
in the followings.

By transformation eq.(2.11), new solutions are given by

Q[1] =
d2

a2
Q− c1e

−iθ

a2
√
α
, R[1] =

a2

d2
R +

b1e
iθ

d2
√
α
. (2.17)

2.2. N-fold Darboux transformation. After considering the One-fold Darboux transforma-
tion, let us briefly discuss the N-fold Darboux transformation [33]. First of all, we are in a
position to consider the reduction of the Darboux transformation of the Kundu-DNLS equa-

tion so that Q[n] = −(R[n])∗. Under this reduction condition, the eigenfunction ψk =

(
φk

ϕk

)

associated with eigenvalue λk has following properties [34],

φ2k+1
∗ = ϕ2k, ϕ2k+1

∗ = φ2k, λ2k+1
∗ = λ2k, k = 1, 2, ....n.

Then the Darboux transformation of the DNLS equation is given. Now, the key task is to
establish the determinant representation of the n-fold Darboux transformation for Kundu-
DNLS system in this subsection. To this purpose, set

D =

{(
a 0
0 d

)∣∣∣∣ a, d are complex functions of x and t

}
,

A =

{(
0 b

c 0

)∣∣∣∣ b, c are complex functions of x and t

}
.

According to the form of T1 in eq.(2.14), the n-fold Darboux transformation can be represented
as

Tn = Tn(λ;λ1, λ2, · · · , λ2n) =
2n∑

i=0

Piλ
i, (2.18)

with

P2n =

(
a2n 0
0 d2n

)
∈ D, P2n−1 =

(
0 b2n−1

c2n−1 0

)
∈ A.

Here P0 is a constant matrix, Pi(1 ≤ i ≤ 2n) is function of x and t.
The n-fold Darboux transformation of the Kundu-DNLS system can be expressed by

Tn = Tn(λ;λ1, λ2, · · · , λ2n) =




(Tn)11
∆n

(Tn)12
∆n

(Tn)21

∆̃n

(Tn)22

∆̃n



, (2.19)
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with

∆n =

∣∣∣∣∣∣∣∣

λ2n1 φ1 λ2n−1
1 ϕ1 λ2n−2

1 φ1 λ2n−3
1 ϕ1 . . . λ21φ1 λ1ϕ1

λ2n2 φ2 λ2n−1
2 ϕ2 λ2n−2

2 φ2 λ2n−3
2 ϕ2 . . . λ22φ2 λ2ϕ2

...
...

...
...

...
...

...
λ2n2nφ2n λ2n−1

2n ϕ2n λ2n−2
2n φ2n λ2n−3

2n ϕ2n . . . λ22nφ2n λ2nϕ2n

∣∣∣∣∣∣∣∣
,

(Tn)11 =

∣∣∣∣∣∣∣∣∣∣

λ2n 0 λ2n−2 0 . . . λ2 0 λ1λ2 . . . λ2n
λ2n1 φ1 λ2n−1

1 ϕ1 λ2n−2
1 φ1 λ2n−3

1 ϕ1 . . . λ21φ1 λ1ϕ1 λ1λ2 . . . λ2nφ1

λ2n2 φ2 λ2n−1
2 ϕ2 λ2n−2

2 φ2 λ2n−3
2 ϕ2 . . . λ22φ2 λ2ϕ2 λ1λ2 . . . λ2nφ2

...
...

...
...

...
...

...
...

λ2n2nφ2n λ2n−1
2n ϕ2n λ2n−2

2n φ2n λ2n−3
2n ϕ2n . . . λ22nφ2n λ2nϕ2n λ1λ2 . . . λ2nφ1

∣∣∣∣∣∣∣∣∣∣

,

(Tn)12 =

∣∣∣∣∣∣∣∣∣∣

0 λ2n−1 0 λ2n−3 . . . 0 λ 0
λ2n1 φ1 λ2n−1

1 ϕ1 λ2n−2
1 φ1 λ2n−3

1 ϕ1 . . . λ21φ1 λ1ϕ1 λ1λ2 . . . λ2nφ1

λ2n2 φ2 λ2n−1
2 ϕ2 λ2n−2

2 φ2 λ2n−3
2 ϕ2 . . . λ22φ2 λ2ϕ2 λ1λ2 . . . λ2nφ2

...
...

...
...

...
...

...
...

λ2n2nφ2n λ2n−1
2n ϕ2n λ2n−2

2n φ2n λ2n−3
2n ϕ2n . . . λ22nφ2n λ2nϕ2n λ1λ2 . . . λ2nφ1

∣∣∣∣∣∣∣∣∣∣

,

∆̃n =

∣∣∣∣∣∣∣∣

λ2n1 ϕ1 λ2n−1
1 φ1 λ2n−2

1 ϕ1 λ2n−3
1 φ1 . . . λ21ϕ1 λ1φ1

λ2n2 ϕ2 λ2n−1
2 φ2 λ2n−2

2 ϕ2 λ2n−3
2 φ2 . . . λ22ϕ2 λ2φ2

...
...

...
...

...
...

...
λ2n2nϕ2n λ2n−1

2n φ2n λ2n−2
2n ϕ2n λ2n−3

2n φ2n . . . λ22nϕ2n λ2nφ2n

∣∣∣∣∣∣∣∣
,

(Tn)21 =

∣∣∣∣∣∣∣∣∣∣

0 λ2n−1 0 λ2n−3 . . . 0 λ 0
λ2n1 ϕ1 λ2n−1

1 φ1 λ2n−2
1 ϕ1 λ2n−3

1 φ1 . . . λ21ϕ1 λ1φ1 λ1λ2 . . . λ2nϕ1

λ2n2 ϕ2 λ2n−1
2 φ2 λ2n−2

2 ϕ2 λ2n−3
2 φ2 . . . λ22ϕ2 λ2φ2 λ1λ2 . . . λ2nϕ2

...
...

...
...

...
...

...
...

λ2n2nϕ2n λ2n−1
2n φ2n λ2n−2

2n ϕ2n λ2n−3
2n φ2n . . . λ22nϕ2n λ2nφ2n λ1λ2 . . . λ2nϕ1

∣∣∣∣∣∣∣∣∣∣

,

(Tn)22 =

∣∣∣∣∣∣∣∣∣∣

λ2n 0 λ2n−2 0 . . . λ2 0 λ1λ2 . . . λ2n
λ2n1 ϕ1 λ2n−2

1 φ1 λ2n−2
1 ϕ1 λ2n−3

1 φ1 . . . λ21ϕ1 λ1φ1 λ1λ2 . . . λ2nϕ1

λ2n2 ϕ2 λ2n−1
2 φ2 λ2n−2

2 ϕ2 λ2n−3
2 φ2 . . . λ22ϕ2 λ2φ2 λ1λ2 . . . λ2nϕ2

...
...

...
...

...
...

...
...

λ2n2nϕ2n λ2n−1
2n φ2n λ2n−2

2n ϕ2n λ2n−3
2n φ2n . . . λ22nϕ2n λ2nφ2n λ1λ2 . . . λ2nϕ1

∣∣∣∣∣∣∣∣∣∣

.

Next, we consider the transformed new solutions (Q[n], R[n])of Kundu-DNLS system corre-
sponding to the n-fold Kundu-DNLS transformation. Under covariant requirement of spectral
problem of the Kundu-DNLS system, the transformed form should be

∂xψ
[n] = (Jλ2 +Q[n]λ)ψ = U [n]ψ, (2.20)

with

ψ =

(
φ

ϕ

)
, J =

(
i 0
0 −i

)
, Q[n] =

(
0 Q[n]

R[n] 0

)
, (2.21)

and then

Tnx + Tn U = U [n] Tn. (2.22)
5



Substituting Tn given by eq.(2.18) into eq.(2.22)and comparing the coefficients of λ2n+1, it yields

Q[n] =
dn

an
Q− cn−1e

−iθ

an
√
α
, R[n] =

an

dn
R +

bn−1e
iθ

dn
√
α
. (2.23)

Furthermore, taking an, dn, bn−1, cn−1 which are obtained from eq.(2.19) into (2.23), then new
solutions (Q[n], R[n]) are given by

Q[n] =
Ω2

21

Ω2
11

Q +
e−iθ

√
α

Ω21Ω22

Ω2
11

, R[n] =
Ω2

11

Ω2
21

R− eiθ√
α

Ω11Ω12

Ω2
21

. (2.24)

Here,

Ω11 =

∣∣∣∣∣∣∣∣

λ2n−1
1 ϕ1 λ2n−2

1 φ1 λ2n−3
1 ϕ1 . . . λ1ϕ1 φ1

λ2n−1
2 ϕ2 λ2n−2

2 φ2 λ2n−3
2 ϕ2 . . . λ2ϕ2 φ2

...
...

...
...

...
...

λ2n−1
2n ϕ2n λ2n−2

2n φ2n λ2n−3
2n ϕ2n . . . λ2nϕ2n φ2n

∣∣∣∣∣∣∣∣
, (2.25)

Ω12 =

∣∣∣∣∣∣∣∣

λ2n1 φ1 λ2n−2
1 φ1 λ2n−3

1 ϕ1 . . . λ1ϕ1 φ1

λ2n2 φ2 λ2n−2
2 φ2 λ2n−3

2 ϕ2 . . . λ2ϕ2 φ2
...

...
...

...
...

...
λ2n2nφ2n λ2n−2

2n φ2n λ2n−3
2n ϕ2n . . . λ2nϕ2n φ2n

∣∣∣∣∣∣∣∣
,

Ω21 =

∣∣∣∣∣∣∣∣

λ2n−1
1 φ1 λ2n−2

1 ϕ1 λ2n−3
1 φ1 . . . λ1φ1 ϕ1

λ2n−1
2 φ2 λ2n−2

2 ϕ2 λ2n−3
2 φ2 . . . λ2φ2 ϕ2

...
...

...
...

...
...

λ2n−1
2n φ2n λ2n−2

2n ϕ2n λ2n−3
2n φ2n . . . λ2nφ2n ϕ2n

∣∣∣∣∣∣∣∣
,

Ω22 =

∣∣∣∣∣∣∣∣

λ2n1 ϕ1 λ2n−2
1 ϕ1 λ2n−3

1 φ1 . . . λ1φ1 ϕ1

λ2n1 ϕ1 λ2n−2
2 ϕ2 λ2n−3

2 φ2 . . . λ2φ2 ϕ2
...

...
...

...
...

...
λ2n2nϕ2n λ2n−2

2n ϕ2n λ2n−3
2n φ2n . . . λ2nφ2n ϕ2n

∣∣∣∣∣∣∣∣
.

So far, we discussed about the determinant construction of n-th Darboux transformation of
Kundu-DNLS equation. As an application of these transformations of Kundu-DNLS equation,
soliton solutions and positon solutions will be constructed in the next section.

3. Soliton solutions and Positon solution of the Kundu-DNLS equation

For Q = 0 the equations (2.17) is solved by

ψj =

(
φj

ϕj

)
, φj = exp(− i

8
(2λj

2x+ λj
4t)), ϕj = exp(

i

8
(2λj

2x+ λj
4t)).

(3.26)

Considering the choice in eq.(2.17) with λ1 = m1 + in1, λ2 = λ∗1, m1, n1 ∈ R and using
eigenfunctions in eq.(3.29), then one soliton solution of Kundu-DNLS equation is

Q[1] =
(eiF1λ1 − eiF2λ2)(λ1 + λ2)

e−2if
√
α(λ1 − λ2)

,

(3.27)
6



with Fi = −1
4
(−2λ2ix+λ4i t+4θ), i = 1, 2; f = 1

8
(λ1−λ2)(λ1+λ2)(tλ

2
1− 2x+ tλ22) . The picture

of one soliton solution of the Kundu-DNLS equation and its corresponding density graph are
plotted in Fig.1 .

Figure 1. One soliton solution |Q[1]|2 of the Kundu-DNLS equation when m1 =
1, n1 = 2, α = 1, θ = x+ t.

Now let us discuss about the construction of the two-soliton solution of Kundu-DNLS system.
For the purpose, we have to use two spectral parameters λ1 = m1 + in1, λ2 = λ∗1,and λ3 =
m2 + in2, λ4 = λ∗3. After two Darboux transformations, the two soliton solution is derived as
follows:

Q[2] =
K1

K2

(3.28)

where

K1 = −4ie−iθ(2Mcosρ1 +H10001e
ρ2 +H2e

ρ3 +H3e
ρ4 +H4e

ρ5)

(H5e
ρ6 +H6e

−ρ∗
6 +H7e

ρ7 +H8e
−ρ∗

7),

K2 = −
√
α(2Mcosρ1 +H4e

ρ2 +H3e
ρ3 +H2e

ρ4 +H1e
ρ5)2,

A = −(m1 +m2) + i(n1 + n2), B = (m2 −m1) + i(n1 − n2),

C = (m2 −m1) + i(n1 + n2), D = −(m1 +m2) + i(n1 − n2),

E = in1 −m1, F = in2 −m2,

H1 = −|A|2|C|2EF, H2 = |B|2|D|2EF ∗,

H3 = |B|2|D|2E∗F, H4 = −|A|2|C|2E∗F ∗,

H5 = −m1n1A
∗BC∗DF, H6 = m1n1AB

∗CDF ∗,

H7 = m2n2A
∗B∗CDE, H8 = m1n1ABCD

∗E∗,

ρ1 =
1

4
(tm4

1 − tm4
2 − tn4

2 + tn4
1 + 6tm2

2n
2
2 − 6tm2

1n
2
1 − 2xm2

1 + 2xm2
2 + 2xn2

1 − 2xn2
2),

ρ2 = tm3
1n1 − tm1n

3
1 + tm3

2n2 − tm2n
3
2 − xm1n1 − xm2n2,

ρ3 = tm3
1n1 − tm1n

3
1 − tm3

2n2 + tm2n
3
2 − xm1n1 + xm2n2,

7



ρ4 = −tm3
1n1 + tm1n

3
1 + tm3

2n2 − tm2n
3
2 + xm1n1 − xm2n2,

ρ5 = −tm3
1n1 + tm1n

3
1 − tm3

2n2 + tm2n
3
2 + xm1n1 + xm2n2,

ρ6 =
−i
4
(tm4

1 + tn4
1 + 4itm3

2n2 − 4itm2n
3
2 − 6tm2

1n
2
1 − 2xm2

1 + 2xn2
1 − 4ixm2n2),

ρ7 =
−i
4
(tm4

2 + tn4
2 + 4itm3

1n1 − 4itm1n
3
1 − 6tm2

2n
2
2 + 2xm2

2 + 2xn2
2 − 4ixm1n1).

The picture of two soliton solution of the Kundu-DNLS equation and its corresponding density
graph are plotted in Fig.2 .

Figure 2. Two soliton solution |Q[2]|2 of the Kundu-DNLS equation when m1 =
0.7, m2 = 0.5, n1 = 0.3, n2 = 0.5, α = 1.

In the following, we consider the construction of positon solution of Kundu-DNLS equation
in detail. From the two soliton solution, we make use of four spectral parameters λ1 = α1+ iβ1,
λ2 = α1 − iβ1and λ3 = α1 + iβ1 + ε, λ4 = α1 − iβ1 + ε. By letting the infinitesimal complex
number ε and doing the Taylor expansion of wave function to λ1, λ2, positon solution as the
method of ref. [25]. Following four linear functions are used to construct the second positon
solution,

ψk =

(
φk

ϕk

)
, φk = exp(− i

8
(2λk

2x+ λk
4t)), ϕk = exp(

i

8
(2λk

2x+ λk
4t)),

(3.29)

where k = 1, 2, 3, 4. The positon solution of the Kundu-DNLS equation is given as follows:

Qp =
−8α1β1G1G2(G3 +G4)

(G3 −G4)2
,

(3.30)

where

G1 = iα3
1 cosh(α1β1g1) + 2α3

1β1t cosh(α1β1g1)− α3
1β

2
1x cosh(α1β1g1)
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−α1β
4
1x cosh(α1β1g1)− α1β

6
1t cosh(α1β1g1) + 3α5

1β
2
1t cosh(α1β1g1)

−iα6
1β1t sinh(α1β1g1) + 2iα4

1β
3
1t sinh(α1β1g1) + iα4

1β1x sinh(α1β1g1)

+iα2
1β

3
1x sinh(α1β1g1) + 3iα2

1β
2
1t sinh(α1β1g1)− β3

1 sinh(α1β1g1),

G2 = cosH2 + i sinH2,

G3 = 2iα3
1β1 sinh(2α1β1g1) + 4iα2

1β
6
1t− 4iα4

1β
2
1x− 24iα4

1β
4
1t+

2iα1β
3
1 sinh(2α1β12000g1) + 4iα6

1β
2
1t+ 4iα2

1β
2
1t + 4iα2

1β
4
1x,

G4 = α4
1 + β4

1 − 4α8
1β

2
1xt− 4α4

1β
6
1xt− 4α6

1β
4
1xt + 4α2

1β
8
1xt+ 4α4

1β
4
1x

2

+8α4
1β

8
1t

2 + 2α6
1β

2
1x

2 + 2α10
1 β

2
1t

2 + 8α8
1β

4
1t

2 + 12α6
1β

6
1t

2 + 2α2
1β

6
1x

2

+2α2
1β

10
1 t

2 − β4
1 cosh(2α1β1g1) + α4

1 cosh(2α1β1g1),

g1 = −x− tα2
1 − tβ2

1 ,

g2 = x+ t+
1

4
tβ4

1 −
3

2
tα2

1β
2
1 +

1

2
xβ2

1 +
1

4
tα4

1 −
1

2
xα2

1.

The picture of positon solution of the Kundu-DNLS equation and its corresponding density
graph are plotted in Fig.3. When t → ∞, one can find that the difference between the two
soliton solution in Fig.2 and the positon solution in Fig.3 as following. Positon can be treated
as one special case of two solitons. When two spectral parameters of two soliton solution get
closer and closer, the separating speed between two branches of two solitons becomes slower
and slower. This approximation leads two soliton solutions to one Positon solutions. That is
why Positon solutions are also called degenerated solitons. Positons of Kundu-DNLS equation
are in fact long-range analogues of solitons of Kundu-DNLS equation and are slowly decreasing,
oscillating solutions.

Figure 3. Positon solution |Qp|2 of the Kundu-DNLS equation with α1 =
0.8, β1 = 0.8.
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4. Breather solution and Rogue wave solutions of the Kundu-DNLS equation

From last two sections, soliton and positon solutions have been generated for the Kundu-
DNLS equation through the Darboux transformation. However, these solutions were obtained
from a trivial seed-zero solution. In this section, we derive the new kind of solution (that is
breather solution) from a periodic seed solution.

Taking the seed solution as Q = ceiρ, θ = x + t, ρ = ax + bt, which admits the constraint in
the form

b = −αc2a− 2− a2 − 2a− αc2. (4.31)

Then the eigenfunction conrresponded to eigenvalue λ is obtained. Using the method of sepa-
ration of variables and the superposition principle, the eigenfunction ψk associated with λk is
given by(
φk(x, t, λk)
ϕk(x, t, λk)

)
=

(
f1(x, t, λk)[1, k] + f2(x, t, λk)[1, k] + f ∗

1 (x, t, λ
∗

k)[2, k] + f ∗

2 (x, t, λ
∗

k)[2, k]
f1(x, t, λk)[2, k] + f2(x, t, λk)[2, k] + f ∗

1 (x, t, λ
∗

k)[1, k] + f ∗

2 (x, t, λ
∗

k)[1, k]

)
.(4.32)

Here
(
f1(x, t, λk)[1, k]
f1(x, t, λk)[2, k]

)
=

(
2−λ2+2 a−s

2λ c
e

1

8
i(−4 ax−4x−2xs+tλ2s+8 ta+4 ta2+2 tas+4 t+2 ts+4 tc2+4 tc2a+2 tc2s)

e
1

8
i(4 ax+4x−2xs+tλ2s−8 ta−4 ta2+2 tas−4 t+2 ts−4 tc2−4 tc2a+2 tc2s)

)
,

(
f2(x, t, λk)[1, k]
f2(x, t, λk)[2, k]

)
=

(
2−λ2+2 a+s

2λ c
e

−1

8
i(4 ax+4x−2xs+tλ2s−8 ta−4 ta2+2 tas−4 t+2 ts−4 tc2−4 tc2a+2 tc2s)

e
−1

8
i(−4 ax−4x−2xs+tλ2s+8 ta+4 ta2+2 tas+4 t+2 ts+4 tc2+4 tc2a+2 tc2s)

)
,

f1(x, t, λk) =

(
f1(x, t, λk)[1, k]
f1(x, t, λk)[2, k]

)
, f2(x, t, λk) =

(
f2(x, t, λk)[1, k]
f2(x, t, λk)[2, k]

)
,

s =
√
4a2 − 4aλ2 + 8a+ λ4 − 4λ2 + 4− 4λ2c2.

Note that f1(x, t, λk) and f2(x, t, λk) are two different solutions of the spectral problem
eq.(2.3), but we can only get the trivial solutions through DT of the Kundu-DNLS equation by
setting eigenfunction ψk to be one of them.

Now let us discuss about the construction of the breather solution of Kundu-DNLS equation.
For the purpose, we have to use two spectral parameters λ1 = ξ+iη, and λ2 = ξ−iη. To simplify
the calculations, we use the second Darboux transformation discussed in the last section, then
the breather solution Qb with a = −2, c = 1, ξ = 0.5, η = 1 is obtained in the form

Qb =
−b1b2
2b23

,

(4.33)

where

b1 = 63508327ie−0.9682458364ix + 436491673e0.2420614592t − 563508327ie0.2420614592t

−436491673e−0.2420614592t − 563508327ie−0.2420614592t + 5× 108ie−0.9682458364ix,

b2 = 1309475019e−0.2420614592t−2ix−it + 10× 108ie−0.4×10−8i(257938541x+2.5×108t)

−1309475019e0.2420614592t−2ix−it + 563508327ie0.2420614592t−2ix−it

+563508327e−0.2420614592t−2ix−it + 127016654ie−0.4×10−8i(742061459x+2.5×108t),
10



b3 = 5× 108ie−0.9682458364ix + 63508327ie0.9682458364ix − 436491673e0.2420614592t

−563508327ie0.2420614592t + 436491673e−0.2420614592t − 563508327ie−0.2420614592t.

The picture of breather solutions of the Kundu-DNLS equation and its corresponding density
graph are plotted in Fig.4, which propagates along the line t = 0, however, by changing the
value of the parameters, the direction of propagating for the breather will change.

Figure 4. Breather solution |Qb|2 of the Kundu-DNLS equation with a =
−2, c = 1, ξ = 0.5, η = 1.

In this section, we construct the rogue wave solution of Kundu-DNLS equation. This kind
of solution only appears in some special region of time and space and then drown into a fixed
non-vanishing plane. By making use of the Taylor expansion for the breather solution, one

order rogue wave solution of Q
[1]
r for the Kundu-DNLS equation is obtained

Q[1]
r =

−v1e−i(2x+t)

v2
,

(4.34)

where

v1 = 3 + 8x2 + 8itx2 + 8ixt2 + 8xt− 8t2x2 − 4t4 − 4x4 + 8ix3 − 4ix+ 12it+ 8it3 − 8t2,

v2 = −1 + 8it2 + 4it + 8itx2 − 8it2x− 8tx− 8t2x2 − 8ix3 − 4t4 − 4x4 − 4ix.

The picture of one order rogue wave solution of the Kundu-DNLS equation and its corresponding
density graph are plotted in Fig.5 . Comparing Fig.1 and Fig.5 can tell us the following
important difference between one rogue wave solution and one soliton solution. Rogue wave
solution is localized in both x and t direction which means it only has large amplitude with a
non-vanishing boundary in a small domain of (x,t) plane. But a soliton solution is a travelling
wave and has a vanishing boundary.
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Figure 5. One order rogue wave solution |Q[1]
r |2 of the Kundu-DNLS equation

with a = −2, c = 1, ξ = 1, η = 1.

When we take a = −2, c = 1, ε = 1, η = 1, the specific form of the second rogue wave solution
for the Kundu-DNLS equation takes the following form:

Q[2]
r =

−v3v4e−i(2x+t)

v25
,

(4.35)

where

v3 = −72xt + 48x3t− 216x2t2 + 24x2t4 + 24x4t2 + 90x2 + 666t2 − 12x4 + 180t4 + 8t6 + 8x6

+48xt3 + 9− 48ix3 − 48ix3t2 + 288ixt2 − 54ix− 24ixt4 + 24it5 + 24ix4t + 198it+ 336it3

+48ix2t3 − 24ix5,

v4 = 198x2 − 45− 504xt+ 144x3t+ 504x2t2 + 144xt3 + 486t2 + 60t4 + 60x4 − 24x2t4 − 8t6

−24x4t2 − 8x6 − 48ix3 + 24ix5 + 48ix3t2 + 24ixt4 − 288ix4t− 576ixt2 + 144ix2t3 − 90ix

−414it + 72ix4t+ 528it3 + 72it5,

v5 = −48ix3 − 48ix3t2 + 288ixt2 − 54ix− 24ixt4 + 72xt− 48x3t+ 216x2t2 − 24x2t4 − 24ix5

−90x2 − 666t2 + 24it5 + 12x4 − 180t4 − 8t6 − 8x6 − 48xt3 + 24ix4t+ 198it+ 336it3 − 9

+48ix2t3 − 24x4t2.

The picture of second order rogue wave solution of the Kundu-DNLS equation and its corre-
sponding density graph are plotted in Fig.6 .

Next, if we replace(4.32) with the following expression,
(
φk(x, t, λk)
ϕk(x, t, λk)

)
=

(
D1f1(x, t, λk)[1, k] +D2f2(x, t, λk)[1, k] +D2f

∗

1 (x, t, λ
∗

k)[2, k] +D1f
∗

2 (x, t, λ
∗

k)[2, k]
D1f1(x, t, λk)[2, k] +D2f2(x, t, λk)[2, k] +D2f

∗

1 (x, t, λ
∗

k)[1, k] +D1f
∗

2 (x, t, λ
∗

k)[1, k]

)

(4.36)

where
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Figure 6. The second rogue wave solution |Q[2]
r |2 of the Kundu-DNLS equation

with a = −2, c = 1, ξ = 1, η = 1.

{
D1 =exp

(
−is(S0 + S1ǫ+ S2ǫ

2)
)

D2 =exp
(
is(S0 + S1ǫ+ S2ǫ

2)
)
.

We can split the second order rogue wave solution into triangle structure with the help of S1.
A particular structure is displayed in Fig. 7. It is easy to see that three intensity humps appear
at different times and space, and each intensity hump is roughly a first-order rogue wave.

Figure 7. The second rogue wave solution |Q[2]
r |2 of the Kundu-DNLS equation

with S0 = 0, S1 = 500, S2 = 0.
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Next, we examine third-order rogue waves. In this case, Form the figures, We can get third-
order rogue wave solution with the help of a = −2, c = 1, α = 1. A particular structure is
displayed in Fig. 8.

Figure 8. The third rogue wave solution |Q[3]
r |2 of the Kundu-DNLS equation

with a = −2, c = 1, α = 1, ε = 0.8, η = 0.8.

We can split the third order rogue wave solution into triangle structure with the help of S1.
A particular structure is displayed in Fig. 9. The third-order rogue wave is seen to possess a
regular triangle spatial symmetry structure.

Figure 9. The third rogue wave solution |Q[3]
r |2 of the Kundu-DNLS equation

with a = −2, c = 1, α = 1, S0 = 0, S1 = 500, S2 = 0.

We can split the third order rogue wave solution into pentagon structure with the help of S2.
A particular structure is displayed in Fig. 10. The third-order rogue wave exhibits a regular
pentagon spatial symmetry structure.
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Figure 10. The third rogue wave solution |Q[3]
r |2 of the Kundu-DNLS equation

with a = −2, c = 1, α = 1, S0 = 0, S1 = 0, S2 = 1000.

From above graphs of rogue wave solutions of the Kundu-DNLS equation, we can find some
twisted effect of modified terms of the Kundu-DNLS equation which is different from DNLS
equation [2].

5. Conclusions

In this paper, we construct the Darboux transformation for the Kundu-DNLS equation. And
the determinant representations of the new solution Q of the Kundu-DNLS equation are given.
Moreover, by making use of the Darboux transformation, we derive several types of solutions
for Kundu-DNLS equation. There solutions include the soliton solutions, positon solution and
breather solution, 1-order rogue wave, 2-order rogue wave and 3-order rogue wave. Particularly,
these rogue wave solutions possess several free parameters. With the help of these parameters,
these rogue waves constitute some patterns, such as fundamental pattern, triangular pattern,
circular pattern. On the other hand, we can also derive the higher order rogue wave solutions
for Kundu-DNLS equation by making use of the Darboux transformation. The application of
high-order rogue in physics will be one interesting subject.
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