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BIPARTITE AND DIRECTED SCALE-FREE COMPLEX

NETWORKS ARISING FROM ZETA FUNCTIONS

PIERGIULIO TEMPESTA

Abstract. We construct a new class of directed and bipartite random graphs
whose topology is governed by the analytic properties of multiple zeta func-
tions. The Euler-Zagier and the multiplicative zeta graphs are relevant exam-
ples of the proposed construction. Phase transitions and percolation thresholds
for our models are determined.
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1. Introduction

In the last decade, complex networks have been acquiring a prominent role in
different branches of science as theoretical physics, biology, information science,
social sciences, etc. (see, e.g., [28], and the reviews [2], [7], [9], [13], [14], [27]).
Indeed, they are essential in modeling systems with nontrivial interactions, and
are usually represented in terms of random graphs [8], [21]. Phenomena like phase
transitions in complex networks depend crucially on the topology of the underlying
graphs.

Since the pioneering work of Erdös and Rényi [16], and Solomonoff and Rapoport
[33], this field has known a dramatic development, and has been widely investigated
[8]. Many new models of random graphs have been considered and their role in the
applications analyzed.
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In particular, scale–free models, i.e. models exhibiting a power-law degree distri-
bution, represent one of the most studied classes of complex networks. Historically,
the first example of them was offered by the Price model [32]. Among the most
important ones are those proposed by Barabasi, Albert and collaborators in [5], [6]
and by Aiello et al. in [1] (for a recent review, see the monograph [9]).

The aim of this work is to establish a connection between the theory of complex
networks and number theory. This research can be considered part of a general
program aiming at investigating the relation between statistical mechanics and
number theory. A first connection between these two fields was discovered by
Montgomery and Odlyzko: the Gaussian unitary ensemble was related with the
zeros of the Riemann zeta function ζ(s). Since then, many studies have been
devoted to clarify the relation among generalized zeta functions, random matrix
theory, and various aspects of quantum field theory and spectral theory (see [11]
and [23] for general reviews).

In [37], L-functions, which are among the most important objects in analytical
number theory, have been used to construct scale-free graphs possessing several
interesting topological properties. Essentially, L-functions are meromorphic con-
tinuations of Dirichlet series to the whole complex plane, with a Euler product and
a functional equation (for a modern introduction, see e.g. the monograph [20]).
The classical Riemann zeta function is the most known example of a L-function.
An axiomatic theory of L-functions has been proposed by A. Selberg [22]. In [36],
Dirichlet series have been related to generalized entropies via the notion of universal
formal group (see also [34], [35].)

In this paper, we further extend the results of [37] and construct new families
of directed and bipartite random graphs with scale similarity properties. The main
motivation is that, apart their intrinsic theoretical interest, graphs of this class
appear in many real-world networks.

A directed graph is a graph in which a direction is specified in every link. This
makes directed graphs more sophisticated and realistic than undirected graphs. A
basic example of directed graph is the world-wide web.

In turn, bipartite graphs are characterized by two different types of vertices, each
endowed with a degree distribution. These models are also widely investigated for
their usefulness in different applications ([2], [28]).

As is common in the literature, the scale–free invariance of a unipartite model es-
sentially means that, given the probability distribution {pk}k∈N, the ratio pα×k/pk
depends only on α but not on k. In the following, we will consider a natural
generalization of this notion for classes of directed and bipartite random graphs.

We are here mainly interested in the topology of the new networks we introduce.
In particular, we will study the conditions under which phase transitions may occur.
These condition will be typically expressed in terms of functional equations in the
parameters of our models, that can be solved numerically with arbitrary accuracy.

The paper has the following structure. In Section 2, some basic definitions
concerning the theory of generating functions for random graphs are proposed. In
Section 3, bipartite graphs arising from suitable Dirichlet series and L-functions
are introduced. In Section 4, an analogous construction is proposed for the case
of directed graphs. In Section 5, the relevant subcase of scale-free networks is
analyzed in detail, in terms of a suitable group theoretical structure allowing the
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composition of graphs. In Section 6, an application of our models to a biological
context is proposed.

2. Algebraic Preliminaries

In order to fix the language and the notation, in this Section some basic aspects
of the formalism adopted in the paper will be sketched.

Throughout this work, we will stay in the limit of large graph size.
In order to define a random graph, a degree probability distribution {pn}n∈N of

vertices in the graph is introduced, where pn is the probability that an uniformly
randomly chosen vertex has degree n. Once assigned a degree probability distri-
bution, a graph is chosen uniformly at random in the class of all graphs with that
given distribution. We shall follow the analysis and the terminology of [27] and
[29].

Consider first the case of an undirected graph. The series

(1) G0(x) :=
∞
∑

n=0

pnx
n,

is called the generating function of the distribution. We have necessarily

(2) G0(1) = 1.

The distribution of the outgoing edges is generated by

(3) G1(x) :=

∑

n=1 npnx
n−1

∑

n=1 npn
,

where the average number of first neighbors, equal to the average degree of the
graph, is

z1 =< n >=
∑

n

npn = G′
0(1).

In the case of directed graphs, each vertex possesses an in-degree j and an out-
degree k. Therefore, one introduces a distribution {πjk}j,k∈N over both degrees.
The generating function for a directed graph is of the form

(4) G(x, y) =
∑

j,k

πjkx
jyk.

It is natural to introduce generating functions for the in-degrees and out-degrees,
which are obtained from (4) by summing away the irrelevant degrees of freedom:

(5) F0(x) = G(x, 1); G0(y) = G(1, y).

In a bipartite graph, we can distinguish two kinds of vertices, with edges running
only between vertices of unlike types. We will call them of type A and of type B,
respectively (we shall consider the case of a very large number of vertices).. We
introduce two degree distributions, {pn}n∈N and {qm}m∈N, corresponding to the
probability distributions of the nodes of type A and B, respectively. The associated
generating functions will be

(6) f0(x) =
∑

n

pnx
n, g0(x) =

∑

m

qmxm.

Let us suppose that we have a vertices of type A and b vertices of type B, and
that each vertex of type A has an average of a links with nodes of type B and that
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each vertex of type B has b links with nodes of type A. These quantities are clearly
related by the constraint

(7) ab = ba.

According to the previous discussion, we have that

(8) f0(1) = g0(1) = 1

and

(9) f ′
0(1) = a, g′0(1) = b.

A condition analogous to (3) is

(10) f1(x) =
f ′
0(x)

a
, g1(x) =

g′0(x)

b
.

In the coming sections, more specific properties, as topological phase transitions,
will be discussed for both directed and bipartite graphs.

3. Bipartite graphs coming from L–functions

3.1. Main definition. We introduce a very large class of models, the bipartite L-
graphs. In the subsequent discussion, we shall consider some Dirichlet series with
specific properties, that will make them suitable for the construction proposed.

Definition 1. A bipartite L-graph is a complex network characterized by the follow-
ing two degree probability distributions for the nodes of type A and B respectively:

pm =

{

0 for m = 0,
amm−α

L1(α)
for m ∈ N, m ≥ 1,

(11) qn =

{

0 for n = 0,
bnn

−β

L2(β)
for n ∈ N, n ≥ 1.

Here

L1(α) =

∞
∑

m=1

am
mα

, L2(β) =

∞
∑

n=1

bn
nα

, α, β ∈ R, α, β > 1

are suitable Dirichlet series (L–series), and pm, qm ≥ 0.

Remark 1. In the following, we shall tacitly assume that L1(α), L2(β) take real
values; also, the coefficients am, bn are supposed to be nonnegative, with am 6= 0,
bn 6= 0 for some m,n. However, in Section 5.2 we will also consider the formal
situation corresponding to the choice am, bn ∈ R for all m,n.

One of the most important topological properties of a random graph is the pos-
sible formation of a giant cluster. It corresponds to a topological phase transition,
marked by a threshold value in one of its parameters. Given a unipartite random
graph with N vertices, in [24] a threshold condition has been determined almost
surely, i.e. with probability tending to 1 for N → ∞, for degree probability dis-
tributions well behaved and sufficiently regular. This condition has been slightly
weakened in [18].

In many cases, it is useful to consider the one-mode network [40], which is the
projection of the bipartite graph onto the unipartite space of the vertices of type
A (or B) only.
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In order to find the analytic condition for the transition, let us introduce the
function

(12) G1(x) = f1(g1(x)).

It plays the same role as the function (3) for unipartite graphs. One can prove [29]
that the giant component first appears when

(13) f ′′
0 (1)g

′′
0 (1) = f ′

0(1)g
′
0(1).

By using eq. (13), we can state the following result.

Theorem 1. Given a bipartite L-graph, the threshold condition marking the phase
transition to the formation of a giant cluster occurs for the values of (α, β) such
that

Ψ(α, β) = L1(α − 2)L2(β − 2)− L1(α− 2)L2(β − 1)

−L1(α− 1)L2(β − 2) = 0.(14)

Proof. Condition (13) translates into the threshold equation

(15)

∞
∑

m,n=1

mn(mn−m− n)pmqn = 0.

The relation (15), for bipartite L–graphs is equivalent to eq. (14). �

The threshold condition (14) is expressed in terms of a functional equation in two
parameters, whose solution space lies in a two-dimensional surface, defining a phase
diagram. In agreement with the results of [24], it is necessary for the giant cluster
to exist in the bipartite case that

(16) Ψ(α, β) > 0.

For unipartite undirected graphs, this requirement, joint with the growth condition
for kmax, implies the existence of a giant cluster [24].

Remark 2. One can prove that a good estimation for the asymptotic growth

of the maximum degree for a power law-type distribution is kmax ∼ N
1

α−1 [27].
This enables to obtain sufficient regularity in asymptotic growth for the unipartite
projections of the L-models by further constraining the parameter space.

Observe that when L1(α) = L2(β) = L(α), for the unipartite zeta graphs the
previous proposition reduces to

(17) L(α− 2)− 2L(α− 1) = 0.

The threshold equation (17) has been first obtained in [37]. It reduces to the
condition for the first appearance of the giant component of the model by Aiello et
al., i.e. ζ(α − 2) = 2ζ(α− 1) [1].

Another important topological property of a graph is the clustering coefficient,
or network transitivity, defined as

(18) C :=
3x number of triangles in the network

number of connected triples of vertices
,

where a connected triple consists of a single vertex whose edges connect it to an
unordered pair of others. The clustering coefficient satisfies 0 ≤ C ≤ 1.

One can prove by a direct calculation the following general statement.
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Proposition 1. For a bipartite ζ-graph, the clustering coefficient (18) is expressed
by the formula

(19) C =
L1(α− 1)L2(β − 1)F (β)

[L1(α− 2)− L1(α − 1)][L2(β − 2)− L2(β − 1)]2 + 1
,

where

(20) F (β) = [2L2(β − 1)− 3L2(β − 2) + L2(β − 3)].

3.2. The bipartite zeta graph. A first example of the class of bipartite L-graphs
is the ζ-graph, directly related to the Riemann zeta function. It generalizes the
celebrated model by Aiello et al. [1].

Definition 2. A bipartite ζ-graph is a complex bipartite L-graph generated by two
distribution functions of the form

(21) pn =
n−α

ζ(α)
n ∈ N/{0}, α ≥ 1, qm =

m−β

ζ(β)
m ∈ N/{0}, β ≥ 1,

with p0 = q0 = 0, where

(22) ζ(α) =

∞
∑

k=1

1

kα
, α > 1

is the Riemann zeta function.

For the ζ-model we get easily

(23) a = b =
ζ(α − 1)

ζ(α)
.

We obtain for the phase transition the threshold condition

(24) ζ(α − 2)ζ(β − 2) = ζ(α− 2)ζ(β − 1) + ζ(α − 1)ζ(β − 2).

3.3. The Hurwitz graph. The Hurwitz bipartite graph is a random graph model
related to the classical Hurwitz zeta function

ζH(s, k0) =

∞
∑

k=1

1

(k + k0)s
, s ∈ C, Re s > 1.

Definition 3. A bipartite random graph whose degree probability distributions are
of the form
{

p0 = 0, q0 = 0,

pm = (k0+m)−α

ζH(α) , m ∈ N, α ∈ R, α > 1, qn = (k0+n)−β

ζH(β) , n ∈ N, β ∈ R, β > 1,

will be called a Hurwitz bipartite random graph.

We remind [37] that the projected one-mode of this graph can be related with
nonextensive statistical mechanics [39]. This formulation of statistical mechanics is
based on a generalization of the Boltzmann-Gibbs entropy, i.e. the Tsallis entropy

Sq =
1−

∑W

i=1 p
q
i

1− q
, i = 1, . . . ,W.

Let eq(x) := [1+(1−q)x]
1

1−q denote the q-exponential function. Formally, by writing

the distribution pm = (k0+m)−α

ζH (α) in terms of eq(−m/τ), and putting α = 1
q−1 , k0 =

τ
q−1 , we essentially get the optimizing distribution for the Tsallis entropy, arising
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in the description of the stationary state associated with the canonical ensemble in
the nonextensive scenario [39], [38].

By applying Theorem 1, we deduce that the phase transition is described by the
critical equation
(25)
ζH(α−2, k0)ζH(β−2, k0) = ζH(α−2, k0)ζH(β−1, k0)+ ζH(α−1, k0)ζH(β−2, k0),

which depends on the entropic index q (for simplicity, we put τ = 1). It generalizes
the condition ζH(α− 2, k0) = 2ζH(α− 1, k0), valid for the unipartite model.

4. Directed graphs and L-functions

We wish to introduce here directed graphs related to L- functions.
To specify the degree of each vertex, we introduce a couple (n,m) of natural

integers, expressing the in–degree and the out–degree, respectively. The associated
degree probability distribution {πn,m}n,m∈N must satisfy the consistency constraint

(26)
∑

n,m

(n−m)πnm = 0,

expressing the fact that the net average number of edges entering a vertex is zero.
The constraint (26) implies that the average in–degrees and out–degrees of the
vertices coincide, and are given by

(27) z =
∑

n

nπnm.

The threshold condition for directed graphs reads

(28)
∑

n,m

(2nm− n−m)πnm = 0

There are several choices available in order to define directed graphs from L-
functions. In the following, we discuss some possible constructions.

4.1. A class of separated models. An interesting class of directed random
graphs is the separated one, obtained from degree distributions of the form

(29) πnm = pnqm.

This hypothesis is certainly restrictive. However, an important example of directed
graph fulfilling eq. (29) is the world-wide web. It has been shown that a good
approximation of the experimental data can be obtained by means of the choice

(30) pn =
(n+ k0)

−α

ζH(k0, α)
,

with qm of the same functional form. More generally, by taking two copies of a
unipartite L-graph, and using formula (29), we can produce a directed graph, that
we shall call a directed separated L-graph. The constraint (26) is automatically
satisfied. Instead, the threshold condition (28) imposes the further constraint

(31) 2L(α− 1)L(β − 1)− L(α− 1)L(β)− L(α)L(β − 1) ≥ 0.

This condition generalizes that one valid for the world wide web, obtained by iden-
tifying L(α) with ζH(α).

We propose a definition of scale invariance for this class of graphs.
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Definition 4. We shall say that a directed separated graph is scale-invariant if
each of the distributions {pn}n∈N and {qm}m∈N is scale-invariant.

In the following section, an algebraic approach for the generation of scale-invariant
directed L-graphs will be proposed.

Remark. The theory of multiple zeta functions dates to the works of Euler, and
of Barnes and Mellin at the beginning of the 20th century. A renewal of interest in
the field started with the works of Zagier [41] and Hoffman [19]. A multiple zeta
function very common in the literature is the Barnes zeta function, defined to be

(32) ζB(s, w | a1, a2) :=

∞
∑

m,n=0

(w+ma1+na2)
−s,Re s > 2,Re a1,Re a2,Re w > 0.

By analogy with the previous definitions (under the assumption of Remark 3), one
can introduce a directed graph whose probability distribution is given by
(33)

πnm =

{

0 for n = m = 0,

[w + (n+m)a]−α/ζB(α,w | a, a) for n,m ≥ 1, and a, α > 0.

This definition is well posed, since the consistency condition (26) is satisfied. How-
ever, apparently there is no easy way to write the phase transition threshold condi-
tion in a close form as a functional equation, which makes the model less transparent
and of a difficult treatment. It would be interesting to construct graphs related to
the theory of multiple zeta functions of Zagier-Hoffman type.

5. Multiplicative zeta functions and related scale-free networks

5.1. Algebraic preliminaries. In [37], a family of scale-free random graphs has
been constructed by means of the analytic theory of multiplicative functions [4].
First, we propose a definition of scale invariance in this context.

Definition 5. We shall say that a bipartite graph is scale-invariant if each of the
distributions {pn}n∈N and {qm}m∈N is scale-invariant.

Here we briefly recall some basic facts about the theory of multiplicative func-
tions.

An application f : N → R, not identically zero is said to be a multiplicative
arithmetic function if

f(mn) = f(m)f(n) whenever (m,n) = 1.

A necessary condition for f to be multiplicative is that

f(1) = 1.

In particular, the function f will be said to be completely multiplicative if

f(mn) = f(m)f(n) for all m,n ∈ N.

Well–known examples of multiplicative functions are the Euler totient function and
the χ–function. A completely multiplicative function is the Liouville one.

If f is completely multiplicative, then there exists a constant σa ∈ R such that
the series

(34)

∞
∑

n=1

f(n)

ns
, s ∈ C
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converges absolutely for Re s > σa. Also, we have the Euler product representation
∞
∑

n=1

f(n)

ns
=

∏

p

{

1 +
f(p)

ps
+

f(p2)

p2s
+ · · ·

}

, Re s > σa,(35)

if f is multiplicative, and

(36)

∞
∑

n=1

f(n)

ns
=

∏

p

1

1− f(p)p−s
, Re s > σa,

if f is completely multiplicative.
We can now consider a specific class of bipartite random graphs.

Definition 6. A bipartite L-graph is said to be (completely) multiplicative if the
L-series (11) are of the form (34), where f is a (completely) multiplicative function.

The previous definition easily extends to the case of a multipartite L-graph, i.e., a
graph in which several distinct sets of nodes are present, each of them represented
by a probability distribution of the form pn = ann

−α/L(α), n ∈ N/{0}.
A consequence of the Definition 6 is the following result.

Corollary 1. A completely multiplicative bipartite L-graph is scale-free.

5.2. A product in the space of bipartite and directed graphs. As in [37], we
introduce the space GM of multiplicative unipartite zeta random graphs, and the
space GCM of completely multiplicative unipartite random graphs. We will show
that these spaces play a special role in the construction of new bipartite and directed
complex networks. To this aim, we define first a group-theoretical structure.

Definition 7. The product of two unipartite multiplicative random graphs G1(f)
and G2(g) is defined to be the graph G12(h) whose associated multiplicative function
is the Dirichlet convolution of f and g:

(37) h := (f ∗ g)(mn) =
∑

x|mn

f(x)g
(mn

x

)

.

As is well known [4], the convolution function h is alsomultiplicative. In addition,
we can define the inverse of a graph with respect to the product (37). In this
construction, the Möbius function µ(n) plays a prominent role. It is defined as
follows. Given n ∈ N, first we write it in the form n = pa1

1 · · · pak

k , with p1, . . . , pk
suitable prime numbers.
Then we put

µ(n) = 1 if n = 1;

for n > 1, µ(n) =

{

(−1)k if a1 = a2 = · · · = ak = 1

0 otherwise.

In other words, µ(n) = 0 if and only if n has a square factor > 1. The Möbius
function is related to the Euler function φ(n) by the formula φ(n) =

∑

d|n µ(d)
n
d
,

n ≥ 1.

Definition 8. The “inverse” graph of a completely multiplicative unipartite random
graph G(f) is formally defined to be the graph G−1(f) := G(f−1) whose associated
multiplicative function is

f−1(n) := µ(n)f(n) ∀ n ≥ 1.
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Remark 3. A priori, in this definition µ(n) should be nonnegative. However, in
principle we can consider a more general class of pseudographs, where f : R → Z.
More precisely, in this case the degree distribution is given by a set of quasiproba-
bilities (a quasidistribution). Thus, we can define a formal inverse of a graph with
respect to the product.

The space GM(∗) has the structure of a monoid. If we allow the set GM to
include pseudographs, we get the structure of a group.

Remark 4. Given a degree quasidistribution, we can associate with it a standard
degree distribution (and, consequently, a set of standard graphs). A direct way
consists in taking the absolute value of the quasiprobabilities and nomalizing them
again properly. Another possibility is to exclude the negative degrees and to further
normalize the remaining nonnegative quantities. Clearly, these choices give rise to
different families of graphs.

Observe that if we restrict to GCM, the Dirichlet product is not necessarily com-
pletely multiplicative. Another possibility [37] is to consider the pointwise product
of two completely multiplicative functions: h := (f · g)(n) = f(n)g(n) and define
the product of graphs as the graph associated with h. The space GCM(·) is now an
abelian monoid: scale-free networks are transformed into scale-free networks.

By way of an example, we will construct the inverse of the bipartite version of
the model of Aiello et al. [1]: the bipartite Möbius random graph. The Dirichlet
series associated with µ(n) is

∞
∑

n=1

µ(n)

ns
=

1

ζ(s)
=

∏

p

(1 − p−s), if Re s > 1.

Therefore, we propose the following definition.

Definition 9. A bipartite Möbius graph is a complex network characterized by the
following two degree distributions for the nodes of type A and B respectively:

{

p0 = q0 = 0

pk = qk = µ(k)ζ(k)
kα , k ∈ N/{0}, α > 1.

The algebraic formalism proposed above allows us to define the product of mul-
tipartite graphs. The bipartite version is the following.

Definition 10. The Dirichlet (or pointwise) product of two bipartite multiplicative
L-graphs is the bipartite L-graph whose degree distributions for the nodes of type
A and B are defined by the Dirichlet (or pointwise) product of the corresponding
distributions of the two graphs.

The same idea can be used to “multiply” directed graphs of a suitable type.
Consider the case of a probability distribution of the form πnm = pnqm, as for the
case of the world-wide web. Instead of considering a Hurwitz zeta distribution,
we can assume that pn and qm are represented by a (completely) multiplicative
zeta function. In this way we define the class of directed separated multiplicative
L-graphs. For this set, a result similar to Corollary 1 holds.

Corollary 2. A completely multiplicative directed separated L-graph is scale-free.

Also, we can introduce a similar notion of product of directed L-graphs.
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Definition 11. The Dirichlet (or pointwise) product of two directed multiplicative
separated L-graphs is the directed graph whose degree distributions for the nodes of
type A and B are defined by the Dirichlet (or pointwise) product of the corresponding
distributions of the two graphs.

6. Epidemic transitions for structured populations

The networks previously proposed can be used as population models for the
study of phenomena like the spread of epidemics. Here we focus on SIR (suscepti-
ble/infective/recovered) models [3], [25]. Starting from the work [17], the connec-
tion between percolation, epidemiology and complex networks has been addressed
by several authors [10], [12], [15], [30], [31]. In these models, the population is
divided into three possible states, S, I and R. The state R can also indicate the “re-
moval” of an individual (due to recovery or death). We can think of the bipartite
zeta graphs as examples of bipartite populations, where the degree distributions
f0(x) and g0(x) of two groups of individuals, say m and f (for instance, males and
females), are assigned. Following the notation of [26], we introduce the transmis-
sibility coefficients Tmf and Tfm of a given disease in the two directions. We also
introduce the generating functions

(38) F0(x;Tmf , Tfm) = f0(g1(x;Tfm);Tmf )

and

(39) F1(x;Tmf , Tfm) = f1(g1(x;Tfm);Tmf).

The average outbreak size for individuals of the group m is

(40) 〈s〉 = 1 +
F ′
0(1;Tmf , Tfm)

1− F ′
1(1;Tmf , Tfm)

,

which gives the epidemic threshold condition

(41) TmfTfm =
1

f ′
1(1)g

′
1(1)

.

Notice that this result is symmetric in the variables corresponding to the properties
of the m and f populations: only the product of the transmissibilities is relevant.

We have the following general result.

Theorem 2. The epidemic threshold for a bipartite L-graph (11) is given by

(42) TmfTfm =
L1(α − 1)L2(β − 1)

[L1(α− 2)− L1(α− 1)][L2(β − 2)− L2(β − 1)]
.

Proof. For a bipartite zeta model, we have that

(43) ā =
L1(α− 1)

L1(α)
, b̄ =

L2(β − 1)

L2(β)
.

Also

(44) f ′
1(1) =

∑

k k(k − 1)pk
ā

=
L1(α − 2)− L1(α− 1)

L1(α− 1)
,

and similarly for g′1(1). Condition (41) gives us eq. (42). �
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An interesting particular case is obtained when the power laws for the two pop-
ulations are the same, with ak = bk = 1 for all k. In this case we get the known
formula TmfTfm = T 2

c , with

(45) Tc =
ζ(α − 1)

ζ(α− 2)− ζ(α− 1)
,

discussed in [26].
Many other aspects of the models proposed in this work can be studied numeri-

cally. Also, several other research lines deserve to be investigated, as, for instance,
the analytic properties of the adjacency matrices or the Laplacian operators asso-
ciated with these models. It would be also important to obtain growing models
possessing bipartite or directed zeta graphs as limiting configurations.
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