
UC Riverside
UC Riverside Previously Published Works

Title
Influence of time delay and nonlinear diffusion on herbivore outbreak

Permalink
https://escholarship.org/uc/item/8052k8ht

Journal
Communications in Nonlinear Science and Numerical Simulation, 19(5)

ISSN
1007-5704

Authors
Sun, Gui-Quan
Chakraborty, Amit
Liu, Quan-Xing
et al.

Publication Date
2014-05-01

DOI
10.1016/j.cnsns.2013.09.016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8052k8ht
https://escholarship.org/uc/item/8052k8ht#author
https://escholarship.org
http://www.cdlib.org/


Commun Nonlinear Sci Numer Simulat 19 (2014) 1507–1518
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Influence of time delay and nonlinear diffusion on herbivore
outbreak
1007-5704/$ - see front matter Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.09.016

⇑ Corresponding author at: Complex Sciences Center, Shanxi University, Taiyuan 030006, PR China.
E-mail addresses: gquansun@126.com (G.-Q. Sun), amitc@ucr.edu (A. Chakraborty), q.liu@nioo.knaw.nl (Q.-X. Liu), jinzhn@263.net

kurta@ucr.edu (K.E. Anderson), bai-lian.li@ucr.edu (B.-L. Li).
Gui-Quan Sun a,b,c,⇑, Amit Chakraborty c, Quan-Xing Liu c, Zhen Jin a,b, Kurt E. Anderson d,
Bai-Lian Li c

a Complex Sciences Center, Shanxi University, Taiyuan 030006, PR China
b School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China
c Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
d Department of Biology, University of California, Riverside, CA 92521, USA
a r t i c l e i n f o

Article history:
Received 9 February 2013
Received in revised form 20 August 2013
Accepted 16 September 2013
Available online 26 September 2013

Keywords:
Herbivore-plant
Time delay
Spatial diffusion
Outbreak
Synchrony
a b s t r a c t

Herbivore outbreaks, a major form of natural disturbance in many ecosystems, often have
devastating impacts on their food plants. Understanding those factors permitting herbivore
outbreaks to occur is a long-standing issue in conventional studies of plant-herbivore inter-
actions. These studies are largely concerned with the relative importance of intrinsic bio-
logical factors and extrinsic environmental variations in determining the degree of
herbivore outbreaks. In this paper, we illustrated that how the time delay associated with
plant defense responses to herbivore attacks and the spatial diffusion of herbivore jointly
promote outbreaks of herbivore population. Using a reaction-diffusion model, we showed
that there exists a threshold of time delay in plant-herbivore interactions; when time delay
is below the threshold value, there is no herbivore outbreak. However, when time delay is
above the threshold value, periodic outbreak of herbivore emerges. Furthermore, the
results confirm that during the outbreak period, plants display much lower density than
its normal level but higher in the inter-outbreak periods. Our results are supported by
empirical findings.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Herbivory is an important feeding process. By feeding on different plant parts or materials, herbivores can affect plant
growth, transfers of nutrients to the soil surface, and habitat and resource conditions for other organisms (see the review
of [58] and references therein). These effects are mostly viewed as beneficial outcomes of plant-herbivore interactions as
it exerts positive effects for the maintenance and conservation of plant population structure and composition during non-
outbreak periods. However, periodic outbreaks of herbivores can denude or kill plants over many square kilometers and
led to changes in plant community structure and composition. This capacity to alter community structure allows herbivores
to act as biotic agents of disturbance [69]. Unlike abiotic disturbances, herbivore outbreaks have continuous impact on plant
population and hold selectivity for the feeder plant species. As a result, a core issue of herbivory is that a threshold at which it
shifts from a normally acting process to a disturbance in terms of intensity, scale and frequency similar to those of fire, storm,
drought or flood. In temperate forest, for example, at a normal level of herbivory, defoliating insects consume 5–15 percents
of foliage production but it may reach to 100 percents during outbreak periods [50,39,9].
(Z. Jin),
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Although many herbivore populations exhibit outbreak behavior, the main causes of these phenomena remain unclear
[2]. Thus, determining which factors regulate or induce outbreak in herbivore populations continues to be an important issue
in the filed of both ecological and agricultural research [66,8]. The previous work revealed that herbivore outbreak was
caused by interactions with enemies [62,30,41,40,13], inducible defences or physiological stress [14,6,37,65,71,32,67], the
case that herbivore population’s parents and grandparents experienced in preceding generations [17], environmental forcing
[3,15,26] and resource-limited [1,2]. The aim of this paper is to give another mechanism for the outbreak of the herbivore.

While plant-herbivore interactions exhibit cyclic population dynamics, the spatiotemporal outbreak patterns of herbivore
population are often explained by those underlying causes of population synchrony in which peak phases of herbivore pop-
ulation cycle are inversely correlated with that of crash phases of plant population cycle. A suite of studies have attempted to
link these periodic outbreak patterns with that of the large-scale processes such as climatic variation [46,48]. The other ap-
proaches focused on the analysis of the rate of spread of herbivores, seeking traveling wave solutions in the model of plant-
herbivore interactions. In this case that rate of spread often depends on distributions and dispersal ranges of both popula-
tions [60,32]. Consequently, both spatial and temporal aspects play very important roles in the plant-herbivore population
dynamics, which can not be ignored.

On the other hand, biological systems with time delays have been of considerable interest. It means the time between
immature and mature [18], the time of pregnancy of the mother [31] and so on [16,49,38]. The interaction of plant and her-
bivore share some common features with prey-predator model. So delay widely exists in the dynamics of plant-herbivore
interaction [10,51]. For example, the delay may arise between herbivore damage and deployment of inducible defenses.
Moreover, theoretical analysis pointed out that time lags in reproduction influencing population dynamics [5,57,53,68].

Underwood et al. firstly demonstrated that time delays in inducible defenses and non-linear dispersal can lead to spatial
instabilities [67]. However, it was a simple simulation study and thus, studies of the population consequences of time delay
and the spatial spread of populations have remained largely unconnected. As a result, in the present paper, our aim is to build
a better understanding of how time delay affects the dynamic behavior of herbivores in both space and time, including spa-
tial pattern and herbivore fluctuation. We will analysis a reaction-diffusion model by addressing the following questions: (1)
How do time delay influence herbivore cycles; (2) How do time delay and nonlinear diffusion term have effect on the spatial
spread of the herbivore?

The paper is organized as follows. In Section 2, we use a reaction-diffusion model with delay to describe the interaction of
plant and herbivore. In Section 3, by using both mathematical analysis and numerical simulation, we show that herbivore
outbreak can be induced by time delay. Moreover, we show the relationship between wavelength and time delay. Finally,
conclusions and discussions are presented in Section 4.
2. The model

Since that long time series of the density of both plant and herbivore is needed, it is difficult to identify the causes of the
fluctuations empirically [35,1]. Thus, it may provide useful information by constructing mathematical models to explain the
phenomenon observation in the real world.

Here, we introduce a simple reaction-diffusion model to analyze the effect of time delays in the induction of plant de-
fenses on the outbreak and spatial distribution of herbivores in a closed, one-dimensional landscape. We model the level that
inducible defenses have reached in each location at each time, which is dependent on herbivore density and the level of al-
ready induced defenses. We do not explicitly model changes in plant biomass since such changes are potentially uncorre-
lated with the effects of induction in empirical plant-herbivore systems [29]. Induced defenses increase in response to
herbivore densities according to a saturating function such that there is a maximum amount a by which induction can
change between t and t þ Dt; the shape of the saturation curve is set by h. Induction also exhibits self-limitation, tuned
by b, which reduces the potential for increased induction in response to new damage. To reflect delays in the deployment
of inducible defenses, we set induction changes at time t dependent on herbivore densities at t � s time steps previously.
Induction decays at a constant rate d, reflecting the breakdown of inducible defenses and plant repair [68]. We assume that
the herbivore population grows logistically in the absence of induced defenses and suffers a linear increase in mortality
when defenses are activated. Furthermore, we assume that herbivores move away from areas of high induced defenses
according to Fokker–Planck nonlinear diffusion, which is dependent on the density of both induction levels and herbivores.

On the basis of the above assumptions, we arrive at the following equations:
@Iðx; tÞ
@t

¼ ða� bIðx; tÞÞ Hhðx; t � sÞ
bh þ Hhðx; t � sÞ

� dIðx; tÞ; ð1:aÞ
@H
@t
¼ rHðx; tÞ 1� Hðx; tÞ

K

� �
�mIðx; tÞHðx; tÞ þ @2

@x2 ½ðD0 þ vIðx; tÞÞHðx; tÞ�; ð1:bÞ
where Iðx; tÞ and Hðx; tÞ represent induced defense and herbivore density in both space and time. The biological meanings of
the parameters are given in Table 1.



Table 1
Parameter used in model (1).

Symbol Comments

a maximum induction rate per herbivore
b per-unit reduction of induction rate by self-limitation
d per-unit induction decay rate
b half-maximum for herbivore effectiveness of damage
h herbivore damage effectiveness shape tuning parameter
r intrinsic rate of herbivore population growth
K herbivore carry-capacity in the absence of inducible defenses
m mortality rate by induction
D0 baseline diffusion rate
v sensitivity of diffusion rate to induction
s time delay between herbivore damage and deployment of inducible defenses

Fig. 1. Plot of QðsÞ as a function of s, and the expression of QðsÞ is in Eq. (2). Note that there are two pure imaginary solutions of QðsÞ, which have no
biological meanings.
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3. Main results

In this section, we set that a ¼ 200; b ¼ 1, d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10;m ¼ 0:01, D0 ¼ 0:1;v ¼ 0:1, and to see what
will occur as the time delay increases. The first step in analyzing the model is to determine the stationary point of the non-
spatial model obtained by setting space derivatives equal to zero. It is, naturally, the dynamics in the biologically meaningful
region I P 0;H P 0 that are of interest. By considering the nullclines FðI;HÞ ¼ 0, GðI;HÞ ¼ 0 (see from Appendix A), and the
intersection of these curves in phase space, we have a stationary point ð0;0Þ which is a saddle,1 and ðI�;H�Þ. Additionally, I� is
the solution of
1 The
2 The

can be
QðsÞ ¼ 0:00175s4 � 0:725s3 þ 112:5s2 � 7843:75sþ 200000 ð2Þ
and H� ¼ 10� 0:1I�. It can be see from Fig. 1 that there are positive stationary point. One is ð60;4Þ, which is locally stable, and
the other one does not exist by reason of the negative of H�. Thus, from the biological point of view, we are interested to
study the stability behavior of the interior equilibrium point ð60;4Þ.

From the stability analysis in Appendix B and direct calculations, we know that when s > sc ¼ 2:54980875, Hopf bifur-
cation of the no-spatial model emerges. On the other hand, the positive equilibrium ð60;4Þ is stable when s < sc . This is illus-
trated by the numerical simulation in Fig. 2 (with initial data ð70;2Þ). Further, when delay passes through the critical value
sc , the positive equilibrium ð60;4Þ loses its stability and the system goes into oscillations, see Fig. 3.

Now, we want to see the effect of time delay when spatial terms are added. In Fig. 4, the dispersal relation,2 which can be
obtained from Eq. (B.9) in Appendix B, is given when there is no time delay. It is easy to find that, when there is no time delay,
there is no spatial pattern.
local stability of the stationary point can be checked by Eq. (A.3) in Appendix A.
dispersion relation can determine how time oscillations ekt are linked to spatial oscillations eij r! (here, r!¼ x ðyÞ or r!¼ ðx; yÞ. The dispersion relation

described by the characteristic value-k, with respect to wave number j.
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Fig. 2. When s ¼ 1 < sc , the positive equilibrium ð60;4Þ is stable. Parameter values are used as: a ¼ 200;b ¼ 1; d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1,
K ¼ 10;m ¼ 0:01;D0 ¼ 0 and v ¼ 0. (A) Time series of the induced defense and herbivore; (B) Phase diagram of induced defense and herbivore.
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Fig. 3. When s ¼ 4 > sc , Hopf bifurcation occurs and leads periodic solution. Parameter values are used as: a ¼ 200;b ¼ 1; d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1,
K ¼ 10;m ¼ 0:01;D0 ¼ 0 and v ¼ 0. (A) Time series of the induced defense and herbivore; (B) Phase diagram of induced defense and herbivore.

Fig. 4. Dispersal relation of the model (1) without time delay. Parameter values are used as: a ¼ 200; b ¼ 1, d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10;m ¼ 0:01,
D0 ¼ 0:1;v ¼ 0:1 and s ¼ 0. Note that the characteristic value is less than zero, which means there is no pattern.
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3.1. Spatial pattern

In the following part, numerical solutions for the system (1) with both time delay and spatial terms in the one-dimen-
sional space will be presented. In practice, the reaction-diffusion system is solved in a discrete domain. The space between
the lattice points is defined by the lattice constant Dx. In the discrete system the Laplacian describing diffusion is calculated
by using finite differences, i.e., the derivatives are approximated by differences over Dx. For Dx! 0, the differences approach



Fig. 5. Model solutions with a ¼ 200;b ¼ 1, d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10;m ¼ 0:01, D0 ¼ 0:1;v ¼ 0:1, and s ¼ 1. The initial condition is that
Iðx;0Þ ¼ 60, and Hðx;0Þ ¼ 4þ 10�7ðx� 300Þ.

Fig. 6. Model solutions with a ¼ 200;b ¼ 1, d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10;m ¼ 0:01, D0 ¼ 0:1;v ¼ 0:1, and s ¼ 4. The initial condition is the same as in
Fig. 5.
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the derivatives. The time evolution is also discrete, i.e., the time goes in steps of Dt. The time evolution can be solved by using
the Euler method, which means approximating the value of the concentration at the next time step on the basis of the change
rate of the concentration at the previous time step. In our calculations, the parameters values were taken to be Dx ¼ 1,
Dt ¼ 0:01 and the space was discretized to 1� 600 lattices on the one-dimensional space. The periodic boundary condition
was used in the simulation. We also find that when we vary the number of mesh points such as 1� 1000 and 1� 300, the
results of system (1) have the same dynamical behaviors. At the same time, it was checked that a further decrease of the step
values did not lead to any significant modification of the results.

In Fig. 5, we show the solution with respect to the space and time with s < sc . One can see that the solutions are stable
and converge to constant. However, as time delay increases as the case s > sc , the model (1) has period solutions which is
shown in Fig. 6. As the time delay further increases, the amplitude of the oscillations becomes larger, see in Fig. 7. In a word,
time delay plays a constructive role in the pattern formation of the herbivore, i.e., induce periodic pattern.
3.2. Synchronization and outbreak

Synchronization is a fundamental phenomenon arising in many biological and physical contexts for which there are two
or more coupled oscillating systems. In the classical sense, and dating back at least to Huygens in the 17th century [27], syn-
chronization has been understood as the mutual adjustment of periodic oscillators and the frequency locking that results
because of their (often weakly) coupled interaction [63]. Synchrony has also been observed among populations of sympatric
species that are not directly linked through trophic interactions, such as herbivorous forest insects [42,25,45,55,33] and allo-
patric large herbivores [54].



Fig. 7. Model solutions with a ¼ 200; b ¼ 1, d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10;m ¼ 0:01, D0 ¼ 0:1;v ¼ 0:1, and s ¼ 10. The initial condition is the same as
in Fig. 5.
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Fig. 8. Synchrony of the induced defense and the herbivore with s ¼ 2:5. Parameter values are used as: a ¼ 200, b ¼ 1; d ¼ 0:75; b ¼ 5; h ¼ 3; r ¼ 1;K ¼ 10,
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In Figs. 8–10, we show the time series of the induced defense and herbivore as time delay increases. One can see from
these three figures, the induced defense and the herbivore are anti-phase synchrony. When the time delay is smaller than
but very close to the critical value, both the two population exhibit fluctuation behavior. When it is becoming larger than the
critical value, periodic solutions with fixed period emerge, see Figs. 9 and 10.

To well explain the cause of herbivore outbreak, we plot the time series of the two population when s is less than sc in
Fig. 11. When s is small, the density of induced defense and herbivore converge to a constant for a long time. In other words,
there is no outbreak for small s. As seen from Fig. 8, when s is larger than the critical values, fluctuation of herbivore is
shown. As the time delay further increases, the oscillation aptitude and period becomes larger by comparing with Fig. 9
and 10. We can conclude that herbivore outbreak is induced by time delay. Moreover, Figs. 8–10 show that the density of
induced defense is very low in the outbreak period, but high in the inter-outbreak period, which confirm the previous argu-
ment [34].
3.3. Wavelength

Investigating the relationship between spatial patterns in population densities and environmental heterogeneity is cru-
cial to the understanding of population dynamics and for the management of species in communities. Consequently, deter-
mining the wavelength for the spatial pattern is a key issue in the field of spatial ecology [61,70]. In other words, we can see
the distribution of the population in the spatial space directly by calculating the wavelength.

In order to see the effect of time delay, we set s as a parameter, and show the corresponding wavelength as it varies in
Fig. 12. It can be found that the time delay increase the wavelength of the spatial pattern, and wavelength reaches the max-
imum values when s � 3:5. However, when s further increases, the wavelength is a decreasing function of it. From the
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biological point of view, the increase of time delay can largely affect the distance between one peak distribution and the
adjacent one.
4. Discussion and conclusion

In this paper, we present a reaction-diffusion model described by interaction of plant and herbivore with delay. The re-
sults showed that the time delay can induce the herbivore outbreak (cf. Figs. 8–10). Moreover, herbivore outbreak in our
model is characterized by high density of induced defense during the inter-outbreak period, which is consistent with the
experimental data [34,36,56,59]. In addition to that, we show that time delay may have great effect on the wavelength of
the spatial pattern (cf. Fig. 12). We can see from the figure that there exist a threshold value on time delay that the
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wavelength reaches its maximum value. In summary, our results identify some biological features of plant-herbivore
dynamics that determines whether the outbreak occurs or not and suggest the further investigation should take into account
the effects of both time delay and spatial diffusion.

These above-noted model results are consistent with the empirical findings in birch forest regions, where defoliating in-
sect outbreaks are one of the most common disturbances. Along the Scandinavian mountain chain, some birch forest areas
are usually experienced with periodic, synchronous peaks of Geometrid defoliators Epirrita (Oporinia) autumnata and Oper-
ophetera spp. [64]. Their outbreak cycles are characterized by large amplitude with 1000 to 100,000 fold differences between
population lows and peaks [24,28,7], which is clearly larger than in the well known vole cycles with 25–250 fold differences
[21]. It has been observed that although the period of the cycle is remarkably stable, the peak densities show large variation
even within a single site (see Neuvonen et al., 2001 and references therein). Detailed investigation of these patterns revealed
that the time delay associated with inducible plant defenses, which refers to decreasing foliage quality in the years following
insect attacks, is one of the major factors behind such cyclic outbreak patterns [24,22,23,47].

An interesting question of interest is whether nonlinear diffusion terms have effect on the herbivore outbreak. To address
this issue, we performed extensive computer simulations for different parameter values of D and v (in total, more than 50
parameter sets were examined). We found that the results nonlinear diffusion just influence the density not the outbreak
(for the sake of brevity, we do not provide separated figures).

The present paper provides some new insights into the spatial ecology of interaction of plant and herbivore, but it also
leaves many questions open for the future investigations. We would like to emphasize two relevant topics where may be
the main subjects of the further research. Firstly, in the model (1), we consider the case that only herbivores diffuse in
the space. However, for some plants their weeds also can move in the space caused by purely environmental factors such
as wind. In that situation, the model we employ may be changed as
@Iðx; tÞ
@t

¼ ða� bIðx; tÞÞ Hhðx; t � sÞ
bh þ Hhðx; t � sÞ

� dIðx; tÞ þ DI
@2

@x2 Iðx; tÞ; ð3:aÞ

@H
@t
¼ rHðx; tÞ 1� Hðx; tÞ

K

� �
�mIðx; tÞHðx; tÞ þ @2

@x2 ½ðD0 þ vIðx; tÞÞHðx; tÞ�; ð3:bÞ
where DI is the diffusion coefficient of the plant. Secondly, we found that periodic wave solution in the model (1) (cf. Figs. 6
and 7). However, previous work revealed that traveling wave of herbivore may exist by modeling the interaction of plant and
herbivore [44]. Thus, we need to check whether model (1) have traveling wave solution, especially how time delay influence
such solution.

It also should be noted that, in our model simulations, we have considered all the parameters as constants. However, her-
bivore populations are sometimes considered to be strongly influenced by abiotic factors such as weather and climatic con-
ditions [3,43,11,12,19]. As a result, all the parameters can show temporal and spatial variations: indeed, some can be both
stochastic and show significant seasonal variations [20,52,4]. We hope that our efforts will provide a new starting point for
the analysis of more detailed models to understand the outbreak in plant-herbivore dynamics.
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Appendix A. Linear stability of the no-spatial model

For sake of simplicity, we rewrite the system (1) as following:
@I
@t
¼ FðI;HÞ; ðA:1aÞ

@H
@t
¼ GðI;HÞ þ @

2P
@x2 : ðA:1bÞ
Denote the constant equilibrium solution as ðI�;H�Þ, i.e.,
FðI�;H�Þ ¼ 0; GðI�;H�Þ ¼ 0: ðA:2Þ
We are aim to look for the conditions so that ðI�;H�Þ is stable for the no-spatial version of (1) and is unstable for the spatial
version of (1). We always assume that ðI�;H�Þ is linearly stable with respect to perturbation of I and H, then the eigenvalues of
the Jacobian
J ¼
@F
@I

@F
@H

@G
@I

@G
@H

 !
,

a11 a12

a21 a22

� �
at ðI�;H�Þ must have negative real parts, which is equivalent to
trðJÞ ¼ a11 þ a22 < 0; DetðJÞ ¼ a11a22 � a12a21 > 0: ðA:3Þ
Appendix B. Dispersal relation

The main goal is to study the instability for the system (1) with the nonlinear diffusion. To deal with the nonlinear terms,
we use the method of transformation variable. Define the new variables as P ¼ PðI;HÞ. Then we have the following system
with three equations:
@I
@t
¼ FðI;HÞ; ðB:1aÞ

@H
@t
¼ GðI;HÞ þ @

2P
@x2 ; ðB:1bÞ

P ¼ PðI;HÞ: ðB:1cÞ
It is easy to see that the instability of ðI�;H�Þ in the system (1) is equivalent to that of ðI�;H�; P�Þ in the system (B.1) where
P� ¼ PðI�;H�Þ. Let u ¼ I � I�;h ¼ H � H� and p ¼ P � P� be a spatial perturbation at the equilibrium ðI�;H�; P�Þ, then linearizing
the reaction-diffusion system (B.1) at ðI�;H�; P�Þ yields
@u
@t
¼ a11uðx; tÞ þ a12hðx; t � sÞ; ðB:2aÞ

@h
@t
¼ a21uðx; tÞ þ a22hðx; tÞ þ @

2p
@x2 ; ðB:2bÞ

pðx; tÞ ¼ a31uðx; tÞ þ a32hðx; tÞ; ðB:2cÞ
where
a31 ¼
@PðI;HÞ
@I

jðI� ;H�Þ; a32 ¼
@PðI;HÞ
@H

jðI� ;H�Þ: ðB:3Þ
In order to examine the linear stability of ðI�;H�; P�Þ of system (B.1), we linearize the dynamic model (B.2) around the spa-
tially homogeneous fixed point ð0;0;0Þ for small space- and time-dependent fluctuations and expand them in Fourier space:
ðu;h;pÞT ¼ ðA1;A2;A3ÞT ektþijr ; ðB:4Þ
which yields
A1kektþijr ¼ ðA1a11 þ A2a12e�ksÞektþijr ; ðB:5aÞ
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ðA2kþ A3j2Þektþijr ¼ ðA1a21 þ A2a22Þektþijr; ðB:5bÞ

A3ektþijr ¼ ðA1a31 þ A2a32Þektþijr : ðB:5cÞ
Since ektþijr–0, (B.5) is equivalent to the following linear algebraic equations
k� a11 �a12e�ks 0
�a21 k� a22 j2

�a31 �a32 1

0
B@

1
CA

A1

A2

A3

0
B@

1
CA ¼

0
0
0

0
B@

1
CA: ðB:6Þ
Nontrivial solutions to the above equations (B.6) exist if
Det

k� a11 �a12e�ks 0
�a21 k� a22 j2

�a31 �a32 1

0
B@

1
CA ¼ 0; ðB:7Þ
which equals that
Det
k� a11 �a12e�ks

�a21 þ a31j2 k� a22 þ a32j2

� �
¼ 0: ðB:8Þ
Note that (B.8) can be solved, yielding the characteristic polynomial of the original problem:
k2 � ða11 þ a22 � a32j2Þkþ a11a22 � a12a21e�ks � a11a32j2 þ a12a31e�ksj2 ¼ 0: ðB:9Þ
Appendix C. Critical value of time delay

We firstly pay attention to the model without spatial terms. Thus, the corresponding characteristic equation is that:
k2 � ða11 þ a22Þkþ a11a22 � a12a21e�ks ¼ 0: ðC:1Þ
We know that iwðw > 0Þ is a root of Eq. (C.1) if and only if w satisfies the following equation:
�w2 � ða11 þ a22Þiwþ a11a22 � a12a21ðcos ws� i sin wsÞ ¼ 0: ðC:2Þ
Separating the real and imaginary parts, one can have
ða11 þ a22Þw ¼ a12a21 sin ws; ðC:3aÞ

�w2 þ a11a22 ¼ a12a21 cos ws: ðC:3bÞ
By squaring and adding the two parts of Eq. (C.3), it follows that
w4 þ ða2
11 þ a2

22Þw2 þ a2
11a2

22 � a2
12a2

21 ¼ 0: ðC:4Þ
Suppose that a11a22 > a12a21, then (C.4) have the solution:
w2 ¼
�ða2

11 þ a2
22Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

11 þ a2
22Þ

2 � 4ða2
11a2

22 � a2
12a2

21Þ
q

2
,g: ðC:5Þ
If we define
sj ¼
1ffiffiffigp arccos

�gþ a11a22

a12a21
þ 2jp

� �
; j ¼ 0;1;2; � � � ;n; ðC:6Þ
then Eq. (C.1) with s ¼ sj has a pair of purely imaginary roots �iw, and it is easy to see that s0 < s1 < � � � < sn.
It can be found that (C.1) that
dk
dt

� ��1

¼ a11 þ a22 � 2k
a12a21ke�ks �

s
k

ðC:7Þ
and thus
Re
dk
dt

� ��1

js¼sj
¼ a2

11 þ a2
22 þ 2w2

a2
12a2

21

> 0: ðC:8Þ
In other words, for the model (1) without spatial terms, the Hopf bifurcation will occur at s ¼ sj, and period solution will
emerge when s > sj.
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