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THE HIERARCHY OF HIGHER ORDER SOLUTIONS OF THE
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Abstract. In this paper, we provide a simple method to generate higher order position solu-
tions and rogue wave solutions for the derivative nonlinear Schrödinger equation. The formulae
of these higher order solutions are given in terms of determinants. The dynamics and structures
of solutions generated by this method are studied.
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1. Introduction

The derivative nonlinear Schrödinger equation (DNLS)

iqt − qxx + i(|q|2q)x = 0. (1)

plays an important role in plasma physics and nonlinear optics. It not only dominates the
evolution of small-amplitude Alfén waves in a low-β plasma [1–4], but also is used to describe
the behavior of large-amplitude magnetohydrodynamic (MHD) waves in a high-β plasma [5,6].
On the other hand, the DNLS equation governs the transmission of sub-picosecond in single
mode optical fibers [7–9].

For the DNLS equation with vanishing boundary condition (VBC), Kaup and Newell (KN)
[10] first found the one-soliton solution by inverse scattering transformation (IST). On the
basis of bilinear transformation, the first N -solition formula was obtained by Nakamuro and
Chen [11]. Determinant expression of the N -soliton solution can be established via applying
the Darboux transformation [12]. In the case of the non-vanishing boundary condition(NVBC),
Kawata and Inoue developed an IST for the DNLS equation and obtained a breather-type
soliton (paired soliton) [13]. Wadati et al derived the stationary solution for the DNLS equation
under the plane wave boundary [14]. Chen and Lam [15] revised the IST for the DNLS by
introducing an affine parameter, and derived a breather solution, which can be degenerated to
both dark soliton and bright soliton.

Recently, rogue wave, an emerging phenomenon, is passionately discussed. The concept
of rogue wave was first proposed in the studies of deep ocean waves [16, 17], and gradually
extended to other fields such as optics fibre [18–20], Bose-Einstein condensates [21], capillary
phenomena [22], and so on. Rogue wave, “which appears from nowhere and disappears without
a trace (WANDT)” [23], possesses the following two remarkable characteristics: i) locates in
both space and time, ii) exhibits a dominant peak.

The first order rogue wave was found in 1983 by Peregrine [24], which is a solution of the NLS
equation. It is usually called the Peregrine soliton, and has been observed experimentally in
fiber [25], water tank [26] and multi-component plasma [27]. The first order rogue wave solution
of the DNLS equation was first found by Xu and coworkers [28] by the Darboux transformation
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and certain limit technique. Recently, Guo et al [29] obtained two kinds of generalized Darboux
transformations, and got the formulae of higher order solutions for both the VBC and NVBC.
Moveover, Guo showed two patterns (fundamental and triangular) of the second order rogue
wave from a special seed solution q = exp(−ix), which are similar to the case of the NLS
equation. Therefore, it is nature to ask whether the rogue wave solution of the DNLS equation
possesses new structures that have not been found in other soliton equations such as the NLS
equation.

The Darboux transformation, generated from the work of Darboux in 1882 for the Sturm-
Liouville equation, has been an important method in generating solutions of integrable systems.
To get the rogue wave solution, we need to iterate Darboux transformation at the same eigen-
value, but it does not work in this case. So we must modify the Darboux transformation to get
the solutions at the same eigenvalue. In this paper, we adopt the Taylor expansion to deal with
this defect, and obtain positon solutions, rational traveling solutions and rogue wave solutions.

The organization of this paper is as follows. In section 2, we provide a new method to
generate solutions at the same eigenvalue base on the method of Darboux transformation and
Taylor expansion, and display the formula of N -th order solution in terms of determinant. As
applications, several explicitly analytic expressions are given, which include positon solutions,
rational traveling solutions and rogue wave solutions. In section 3, we obtain the multi-rogue
wave solutions by altering the mixed coefficients of eigenfunctions, which contain several free
parameters. With the help of those parameters, we consider the dynamics of multi-rogue wave.
Moreover, three kinds of new structures: modified-triangular structure, ring-triangle structure
and multi-ring structure are given. The conclusion is given in the last section.

2. The solutions of the DNLS equation

The Kaup and Newell (KN) system [10]:
{

rt − irxx − (r2q)x = 0,

qt + iqxx − (rq2)x = 0.
(2)

can be represented as the integrability condition of the following Kaup and Newell spectral
system (Lax pair) [10, 30]:

{

Ψx = MΨ = (Jλ2 +Qλ)Ψ,

Ψt = NΨ = (2Jλ4 + V3λ
3 + V2λ

2 + V1λ)Ψ,
(3)

with

J =

(

i 0
0 −i

)

, Q =

(

0 q

r 0

)

,

V3 = 2Q, V2 = Jqr, V1 =

(

0 −iqx + q2r

irx + r2q 0

)

,

Where λ ∈ C, Ψ ∈ C2, Ψ is called the eigenfunction of the spectral problem (3) corresponding
to eigenvalue λ .

When

r = −q∗, (4)

the KN system can be reduced to the DNLS equation, asterisk denotes complex conjugation.
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2.1 Determinant expression

The N -th Darboux transformation of the KN system in terms of determinant was obtained
In [28]. And the formulae for N -th order solutions were given as following:

Lemma 1. [28] Let Ψi =

(

fi
gi

)

(i = 1, 2, · · · , n) be distinct solutions related to λi of the

spectral problem (3), then (q[n],r[n]) given by the following formulae are new solutions of the
KN system (2).

q[n] =
Ω2

11

Ω2
21

q + 2i
Ω11Ω12

Ω2
21

, r[n] =
Ω2

21

Ω2
11

r − 2i
Ω21Ω22

Ω2
11

. (5)

with n = 2k,

Ω11 =

∣

∣

∣

∣

∣

∣

∣

∣

λn−1
1 g1 λn−2

1 f1 λn−3
1 g1 · · · λ1g1 f1

λn−1
2 g2 λn−2

2 f2 λn−3
2 g2 · · · λ2g2 f2

...
...

...
...

...
...

λn−1
n gn λn−2

n fn λn−3
n gn · · · λngn fn

∣

∣

∣

∣

∣

∣

∣

∣

,

Ω12 =

∣

∣

∣

∣

∣

∣

∣

∣

λn
1f1 λn−2

1 f1 λn−3
1 g1 · · · λ1g1 f1

λn
2f2 λn−2

2 f2 λn−3
2 g2 · · · λ2g2 f2

...
...

...
...

...
...

λn
nfn λn−2

n fn λn−3
n gn · · · λngn fn

∣

∣

∣

∣

∣

∣

∣

∣

,

Ω21 =

∣

∣

∣

∣

∣

∣

∣

∣

λn−1
1 f1 λn−2

1 g1 λn−3
1 f1 · · · λ1f1 g1

λn−1
2 f2 λn−2

2 g2 λn−3
2 f2 · · · λ2f2 g2

...
...

...
...

...
...

λn−1
n fn λn−2

n gn λn−3
n fn · · · λnfn gn

∣

∣

∣

∣

∣

∣

∣

∣

,

Ω22 =

∣

∣

∣

∣

∣

∣

∣

∣

λn
1g1 λn−2

1 g1 λn−3
1 f1 · · · λ1f1 g1

λn
2g2 λn−2

2 g2 λn−3
2 f2 · · · λ2f2 g2

...
...

...
...

...
...

λn
ngn λn−2

n gn λn−3
n fn · · · λnfn gn

∣

∣

∣

∣

∣

∣

∣

∣

.

Here λ2l = −λ∗

2l−1 and Ψ2l =

(

f2l
g2l

)

=

(

g∗2l−1

f ∗

2l−1

)

.

It is trivial to check r[2k] = −q[2k]
∗

.

2.2 Solutions from vacuum

Let us consider the trivial case. When q = r = 0, the following Ψ is an eigenfunction for λ,

Ψ =

(

f

g

)

, f = exp(i(λ2x+ 2λ4t)), g = exp(−i(λ2x+ 2λ4t)). (6)

By applying the above formulae (5), we can get N -soliton solution of the DNLS equation
from vacuum. To get new kinds of solutions, we set the eigenvalues share the same value, i.e.,
iterating the Darboux transformation at the same eigenvalue. However, the formulae (5) will
be ineffective in this case. Next, we will use the Taylor expansion to generate the Darboux
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transformation and get the formula of q[n] at the same eigenvalue as we have done for the case
of the NLS equation [31].

At first, we define new functions Ψ[i, j, k] for a general solution Ψ = Ψ(λ) corresponding to
λ as following:

λjΨ = Ψ[i, j, 0] + Ψ[i, j, 1]ǫ+Ψ[i, j, 2]ǫ2 + · · ·+Ψ[i, j, k]ǫk + · · · , (7)

with

Ψ[i, j, k] =
1

k!

∂k(λj
iΨ(λi))

∂λk
i

.

In particular

Ψ[1, 1, 0] = λ1Ψ(λ1), Ψ[i, j, 0] = λ
j
iΨ(λi).

Proposition 1. Let λ1 = α1 + iβ1, λ2 = −λ∗

1, then the following formula is the n-th(n = 2k)
solution of the DNLS equation generated at the same eigenvalue.

q[n] = 2i
δ11δ12

δ221
(8)

where

δ11 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g[1, n− 1, 0] f [1, n− 2, 0] g[1, n− 3, 0] · · · g[1, 1, 0] f [1, 0, 0]
g[2, n− 1, 0] f [2, n− 2, 0] g[2, n− 3, 0] · · · g[2, 1, 0] f [2, 0, 0]
g[1, n− 1, 1] f [1, n− 2, 1] g[1, n− 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
g[2, n− 1, 1] f [2, n− 2, 1] g[2, n− 3, 1] · · · g[2, 1, 1] f [2, 0, 1]

...
...

...
...

...
...

g[1, n− 1, k − 1] f [1, n− 2, k − 1] g[1, n− 3, k − 1] · · · g[1, 1, k − 1] f [1, 0, k − 1]
g[2, n− 1, k − 1] f [2, n− 2, k − 1] g[2, n− 3, k − 1] · · · g[2, 1, k − 1] f [2, 0, k − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

δ12 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f [1, n, 0] f [1, n− 2, 0] g[1, n− 3, 0] · · · g[1, 1, 0] f [1, 0, 0]
f [2, n, 0] f [2, n− 2, 0] g[2, n− 3, 0] · · · g[2, 1, 0] f [2, 0, 0]
f [1, n, 1] f [1, n− 2, 1] g[1, n− 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
f [2, n, 1] f [2, n− 2, 1] g[2, n− 3, 1] · · · g[2, 1, 1] f [2, 0, 1]

...
...

...
...

...
...

f [1, n, k − 1] f [1, n− 2, k − 1] g[1, n− 3, k − 1] · · · g[1, 1, k − 1] f [1, 0, k − 1]
f [2, n, k − 1] f [2, n− 2, k − 1] g[2, n− 3, k − 1] · · · g[2, 1, k − 1] f [2, 0, k − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

δ21 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f [1, n− 1, 0] g[1, n− 2, 0] f [1, n− 3, 0] · · · f [1, 1, 0] g[1, 0, 0]
f [2, n− 1, 0] g[2, n− 2, 0] f [2, n− 3, 0] · · · f [2, 1, 0] g[2, 0, 0]
f [1, n− 1, 1] g[1, n− 2, 1] f [1, n− 3, 1] · · · f [1, 1, 1] g[1, 0, 1]
f [2, n− 1, 1] g[2, n− 2, 1] f [2, n− 3, 1] · · · f [2, 1, 1] g[2, 0, 1]

...
...

...
...

...
...

f [1, n− 1, k − 1] g[1, n− 2, k − 1] f [1, n− 3, k − 1] · · · f [1, 1, k − 1] g[1, 0, k − 1]
f [2, n− 1, k − 1] g[2, n− 2, k − 1] f [2, n− 3, k − 1] · · · f [2, 1, k − 1] g[2, 0, k − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

4



Proof. For the entries in the first column of Ω11 (5),

λn−1
1 g1 = g[1, n− 1, 0],

λn−1
2 g2 = g[2, n− 1, 0],

λn−1
3 g3 = g[1, n− 1, 0] + g[1, n− 1, 1]ǫ,

λn−1
4 g4 = g[2, n− 1, 0] + g[2, n− 1, 1]ǫ,

...

λn−1
n−1gn−1 = g[1, n− 1, 0] + g[1, n− 1, 1]ǫ+ · · ·+ g[1, n− 1, k − 1]ǫk−1,

λn−1
n gn = g[2, n− 1, 0] + g[2, n− 1, 1]ǫ+ · · ·+ g[2, n− 1, k − 1]ǫk−1.

Taking the similar procedure to the other entries in Ω11, Ω12, and Ω21. Finally, the q[n] can be
obtained through simple calculation. �

For example, when n = 4,

q[4] =
δ211
δ221

q + 2i
δ11δ12

δ221
= 2i

δ11δ12

δ221
, (9)

where

δ11 =

∣

∣

∣

∣

∣

∣

∣

∣

g[1, 3, 0] f [1, 2, 0] g[1, 1, 0] f [1, 0, 0]
g[2, 3, 0] f [2, 2, 0] g[2, 1, 0] f [2, 0, 0]
g[1, 3, 1] f [1, 2, 1] g[1, 1, 1] f [1, 0, 1]
g[2, 3, 1] f [2, 2, 1] g[2, 1, 1] f [2, 0, 1]

∣

∣

∣

∣

∣

∣

∣

∣

,

δ12 =

∣

∣

∣

∣

∣

∣

∣

∣

f [1, 4, 0] f [1, 2, 0] g[1, 1, 0] f [1, 0, 0]
f [2, 4, 0] f [2, 2, 0] g[2, 1, 0] f [2, 0, 0]
f [1, 4, 1] f [1, 2, 1] g[1, 1, 1] f [1, 0, 1]
f [2, 4, 1] f [2, 2, 1] g[2, 1, 1] f [2, 0, 1]

∣

∣

∣

∣

∣

∣

∣

∣

,

δ21 =

∣

∣

∣

∣

∣

∣

∣

∣

f [1, 3, 0] g[1, 2, 0] f [1, 1, 0] g[1, 0, 0]
f [2, 3, 0] g[2, 2, 0] f [2, 1, 0] g[2, 0, 0]
f [1, 3, 1] g[1, 2, 1] f [1, 1, 1] g[1, 0, 1]
f [2, 3, 1] g[2, 2, 1] f [2, 1, 1] g[2, 0, 1]

∣

∣

∣

∣

∣

∣

∣

∣

.

Substituting the eigenfunction (6) into the formula (9), we obtain the positon solution

q
[4]
positon =

L∗

1L2

L2
1

, (10)
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where

L1 =G1 − iG2,

L2 =− 16iα1β1(cos(F2) + i sin(F2))
((

β3
1 + 4iα4

1β1x+ 4iα2
1β

3
1x− 32iα4

1β
3
1t + 16iα6

1β1t− 48iα2
1

×β5
1 t
)

sinh(F1)− (iα3
1 + 4α3

1β
2
1x+ 32α3

1β
4
1t+ 48α5

1β
2
1t+ 4β4

1α1x− 16β6
1α1t) cosh(F1)

)

,

G1 =α1
4 + β1

4 + 256α1
8β1

2xt− 256α1
4β1

6xt + 256α1
6β1

4xt− 256α1
2β1

8xt + 512α1
2β1

10t2

+ 32α1
2β1

6x2 + 32α1
6β1

2x2 + 512α1
10β1

2t2 + 2048α1
8β1

4t2 + 3072α1
6β1

6t2

+ 64α1
4β1

4x2 + 2048α1
4β1

8t2 + (α1
4 − β1

4) cosh (2F1) ,

G2 =− 16α1
2β1

4x− 384α1
4β1

4t+ 64α1
2β1

6t+ 16α1
4β1

2x+ (2α1
3β1 + 2α1β1

3) sinh (2F1)

+ 64α1
6β1

2t,

F1 =4α1β1

(

4 tα1
2 − 4 tβ1

2 + x
)

,

F2 =2α1
2x+ 4α1

4t− 24 tα1
2β1

2 − 2 β1
2x+ 4 β1

4t.

when x → ±∞, |q[4]| = 0, when x = 0, t = 0, |q[4]|2 = 64β2
1 . A simple analysis shows that

it possesses phase shift compared with 2-rd soliton when t → ±∞. After taking values as
α1 = 0.5, β1 = 0.5, the evolution of positon solution of the DNLS equation is shown in Fig. 1.

Next, if we set α1 → 0 in above procedure, we will get the the second order rational traveling
solution. With these parameters, we find that the general solution can be given in the same
form as (10), but with the values for L1 and L2 written by

L1 =G1 − iG2,

L2 =− 8iβ1exp(2iβ
2
1(2β

2
1t− x))(−3i− 12β2

1x− 48β4
1t + 48iβ4

1x
2 + 2304iβ8

1t
2 − 768iβ6

1xt

− 64β6
1x

3 + 4096β12
1 t3 − 3072β10

1 xt2 + 768β8
1tx

2),

G1 =3 + 4096 β1
10tx3 − 24576 β1

12t2x2 + 65536 xβ1
14t3 − 768 β1

6xt+ 96 β1
4x2 − 65536 β1

16t4

+ 4608 β1
8t2 − 256 β1

8x4,

G2 =576 β1
4t− 48 β1

2x+ 3072 β1
8tx2 − 256 β1

6x3 + 16384 β1
12t3 − 12288 β1

10xt2.

The dynamics of rational travelling solution of the DNLS equation with β1 = 0.3 are shown
in Fig. 2. Actually, it represents the interaction of two rational traveling solitons, and shares
same properties with positon.

2.3. Solutions from periodic solution

Here, we will apply the method discussed above to generate solutions from periodic seed
solution with the same eigenvalue. Moreover, we generate a hierarchy of rogue wave solutions.

We start with a general periodic solution

q = ce(i(ax+bt)), b = a(−c2 + a), a, c ∈ R. (11)

Substituting (11) into the spectral problem (3), we obtain the eigenfunction Ψ =

(

f

g

)

cor-

responding to the eigenvalue λ via applying the method of separation of variables and super-
position principle.

6



(

f(x, t, λ)
g(x, t, λ)

)

=

(

D1ω
1
11(x, t, λ) +D2ω

2
11(x, t, λ) +D1ω

1
12

∗

(x, t,−λ∗) +D2ω
2
12

∗

(x, t,−λ∗)
D1ω

1
12(x, t, λ) +D2ω

2
12(x, t, λ) +D1ω

1
12

∗

(x, t,−λ∗) +D2ω
2
12

∗

(x, t,−λ∗)

)

.

(12)
where

{

D1 = 1,

D2 = 1.
(13)

(

ω1
11(x, t, λ)

ω1
12(x, t, λ)

)

=







exp(c1(x+ 2λ2t + (−c2 + a)t) +
1

2
(i(ax+ bt)))

ia− 2iλ2 + 2c1
2λc

exp(c1(x+ 2λ2t+ bt)− 1

2
(i(ax+ bt)))






,

(

ω2
11(x, t, λ)

ω2
12(x, t, λ)

)

=







exp(−c1(x+ 2λ2t + (−c2 + a)t) +
1

2
(i(ax+ bt)))

ia− 2iλ2 − 2c1
2λc

exp(−c1(x+ 2λ2t+ bt)− 1

2
(i(ax+ bt)))






,

ω1(x, t, λ) =

(

ω1
11(x, t, λ)

ω1
12(x, t, λ)

)

, ω2(x, t, λ) =

(

ω2
11(x, t, λ)

ω2
12(x, t, λ)

)

,

c1 =

√

−a2 − 4λ4 − 4λ2(c2 − a)

2
.

To get the rogue wave solutions, the value of n in formula (5) must be even. When n = 2k,
we obtain the new expression of q[n].

Proposition 2. Assuming λ1 = 1
2

√
−c2 + 2 a − 1

2
ic, λ2 = −λ∗

1, then q[n] given by following
formula is the k-th rogue wave solution for the DNLS equation.

q[n] =
δ211
δ221

q + 2i
δ11δ12

δ221
; (14)

where

δ11 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g[1, n− 1, 1] f [1, n− 2, 1] g[1, n− 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
g[2, n− 1, 1] f [2, n− 2, 1] g[2, n− 3, 1] · · · g[2, 1, 1] f [2, 0, 1]
g[1, n− 1, 2] f [1, n− 2, 2] g[1, n− 3, 2] · · · g[1, 1, 2] f [1, 0, 2]
g[2, n− 1, 2] f [2, n− 2, 2] g[2, n− 3, 2] · · · g[2, 1, 2] f [2, 0, 2]

...
...

...
...

...
...

g[1, n− 1, k] f [1, n− 2, k] g[1, n− 3, k] · · · g[1, 1, k] f [1, 0, k]
g[2, n− 1, k] f [2, n− 2, k] g[2, n− 3, k] · · · g[2, 1, k] f [2, 0, k]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

δ12 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f [1, n, 1] f [1, n− 2, 1] g[1, n− 3, 1] · · · g[1, 1, 1] f [1, 0, 1]
f [2, n, 1] f [2, n− 2, 1] g[2, n− 3, 1] · · · g[2, 1, 1] f [2, 0, 1]
f [1, n, 2] f [1, n− 2, 2] g[1, n− 3, 2] · · · g[1, 1, 2] f [1, 0, 2]
f [2, n, 2] f [2, n− 2, 2] g[2, n− 3, 2] · · · g[2, 1, 2] f [2, 0, 2]

...
...

...
...

...
...

f [1, n, k] f [1, n− 2, k] g[1, n− 3, k] · · · g[1, 1, k] f [1, 0, k]
f [2, n, k] f [2, n− 2, k] g[2, n− 3, k] · · · g[2, 1, k] f [2, 0, k]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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δ21 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f [1, n− 1, 1] g[1, n− 2, 1] f [1, n− 3, 1] · · · f [1, 1, 1] g[1, 0, 1]
f [2, n− 1, 1] g[2, n− 2, 1] f [2, n− 3, 1] · · · f [2, 1, 1] g[2, 0, 1]
f [1, n− 1, 2] g[1, n− 2, 2] f [1, n− 3, 2] · · · f [1, 1, 2] g[1, 0, 2]
f [2, n− 1, 2] g[2, n− 2, 2] f [2, n− 3, 2] · · · f [2, 1, 2] g[2, 0, 2]

...
...

...
...

...
...

f [1, n− 1, k] g[1, n− 2, k] f [1, n− 3, k] · · · f [1, 1, k] g[1, 0, k]
f [2, n− 1, k] g[2, n− 2, k] f [2, n− 3, k] · · · f [2, 1, k] g[2, 0, k]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. For the entries in the first column of Ω11 (5),

λn−1
1 g1 =g[1, n− 1, 1]ǫ,

λn−1
2 g2 =g[2, n− 1, 1]ǫ,

λn−1
3 g3 =g[1, n− 1, 1]ǫ+ g[1, n− 1, 2]ǫ2,

λn−1
4 g4 =g[2, n− 1, 1]ǫ+ g[2, n− 1, 2]ǫ2,

...

λn−1
n−1gn−1 =g[1, n− 1, 1]ǫ+ g[1, n− 1, 2]ǫ2 + · · ·+ g[1, n− 1, k]ǫk,

λn−1
n gn =g[2, n− 1, 1]ǫ+ g[2, n− 1, 2]ǫ2 + · · ·+ g[2, n− 1, k]ǫk.

Taking the similar procedure to the other entries in Ω11, Ω12, and Ω21. Finally, the q[n] can be
obtained through simple calculation. �

Here we point out that the formula (14) is different with the result of [29].
Next, we present some special examples, which have different structures.

• The first order rogue wave solution
For n = 2, we get the first order rogue wave solution according the above formulae

q
[2]
1rw =

L∗

1L2

L2
1

cexpia(x−tc2+ta), (15)

where

L1 =e1 + ie2, L2 = e3 + ie4,

e1 =− 8 t2c2a3 + 12 t2c4a2 − 8 xc2ta2 + 8 xc4ta− 2 ax2c2 − 6 t2c6a− 1,

e2 =4 atc2 − 6 tc4 + 2 xc2,

e3 =8 t2c2a3 + 8 xc2ta2 − 12 t2c4a2 + 2 ax2c2 − 8 xc4ta + 6 t2c6a− 3,

e4 =12 atc2 − 6 tc4 + 2 xc2.

A direct analysis shows when x → ∞, t → ∞, q[2] → c2, the maximum module

of
∣

∣q[2]
∣

∣

2
is equal to 9c2 and locates at the origin. A 1-rogue wave with particular

parameters is shown in Fig. 3
• High order rogue wave solutions

Generally, the expression of rogue wave becomes more complicated with increasing
n (an analytic expression of the second rogue wave solution is displayed in appendix
A). Therefore, we use numerical simulations to discuss the high order rogue wave for
convenient. We set a = 1 and c = 1 in the following.
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When n = 4, we can obtain the second order rogue wave solution of the DNLS
equation according to the formula (14).

q
[4]
2rw =

L∗

1L2

L2
1

exp(ix), (16)

with

L1 =9 + 90 x2 − 12 x4 + 666 t2 + 180 t4 + 8 x6 + 8 t6 − 54 ix+ 24 itx4 − 216 x2t2

− 72 xt+ 24 x4t2 + 48 x3t+ 48 xt3 + 288 it2x+ 24 x2t4 − 24 it4x− 24 ix5

− 48 ix3 − 48 it2x3 + 198 it+ 24 it5 + 48 it3x2 + 336 it3,

L2 =45− 198 x2 − 60 x4 − 486 t2 − 60 t4 − 48 ix3 + 528 it3 + 72 it5 − 414 it+ 8 x6

+ 8 t6 + 72 itx4 + 144 it3x2 + 24 it4x+ 48 it2x3 − 576 it2x− 288 ix2t− 90 ix

− 504 x2t2 + 504 xt+ 24 x4t2 − 144 x3t− 144 xt3 + 24 ix5 + 24 x2t4.

Besides, we succeed in reaching the 7-order rogue wave by applying the above formula
(14). Nevertheless, the analytical expression is too tedious, we omit it here. Their
dynamical evolutions are shown in Fig. 4. From the figures, we find that the maximum
height of the k-th order rogue wave is (2k + 1)2. As remarked in [31, 32], there are
k(k+1)

2
−1 local maxima on each side of the x = 0 line for k-order rogue wave of the NLS

equation. However, there are only k small peak on the each side of the t = 0 line in Fig.
4 for k-order rogue wave solution of the DNLS equation. We may make a conjecture
here that the central peak of rogue wave of the DNLS equation contain more energy
than the NLS.

3. The dynamics of rogue wave with parameters

In above section, we assume that D1 = 1 and D2 = 1 (13). Actually, both D1 and D2 can
be assumed as some new constants on the premise that (12) is the eigenfunction of spectral
system (3). In this section, we set D1 and D2 as following:

{

D1 =exp
(

−ic1(S0 + S1ǫ+ S2ǫ
2 + S3ǫ

3 + · · ·+ Sk−1ǫ
k−1)

)

,

D2 =exp
(

ic1(S0 + S1ǫ+ S2ǫ
2 + S3ǫ

3 + · · ·+ Sk−1ǫ
k−1)

)

.
(17)

Here S0, S1, S2, S3, · · · , Sk−1 ∈ C . Although the terms with nonzero orders of ǫ in eq.(17)
vanish in the ǫ → 0 limit, their coefficients Si(i = 0, 1, 2, · · · , k− 1) have a crucial effect on the
structure of higher order rogue wave. Depending on these parameters, we can obtain a variety of
solutions of the same order. Finding these relative positions in terms of Si (i = 0, 1, 2, · · · , k−1)
is the subject of our analysis below.

3.1. Solutions with one parameter

In this subsection, we will discuss the dynamics of high-order rogue wave in detail. In the
case that only one of the parameters is nonzero, four typical models are obtained: fundamental
pattern, triangular structure, ring structure, and modified-triangular structure. Moreover, the
modified-triangular structure has never been found in other equations.

• Fundamental pattern
For n = 2, the first order rogue wave possesses only one parameter S0, which is

shown in Fig. 5. We observe that it is a translation of the solution in Fig. 3 relative
9



to the origin. Actually, it can shift the 1-order rogue wave solution to an arbitrary po-
sition on the (x,t)-plane, but it is trivial. So we omit this case for higher order solutions.

• Triangular structure
In this subsection, we set Si = 0 except S1. The resulting wave functions for orders

k = 2, 3, 4, 5, 6, 7 are shown in Fig. 6. Remarkably, all higher order solutions display
triangular structure. We observe triangle with three peaks in Fig. 6(a)(It has been
obtained in Ref [29].), ten peaks in Fig. 6(b), fifteen peaks in Fig. 6(c), etc. All peaks
within the triangle are first order rogue waves. So we can conclude that the triangular

structure of an order k rogue wave solution is composed of k(k+1)
2

first order rogue waves,
and it can be observed that successive k rows possessing k, k − 1, k − 2, · · · , 1 peaks
respectively. Evidently, the structure of the second order rogue wave is same as the
result of the NLS equation, which is called triplet [33].

Another remarkable feature of these solutions is that, for the triangle of k-order(k > 2)
rogue wave solutions, the outer triangle is composed of 3k − 3 first order rogue waves,
and the inner triangle contains k2−5k+6

2
first order rogue waves which is similar to the

triangular structure of (k−3)-th order rogue wave solution. For example, the 7-th order
rogue wave solution in Fig. 6(f) is composed of 28 first order rogue waves, 18 first order
rogue waves locating on the outer shell, and the inner is similar to the triangle of the
forth order rogue wave containing 10 first order rogue waves.

• Modified-triangular structure
Actually, the inner triangle structure can form a higher order rogue wave inversely

by changing the appearance of (17). For instance, when k = 5, if we set

(

f(x, t, λ)
g(x, t, λ)

)

=

(

D1ω
1
11(x, t, λ) +D1ω

2
11(x, t, λ) +D2ω

1
12

∗

(x, t,−λ∗) +D2ω
2
12

∗

(x, t,−λ∗)
D1ω

1
12(x, t, λ) +D1ω

2
12(x, t, λ) +D2ω

1
12

∗

(x, t,−λ∗) +D2ω
2
12

∗

(x, t,−λ∗)

)

,

with

{

D1 =exp(−ic21(S0 + S1ǫ+ S2ǫ
2 + S3ǫ

3 + · · ·+ Sk−1ǫ
k−1)),

D2 =exp(ic21(S0 + S1ǫ+ S2ǫ
2 + S3ǫ

3 + · · ·+ Sk−1ǫ
k−1)).

we will get a triangular structure with an second order rogue wave located in the
center. It is remarkable that this structure has never been given before in nonlinear
science, which is called modified-triangular structure. One with special parameter is
shown in Fig. 7.

• Ring structure
If we assume Si = 0 except Sk−1, we can get ring structures, which are shown in Fig.

8. They possess 1-order rogue waves and higher order rogue waves. Peaks locating on
the outer shell of the ring are all first order rogue waves, and locating in the center of
the ring are higher order rogue waves. Besides, the number of the first order rogue wave
and the order of the inner higher order rogue wave increase according to the order of
rogue wave. From those figures, we can conclude that there are 2k− 1 first order rogue
waves locating on the outer shell of ring structure of the k-th order rogue wave solution,
and a WANDT of order k − 2 locates in the center of ring. Notably, this structure has
never been displayed for the DNLS equation.
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3.2. Solutions with more than one parameter

Generally, there are k − 1 free parameters for k-order rogue wave solution. As we discussed
in previous subsection, the four basic models are depending on particular parameters. If there
are two or more parameters which are non-zero, new models will be obtained. Moreover, higher
order WANDT locating in the center of ring structure can be split into lower order waves.

• Ring-triangle
When k = 4 with parameter S3 6= 0, we have gotten a ring structure with 7 1-order

rogue wave solution located on the outer shell, and a 2-order rogue wave locating in the
center in above section. Further more, if the parameter S1 is also non-zero, the central
higher order peak is split into a triangular structure and the outer shell remains the
same. When k = 5, 6, 7, the similar structure is also displayed. These phenomenons are
displayed in Fig. 9. Therefore, we are able to conclude that the central higher order
rogue wave will be split into a triangular structure if Sk−1 ≫ 0 and S1 6= 0 for k-order
WANDT.

• Multi-ring
Similarly, the central higher order WANDT in ring structure can also be split into

ring structure. For instance, when k = 5, we have observe a ring structure in Fig. 8(b).
In this case, if we set S2 6= 0, the inner 3-order rogue wave can be split into a ring
model. Its dynamics are shown in Fig. 10. When k = 6, if we assume S5 = 1 × 108

and S4 = 1 × 106, the inner higher order rogue wave is split into a ring structure with
a second order rogue wave locating in the center. Its evolution is shown in Fig. 11.
Indeed, we can continuing decomposing the inner structure with the help of another
parameters. A new multi-ring model of the six order is displayed in Fig.12. From these
figures, we find that both the outer shell and the middle shell are circular, and the inner
shell is triangular (or circular). Naturally, the 7-order rogue wave solution possesses the
same character except for the difference that the central peak can be split into both a
triangle model and a ring pattern. They are shown in Fig. 13 and Fig. 14.

4. Conclusions

In this paper, we generate the formulae of higher order positon solution in proposition 1 and
higher order rogue wave solution in proposition 2 for the DNLS equation at the same eigenvalue
with the method of Taylor expansion and limit technique. By applying these formulae, we get
positon solutions, rational traveling solutions and rogue wave solutions. These formulae are
given in terms of determinants explicitly. Remarkably, the formula for rogue wave solutions is
really effective in achieving the analytic expression and computer simulation of k-order rogue
wave. Further more, we give rise to solutions with different structures are obtained by adjust-
ing the free parameters D1 and D2 in our formula. With the help of these parameters, we
study the dynamics of higher order rogue wave solutions. Overall, there are four basic mod-
els for higher order rogue wave. By choosing proper parameters, combination structures can
be obtained. For example, fundamental pattern, triangular structure, ring structure,modified-
triangular structure, ring-triangle structure, and multi-ring structure. The last three models
have never been given before.
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In the last part of this paper, we make a classification of higher order rogue wave of the DNLS
equation. We found out that some basis structures (fundamental pattern, triangular structure,
ring structure) also appear in other equations such as NLS. But the modified-triangular struc-
ture is unique to the DNLS equation.

Our results give an essential understanding of the relation of shift parameters with relative
positions, which will be useful in other integrable equations such as Hirota equation, Gerdjikov-
Ivanov equation, the Davey-Stewartson equation, and so on.
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Appendix A. The expression of the second order rogue wave solution

Here we present the expression of the second order rogue wave solution

q2rw = −L∗

1L2

L2
1

exp(i
(

ax+
(

−c2 + a
)

at
)

), (18)
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where

L1 =e1 + ie2, L2 = e3 + ie4,

e1 =− 9 + 72 ac4xt− 216 a2c2xt− 108 a2c4t2 − 18 ac6t2 + 216 c6xt− 54 ac2x2 − 216 a3c2t2

+ 1088 a3c12x3t3 − 1536 a8c6xt5 + 6528 a6c8x2t4 − 3264 a4c10x3t3 − 1920 a7c6x2t4

+ 3456 a5c8x3t3 − 456 a3c10x4t2 + 648 ac14t4 − 1280 a6c6x3t3 + 912 a4c8x4t2 − 2268 a2c12t4

− 480 a5c6x4t2 + 4272 a3c10t4 + 96 a3c8x5t− 1296 ac12xt3 − 4368 a4c8t4 − 96 a4c6x5t

+ 3456 a2c10xt3 + 1728 a5c6t4 − 4320 a3c8xt3 − 8 a3c6x6 + 864 ac10x2t2 − 216 a3c18t6

+ 1296 a4c16t6 − 3456 a5c14t6 + 864 a3c16xt5 + 5184 a6c12t6 − 4320 a4c14xt5 − 4608 a7c10t6

+ 9216 a5c12xt5 − 1368 a3c14x2t4 + 2304 a8c8t6 − 10368 a6c10xt5 + 5472 a4c12x2t4 − 512 a9c6t6

+ 6144 a7c8xt5 − 8736 a5c10x2t4 − 96 a3c4x3t + 24 ac6x4 − 12 a2c4x4 − 36 c4x2 − 324 c8t2

− 192 a6c4t4 + 2496 a4c6xt3 − 1656 a2c8x2t2 − 384 a5c4xt3 + 1296 a3c6x2t2 − 240 ac8x3t

− 288 a4c4x2t2 + 288 a2c6x3t,

e2 =6 c2(9 x+ 12 c4x2ta− 24 c4xt2a2 + 48 xt2c2a3 + 24 x2ta2c2 − 180 c6t2xa+ 1776 c8a4t4x

− 360 c10a2t3x2 − 51 tc2 + 18 ta+ 4 c4a2x5 + 108 c8t2x− 1008 c10a4t5 − 240 c6t3a2−
108 c14a2t5 − 576 c6a6t5 − 64 c4t3a3 + 128 c4a7t5 + 1056 c8a5t5 + 32 t3c2a4 + 324 c8t3a

− 36 c6tx2 + 504 c12a3t5 + 40 c4a3tx4 + 324 c12a2t4x− 1200 c10a3t4x− 336 c6a3t2x3

+ 160 c4a4t2x3 − 44 c6a2tx4 + 4 c4x3 − 108 c10t3 − 960 c6a4t3x2 + 184 c8a2t2x3

+ 320 c4a5t3x2 + 4 x3c2a− 1216 c6a5t4x+ 320 c4a6t4x+ 992 c8a3t3x2),

e3 =(e5 − e1)c,

e4 =6 c3(−15 x+ 108 c4x2ta + 456 c4xt2a2 − 336 xt2c2a3 − 120 x2ta2c2 − 324 c6t2xa+ 2928 c8a4t4x

− 360 c10a2t3x2 + 21 tc2 − 90 ta+ 4 c4a2x5 + 108 c8t2x− 1584 c10a4t5 − 384 c6t3a2 − 108 c14a2t5

− 1344 c6a6t5 + 544 c4t3a3 + 384 c4a7t5 + 2016 c8a5t5 − 288 t3c2a4 + 324 c8t3a− 36 c6tx2

+ 648 c12a3t5 + 56 c4a3tx4 + 324 c12a2t4x− 1584 c10a3t4x− 464 c6a3t2x3 + 288 c4a4t2x3

− 44 c6a2tx4 + 4 c4x3 − 108 c10t3 − 1664 c6a4t3x2 + 184 c8a2t2x3 + 704 c4a5t3x2 − 12 x3c2a

− 2496 c6a5t4x+ 832 c4a6t4x+ 1344 c8a3t3x2),

e5 =36 + 288 ac4xt− 576 a2c2xt + 288 a2c4t2 + 432 ac6t2 + 864 c6xt− 144 ac2x2 − 576 a3c2t2

+ 1296 a2c12t4 − 4032 a3c10t4 + 4032 a4c8t4 − 1728 a2c10xt3 − 768 a5c6t4 + 3072 a3c8xt3

− 384 a3c4x3t− 48 a2c4x4 − 144 c4x2 − 1296 c8t2 − 768 a6c4t4 + 288 a2c8x2t2 − 1536 a5c4xt3

+ 576 a3c6x2t2 − 1152 a4c4x2t2 + 192 a2c6x3t.

With the help the formula (14), we can also obtain the expression of k-th (k=3,4,5,6,7) order
rogue wave. Since they are too complicated to write down, we omit them.
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(a) (b)

Figure 1. (Color online) The dynamics of positon solution on the (x, t) plane
with α1 = 0.5, β1 = 0.5.

(a) (b)

Figure 2. (Color online) The dynamics of 2-rd rational traveling solution on
the (x, t) plane with β1 = 0.3.

Figure 3. 1-rogue wave solution with a = 1, c = 1.
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(a) 2-rogue wave (b) 3-rogue wave (c) 4-rogue wave

(d) 5-rogue wave (e) 6-rogue wave (f) 7-rogue wave

Figure 4. (Color online)The dynamics of higher order rogue wave solution.
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(a) (b)

(c) (d)

Figure 5. (Color online)Various form of 1-order rogue wave solution with par-
ticular parameter S0. (a) The first order rogue wave with S0 = 5, the maximum
amplitude occurs at x = 0 and t = −5. (b) The first order rogue wave with
S0 = −5, the maximum amplitude occurs at x = 0 and t = 5
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(a) 2-order rogue wave
with S1 = 500

(b) 3-order rogue wave
with S1 = 500

(c) 4-order rogue wave
with S1 = 500

(d) 5-order rogue wave
with S1 = 500

(e) 6-order rogue wave
with S1 = 500

(f) 7-order rogue wave
with S1 = 250

Figure 6. The triangular structures of higher order rogue waves.

(a) (b)

Figure 7. (Color online)The modified-triangular structure of 5-order rogue wave
with a second order rogue wave located in the center. (a) An overall profile of
5-order rogue wave with S1 = 100. (b) The centra profile of the right panel.
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(a) 4-order rogue wave
with S3 = 10000

(b) 5-order rogue wave
with S4 = 500000

(c) 6-order rogue wave
with S5 = 1× 108

(d) 7-order rogue wave
with S6 = 1× 1010

Figure 8. (Color online) The ring structures of higher order rogue wave solu-
tions with Sk−1 6= 0.
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(a) 4-order rogue wave
with S1 = 300 and S3 =
1× 107

(b) 5-order rogue wave
with S1 = 200 and S4 =
1× 109

(c) 6-order rogue wave
with S1 = 500 and S5 =
3× 1010

(d) 7-order rogue wave
with S1 = 300 and S6 =
5× 1010

Figure 9. (Color online) A triangular pattern in a ring for higher order rogue
wave with Sk−1 6= 0 and S1 6= 0.

(a) (b)

Figure 10. (Color online) (a) The multi-ring model of 5-order rogue wave so-
lution with S2 = 5000 and S4 = 1× 108. (b) The local central profile.
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(a) The entire part (b) The inner part

Figure 11. (Color online)The multi-ring-1 structure of 6-order rogue wave .

(a) The entire part (b) The inner part

Figure 12. (Color online)The multi-ring-2 structure of the 6-order rogue wave.
Both the outer shell and the middle shell are circular, and the inner shell is
triangular(or circular).

(a) The entire part (b) The inner part

Figure 13. (Color online) The multi-ring-1 structure of 7-order rogue wave
with S2 = 1000, S4 = 1× 107and S6 = 5× 1011. All the three shell are circular.
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(a) The entire part (b) The inner part

Figure 14. (Color online) The multi-ring-2 structure of 7-order rogue wave
with S1 = 100, S4 = 1 × 107and S6 = 5 × 1011. Both the outer shell and the
middle shell are circular, and the inner shell is triangular.
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