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Abstract

The complete group classification of a generalization of the Black–Scholes–
Merton model is carried out by making use of the underlying equivalence and
additional equivalence transformations. For each non linear case obtained
through this classification, invariant solutions are given. To that end, two
boundary conditions of financial interest are considered, the terminal and the
barrier option conditions.
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1. Introduction

In this paper we study the following semilinear partial differential equa-
tion

ut +
1

2
σ2x2uxx + rxux + f(u) = 0 (1)

which can be considered as a weakly nonlinear generalization of the celebrated
Black–Scholes–Merton equation

ut +
1

2
σ2x2uxx + rxux − ru = 0 (2)
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that plays a remarkable role in financial Mathematics.
Usually the terminal condition

u(x, T ) = 1, (3)

describing the evolution of standard or “vanilla” products; the price of a
zero-coupon bond (or of a financial option), u(x, t), which is exercised when
t = T is considered [1, 2, 3, 4].

Furthermore, Eq. (2) may satisfy also other kinds of options, like the
barrier option. A barrier option can be considered an exotic option and as
such has features that makes it more complex than the “vanilla” option,
[5, 6, 7]. The underlying idea is that now a barrier H(t) exists and when
the asset price x crosses it, the barrier option u(x, t) becomes extinguished
or comes into existence. Those two types are also known as down-and-out

and down-and-in respectively. Often a rebate, R(t), is paid if the option is
extinguished. In what follows we shall consider the down-and-out type.

In the context of the Black–Scholes–Merton equation, the barrier option
is expressed by the conditions

u(H(t), t) = R(t), (4a)

u(x, T ) = max(x−K, 0), (4b)

where the barrier option u(x, t) satisfies Eq. (2) for x > H(t), t < T , T
again is the terminal time where the barrier option is exercised and K is the
strike price. A common assumption for the barrier function H is to have the
exponential form

H(t) = bKe−αt, (5)

where a ≥ 0 and 0 ≤ b ≥ 1 [6, p. 187].
Although Eq. (1) is just a mathematical abstraction, it can also be derived

from the same stochastic argument as the Black–Scholes–Merton equation
(2) is derived. In particular, by assuming that the wealth of the portfolio
involves a nonlinear function of the value of an option u(x, t) instead of a
linear function and utilizing the same boundary conditions (3), (4). Finally,
the constants r and σ2 represent the risk-free interest rate and the variance
of the rate of the return on u respectively.

The main purpose of this paper is to carry out a complete group classi-
fication of a generalized Black–Scholes–Merton equation of type (1). Recall
that to perform a complete group classification of a differential equation (or
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a system of differential equations) involving arbitrary functions or/and pa-
rameters, means to find the Lie point symmetry group G for the most general
case, and then to find specific forms of the differential equation for which G
can be enlarged, [8, p. 178]. Quite often, there is good physical or geometri-
cal motivation to study such cases. Moreover for the Black–Scholes–Merton
equation (2) the motivation is a financial one: for more than three decades
this equation has shown its value and gain the trust of the market. But as
banks and hedge funds relied more and more on this and its siblings equations
they became more and more vulnerable to mistakes or over-simplifications
in the mathematics involved in deriving them; it is a linear equation and
as such can’t follow the dynamic nature and the intricacies of the modern
market.

In [9, 10, 11] the Black–Scholes–Merton equation (2) as well as other
linear evolutionary equations which appear in financial Mathematics have
been investigated from the point of view of the S. Lie symmetry theory. Also,
the barrier option was studied recently for Eq. (2) under the same prism [7].
The present work can be considered as an extension of that research. As
such, the linear case f(u) = αu + β, to avoid a repetition of already known
and established facts, will not be treated explicitly in the present paper. It
will only briefly accounted for the purpose of completeness.

Afterwards, for each nonlinear case of the obtained group classification
we look for group invariant solutions taking also into account the boundary
conditions (3), (4).

Before we proceed with the group classification, we would like to remind
some facts concerning the group analysis of differential equations.

The symmetry analysis of differential equations is a method first devel-
oped in the 19th century by Sophus Lie. One of the main benefits of this
method is that by following a completely algorithmic procedure one is able to
determine the symmetries of a differential equation or systems of differential
equations. Grosso modo, the symmetries of a differential equation transform
solutions of the equation to other solutions. The Lie point symmetries com-
prise a structural property of the equation, in essence it is the DNA of an
equation. The knowledge of the symmetries of an equation enables one to
utilize them for a variety of purposes, from obtaining analytical solutions and
reducing its order to finding of integrating factors and conservation laws. In
fact, many, if not all, of the different empirical methods for solving ordinary
differential equations (ODEs) we have learned from standard courses at the
undergraduate level emerge from a symmetry. For instance, having at our
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disposal a Lie point symmetry of a first order ODE, we can immediately get
explicitly an integrating factor. Furthermore, even the knowledge of a trivial
solution of the equation can be used for creating nontrivial solutions by us-
ing the equation’s symmetries. And all these are due to the rich underlining
algebraic structure of the Lie groups and algebras with which we give flesh
to the symmetries of a differential equation.

Another important characteristic of the symmetry method is that in some
situations the symmetries of an equation may indicate that it can be trans-
formed to a linear equation. In addition, its symmetries provide the means
to construct the needed transformation. A strong indication for that is the
existence of an infinite dimensional Lie algebra, [12]. Recently, it has been
shown, by using only the algebraic properties of the symmetries of the equa-
tions involved, that the majority of the well-known differential equations used
in economics are linked via an invertible transformation to the heat equation,
[11]. Although for some of the studied equations a transformation between
them and the heat equation was already known by other means, the authors
of [11] used the algebraic properties of the symmetries of the equations and
followed a straightforward and algorithmic approach.

In fact, over the last forty years there was a considerable development in
the mathematical analysis of partial differential equations which arise in fi-
nancial Mathematics. However when one reads various papers devoted to the
resolution of evolution partial differential equations which arise as, more or
less, the final stage of the mathematical modeling of some financial process,
one can see some ad hoc and naive procedures to bring the considered equa-
tion under control. A viable alternative way is the employment of symmetry
analysis of differential equations.

Moreover, one valuable tool when considering classes of equations is the
use of the equivalence or admissible transformations, [13, 14, 15]. Equivalence
transformations of a class of differential equations are point transformations
that keep this class invariant, in other words they map an equation from this
class to another member of the same class. In the recent years equivalence
transformations have found much application either as a stand alone analytic
tool for the group classification of differential equations, [16], or at the core
of the enhanced group analysis, [17, 18, 19, 20].

One of the advantages of this approach, as already emphasized, is that it
provides a well defined algorithmic procedure which essentially enables one
to find the involved linearizing transformations, conservation laws, invariant
solutions, etc. On the other hand, the calculations involved are usually very
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difficult and extensive even for the simplest equations. Thus, it may become
very tedious and error prone. For this reason the real progress in this area
occurred in the last few decades with the advances in computer technology
and the development of computer algebra systems like Mathematica, Maple,

Reduce, etc. Based on these systems, a handful of symbolic packages for
determining the symmetries of differential equations exists, [21, 22, 23, 24].
One such symbolic package, based onMathematica, [25], has been devised and
developed by S. Dimas as part of his PhD thesis, [26]. The package, named
SYM, [26, 27, 28], was developed from the ground up using the symbolic
manipulation power of Mathematica and the artificial intelligence capabilities
which it offers. It is being used by many researchers around the world. It
was extensively used for all the results in the present paper, both for the
interactive manipulation of the found symmetries and for the classification
of the equations employing the symbolic tools provided by it.

This paper is organized as follows. In section 2 we present the basic con-
cepts of the Lie point symmetry approach to differential equations used in
the paper. In section 3 we obtain the complete group classification of gener-
alized Black–Scholes–Merton equations of type (1). In section 4 we provide
invariant solutions for each non-linear case found by the group classification
under the two specific boundary problem studied, the “vanilla” option and
the barrier option. Finally, in section 5 we discuss the obtained results as
well as possible applications.

2. Preliminaries

In this section we expose some notions of the modern group analysis that
will be encountered in the main sections of the article suitably adapted to the
article’s needs. For a full treatise in the subject there is a wealth of classical
texts that encompass all aspects of the theory, [8, 12, 29, 13, 30, 31].

A Lie point symmetry of Eq. (1) is a one-parameter transformation of the
independent and dependent variables

x̄ = x̄(x, t, u, ǫ),

t̄ = t̄(x, t, u, ǫ), (6)

ū = ū(x, t, u, ǫ),

that keeps (1) invariant:

ūt̄ +
1

2
σ2x̄2ūx̄x̄ + rx̄ūx̄ + f(ū) = 0. (7)
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By substituting in (7) the point transformations (6) and using (1) we obtain
an equation called the symmetry condition. From it the exact form of the
point transformations is obtained. However, trying to determine the trans-
formation (6) from (7) is more challenging than trying to solve the Eq. (1)
itself!

The novelty behind S. Lie idea resides on linearizing the problem of de-
termining the symmetries of an equation. To do that, the notion of the
infinitesimal generator is introduced. Namely, the infinitesimal generator is
a differential operator

X = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η

∂

∂u

with the functions ξi = ξi(x, t, u) and η = η(x, t, u), called infinitesimals,
defined as

ξ1 =
∂x̄

∂ε

∣

∣

∣

∣

ε=0

, ξ2 =
∂t̄

∂ε

∣

∣

∣

∣

ε=0

, η =
∂ū

∂ε

∣

∣

∣

∣

ε=0

. (8)

An infinitesimal generator of this type determines a Lie point symmetry of
Eq. (1), if and only if, its action on the equation will be, modulo the equation
itself, identically zero, that is:

X(2)

[

ut +
1

2
σ2x2uxx + rxux + f(u)

]
∣

∣

∣

∣

(1)

≡ 0, (9)

where X(2) is the second order prolongation of the operator X given by

X(2) = X + η
(1)
i

∂

∂ui
+ η

(2)
i1i2

∂

∂ui1i2

, i, ij = 1, 2 (10)

and

η
(1)
i = Diη − (Diξ

j)uj, and η
(2)
i1i2

= Di2η
(1)
i1

− (Di2ξ
j)ui1j, i, ik, j = 1, 2 (11)

where ui =
∂u
∂xi , ui1i2 = ∂2u

∂xi1∂xi2
, i, ij = 1, 2 and (x1, x2) = (x, t), where the

Einstein summation convention implied over the indexes. From the Eq. (9),
called linearized symmetry condition, an overdetermined system of linear par-
tial differential equations emerges. By solving this system, called the deter-

mining equations, we find the infinitesimals and hence we obtain the point
symmetries of the equation. The group classification occurs in that phase.
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The determining equations contain also the parameters σ, ρ and the function
f(u). The group classification is performed by investigating each case where
specific relations among the unknown elements remove equations from the
set of determining equations and hence, expanding the solution space.

This set of symmetries, represented as differential operators, form a Lie
algebra. The system of ODEs (8) with the addition of the conditions x̄|ε=0 =
x, t̄|ε=0 = t, ū|ε=0 = u forms a well posed initial value problem. By solving
it, we can obtain the corresponding local continuous transformations, which
form a Lie group. This process is called exponentiation. Henceforth, we shall
identify a Lie point symmetry with its infinitesimal generator.

Having the symmetries, as a Lie algebra, there is a wealth of things that
can be done with. In the present paper, we use them to obtain invariant or
similarity solutions of the Eq. (1). By invariant solutions we mean solutions
of (1) that are invariant under one of the found symmetries X, e.g.

X[u− ϕ(x, t)]|u=ϕ(x,t) ≡ 0. (12)

The Eq. (12) is a linear PDE called invariant surface condition and by solving
it we obtain a way to reduce Eq. (1). For example, the symmetry ∂

∂t
yields the

invariant surface condition ut = 0. Solving it, we get the invariant solution
u(x, t) = φ(x) which, in turn, can be used to reduce the order of Eq. (1)
effectively turning it from a PDE to an ODE. Similarly, when we look for
a similarity solution of Eq. (1) along with a initial/boundary condition we
have to choose the subalgebra leaving also invariant that condition and its
boundary:

X(t− T )|t=T ≡ 0 (13)

and
X(u− 1)|t=T ≡ 0. (14)

for the boundary condition (3). And

X(x−H(t))|x=H(t) ≡ 0 (15)

and
X(u−R(t))|x=H(t) ≡ 0. (16)

for the boundary condition (4a).
For obtaining the equivalence transformations there two possible roads.

The first one is by a direct search for the equivalence transformations, an
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approach that gives in theory the most general equivalence set of transfor-
mation, the equivalence group. But it has the same pitfalls as trying to obtain
the symmetry group for the equation as briefly discussed already. And the
second approach is through the calculation of the equivalence algebra from
which the continuous equivalence group can be obtained. In the present work
the second road will be realized by complementing the usual prolongation of
the infinitesimal generator with a secondary prolongation, [29].

To calculate the equivalence algebra, an extension of Eq. (1) must be
considered with the arbitrary elements σ, r, f , now functions of x, t, u, and
by including the following constraints on them,

σx = σt = σu = rx = rt = ru = fx = ft = 0.

For this extended system the infinitesimal generator is

X = ξ1
∂

∂x
+ ξ2

∂

∂t
+ η

∂

∂u
+ φ1 ∂

∂σ
+ φ2 ∂

∂r
+ φ3 ∂

∂f
, (17)

where now the coefficients of this operator depend on the extended space:
ξi = ξi(x, t, u, σ, r, f), η = η(x, t, u, σ, r, f) and φi = φi(x, t, u, σ, r, f). The
second prolongation needed to obtain the determining equation now becomes

X(2) = X + η
(1)
i

∂

∂ui
+ η

(2)
i1i2

∂

∂ui1i2

+ φ
1,(1)
j

∂

∂σj
+ φ

2,(1)
j

∂

∂rj

+ φ
3,(1)
j

∂

∂fj
, i, ik = 1, 2, j = 1, 2, 3 (18)

where the coefficients η
(1)
i , η

(2)
i1i2

are calculated as usual by the formula (11)

while for the coefficients φ
i,(1)
j with the secondary prolongation,

φ
i,(1)
j = D̃jφ

i − (D̃jξ
1)pix − (D̃jξ

2)pit − (D̃jη)p
i
u, , i, j = 1, 2, 3

where (p1, p2, p3) = (σ, r, f), (x1, x2, x3) = (x, t, u) and

D̃j =
∂

∂xj
+ pixj

∂

∂pi
,

again the Einstein summation convention is used for the index i. After that
point we follow Lie’s algorithm as usual.
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Having the equivalence algebra by exponentiation one can obtain the
continuous part of the equivalence group. By using the method proposed
in [30, pp. 187 c.f.], [32] one can also obtain the discrete part and hence
retrieve the whole set of equivalence transformations permissible by this class
of equations.

Another useful notion is that of the additional equivalence transforma-

tion. An additional equivalence transformation is a point transformation
that connects inequivalent classes of differential equations. The knowledge
of such transformations greatly helps the classification.

3. Group classification

In this section we proceed with the group classification of the generalized
Black–Scholes–Merton equation (1).

First, the best representative for the class of equations (1) is obtained
utilizing its equivalence algebra. To do that, the continuous part of the
equivalence group is constructed and with its help as many as possible arbi-
trary elements are zeroed.

Theorem 3.1. The equivalence algebra L̂E of class (1) is generated by the

following vector fields

∂t, ∂u, x∂x, ∂r + tx∂x, f∂f + u∂u,

x
(

2rt− tσ2 + 2 log|x|
)

∂x + 4t∂t − 4f∂f ,

x
((

2r + σ2
)

t− 2 log|x|
)

∂x − 2σ∂σ.

Proof. By applying the second order prolongation (18) of the infinitesimal
generator (17) to the extended system

ut +
1

2
σ(x, t, u)2x2uxx + r(x, t, u)xux + f(x, t, u) = 0,

σx = σt = σu = rx = rt = ru = fx = ft = 0,

modulo the extended system itself, we get the system of determining equa-
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tions:

η3f = 0, η4f = 0, ξ2f = 0, ξ2f = 0, ξ2f = 0, ξ2ff = 0, η3u = 0, η4u = 0,

ξ2u = 0, ξ2uf = 0, ξ2uu = 0, η1t = 0, η2t = 0, η3t = 0, η4t = 0, η1x = 0,

η2x = 0, η3x = 0, η4x = 0, ξ2x = 0, η1f + fξ2f = 0, η1f + fξ2f = 0,

ξ1f − rxξ2f = 0, ξ1ff − rxξ2ff = 0, ξ1uf − rxξ2uf = 0, ξ1uu − rxξ2uu = 0,

2ξ2f + η1ff + fξ2ff = 0, 2ξ1f − x
(

2
(

r + σ2
)

ξ2f + xσ2ξ2xf
)

= 0,

2ξ1u − x
(

2
(

r + σ2
)

ξ2u + xσ2ξ2xu
)

= 0,

2rξ2u + η1uu + fξ2uu − 2ξ1xu + 2rxξ2xu = 0,

rξ2f + ξ2u + η1uf + fξ2uf − ξ1xf + rxξ2xf = 0,

fξ1f + x
(

−frξ2f + xσ2
(

ξ2x + η1xf + fξ2xf
))

= 0,

4xη3 + σ
(

4ξ1 + x
(

−2fξ2u + 2ξ2t − 4ξ1x + 6rxξ2x + 4xσ2ξ2x + x2σ2ξ2xx
))

= 0,

2η2 − 2fη1u − 2f 2ξ2u + 2η1t + 2fξ2t + 2rxη1x + 2frxξ2x
+σ2x2(η1xx + fξ2xx) = 0

2xη4 + 2rξ1 + 2fξ1u − 2frxξ2u − 2ξ1t + 2rxξ2t − 2rxξ1x + 2r2x2ξ2x + 2rx2σ2ξ2x
+2x2σ2η1xu + 2fx2σ2ξ2xu − x2σ2ξ1xx + rx3σ2ξ2xx = 0.

Solving the above system the equivalence algebra L̂E is obtained.

Lemma 3.2. The continuous part of the equivalence group, ÊC, consists of

the transformations

x̃ = e
1
2
tδ6((σ2−2r)δ7−σ2δ27δ6+2δ6(r+δ5))|x|δ6δ7δ4,

t̃ = δ1 + δ26t, ũ = δ2 + δ3u, r̃ = r + δ5, σ̃ = δ7σ, f̃ =
δ3
δ26
f,

where δi are arbitrary constants and δ3, δ4, δ6, δ7 6= 0.

Remark 3.1. Due to the fact that the transformation for x depends also
on the arbitrary elements of Eq. (1), ÊC is also called the continuous part
of the generalized equivalence group. If one has chosen to assume that the
equivalence transformations for x, t, u do not depend also on the arbitrary
elements r, σ, f , i.e. ξi = ξi(x, t, u), η = η(x, t, u) in (17), then the continuous
part of the usual equivalence group EC would be obtained.
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Readily, using ÊC one can find an equivalence transformation that σ̃ →
√
2

and r̃ → 0:

x̃ = e

(

σ2−2r√
2σ

−1
)

t|x|
√

2
σ , t̃ = t, ũ = u, r̃ = 0, σ̃ =

√
2, f̃ = f. (19)

Using (19), Eq. (1) turns into the equation

ũt̃ + x̃2ũx̃x̃ + f̃(ũ) = 0. (20)

Next, using the additional equivalence transformation

x̂ = log|x̃|, t̂ = t, û = |x̃|−1/2ũ, (21)

the heat equation with a nonlinear source is obtained (for clarity henceforth
the hats are dropped)

ut + uxx + e−x/2f(ex/2u)− 1

4
u = 0. (22)

Therefore, without any loss of generality, Eq. (22) will be classified instead.
In addition, the terminal condition (3) is transformed to the condition

u(x, T ) = exp(−x/2) (23)

and for the barrier option condition (4a) we have:

e
1
2

(

σ2−2r√
2σ

t−1
)

|H(t)|
√
2

2σ u

((

σ2 − 2r√
2σ

− 1

)

t +
log|H(t)|√

2σ
, t

)

= R(t) (24)

Finally, the equivalence group for Eq. (22) is given by the following theorem

Theorem 3.3. The equivalence group, E , of Eq. (22) consists of the trans-

formations

x̃ = δ5βx+ (β − δ5)δ5t+ 2δ4, t̃ = δ5t+ δ1,

ũ = e−
1
2
(δ5x−(δ5−1)δ5t+2δ4)

(

αδ3e
x−(β−1)(x+t)

2 u+ δ2

)

, f̃ = α
δ3
δ25
f,

where δi are arbitrary constants, δ3, δ5 6= 0 and α, β = ±1.

11



Proof. The process is analogous to the one for Eq. (1) with the only difference
that now we have only one arbitrary element, the function f . In addition,
using the process described in [32] we find the four discrete equivalence trans-
formations

(x, t, u, f) → (βx+ (β − 1)t, t, αe−
1
2
(β−1)(x+t)u, αf),

where α, β = ±1. Together the two sets of transformations comprise the
usual equivalence group of transformations E .

Equation (22) belongs to the class

ut = uxx + f(t, x, u, ux)

that describes nonlinear heat conductivity processes. Due to the fact that
the above class was completely classified in [33]. Apart from mentioning the
classification equation

1

2

(

uf ′ (ex/2u
)

− e−x/2f
(

ex/2u
))

(

F3(t) +
xF ′

2(t)

2

)

+ uF ′
4(t)

+
(

e−x/2f
(

ex/2u
)

− u

4

)

(

F ′
2(t)−F4(t)−

1

8
x (4F ′

3(t) + xF ′′
2 (t))

)

+

(

f ′ (ex/2u
)

− 1

4

)(

F1(x, t) +
1

8
u (8F4(t) + x (4F ′

3(t) + xF2
′′(t)))

)

+
1

8
u (2F ′′

2 (t) + x (4F ′′
3 (t) + xF ′′′

2 (t))) + F1t(x, t) + F1xx(x, t) = 0

no further details of the calculations involved will be showed. We proceed
with presenting the resulting classification.

1. For an arbitrary f the Lie point symmetries of (22) are determined by
the infinitesimal generators:

X1 =
∂

∂t
, X2 = 2

∂

∂x
− u

∂

∂u
. (25)

2. For f(ζ) = −γ
β
(α + βζ) (δ + log|α + βζ |) , β, γ 6= 0, in addition to the

symmetries (25) we get also the symmetries

X3 =
α + βex/2u

β
e−

x
2
+γt ∂

∂u
, (26a)

X4 =
2

γ
eγt

∂

∂x
+

βγ(t+ x)ex/2u+ α(1 + γ(t+ x))

βγ
e−

x
2
+γt ∂

∂u
. (26b)
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3. For f(ζ) = α(ζ − β)2, α 6= 0, in addition to the symmetries (25) we
have the symmetry

X3 = 2(x− t)
∂

∂x
+ 4t

∂

∂t
+ ((t− x− 4)u+ 4βe−x/2)

∂

∂u
. (27)

4. For completeness, we present also the additional symmetries for the
linear cases:

• f(ζ) = βζ + α, β 6= 0:

X3 = (u+
α

β
e−x/2)

∂

∂u
,

X4 = 2t
∂

∂x
+

(

ux+
α(t+ x)e−x/2

β

)

∂

∂u
,

X5 = 2x
∂

∂x
+ 4t

∂

∂t
+

(

αx− (4β − 1)
(

α + βex/2u
)

t
)

β
e−x/2 ∂

∂u
,

X6 = 4xt
∂

∂x
+ 4t2

∂

∂t
+

1

β

(

α
(

2(x− 1)t+ x2 + (1− 4β)t2
)

e−x/2

+β
(

x2 + (t− 4βt− 2)
)

tu
) ∂

∂u
,

X∞ = F(x, t)
∂

∂u
,

where the smooth function F = F(x, t) satisfies the linear equa-
tion

Ft + Fxx + (α− 1

4
)F = 0

and,

• f(ζ) = α:

X3 = (u+ αxe−x/2)
∂

∂u
,

X4 = 4t
∂

∂x
+
(

2ex/2xu+ α
(

t2 − x(x+ 2)
))

e−x/2 ∂

∂u
,

X5 = 4x
∂

∂x
+ 8t

∂

∂t
+
(

2ex/2tu+ α
(

t2 − (x− 6)x
))

e−x/2 ∂

∂u
,

X6 = 12xt
∂

∂x
+ 12t2

∂

∂t
+
(

3
(

(t− 2)t+ x2
)

u

13



+α
(

t3 − 12t2 − 3tx2 − 2x(x(x+ 3) + 6)
)

e−x/2
) ∂

∂u
,

X∞ = F(x, t)
∂

∂u
,

where the smooth function F = F(x, t) satisfies the linear equation

Ft + Fxx + (α− 1

4
)F = 0.

Remark 3.2. Looking at the corresponding Lie algebars for the two linear
cases, it is evident that they are linked to the heat equation via a point
transformation, [11], — an additional equivalence transformation — a fact
well established in the literature, [9, 10].

4. Invariant solutions

Having obtained the complete group classification for Eq. (22), and con-
sequently for Eq. (1), we can look for invariant solutions under the terminal
condition (23) and the barrier option (24): For each one of the two nonlin-
ear cases the appropriate sub algebra of symmetries also admitted by each
problem is found using the two required conditions (13), (14) and (15), (16)
adapted now to Eq. (22). Finally, by using the subalgebra obtained for ev-
ery subcase that surfaced from the two conditions a similarity solution is
constructed.

4.1. The terminal condition

Case 4.1.1. f(ζ) = α(ζ − β)2, α 6= 0

Let the arbitrary element of the Lie algebra spanned by (25) and (27) be
X = c1X1+ c2X2+ c3X3. Using (13), (14) and (23) we obtain the conditions:

c1 = −4Tc3

and
(β − 1)c3 = 0.

From the above conditions two specific subcases occur:

• Subcase 4.1.1.1. c1 = c3 = 0, c2 6= 0

14



For this case the only symmetry that keeps invariant both Eq. (22) and
(23) is the X2 = 2∂x − u∂u.

• Subcase 4.1.1.2. β = 1, c1 = −4Tc3

For this case the only symmetries that keeps invariant both Eq. (22) and
(23) are

Z1 = 2∂x − u∂u,

Z2 = 2(x− t)∂x + 4(t− T )∂t + ((t− x− 4)u+ 4e−x/2)∂u

Case 4.1.2. f(ζ) = −γ
β
(α + βζ) (δ + log|α + βζ |) , β, γ 6= 0

Let the arbitrary element of the Lie algebra spanned by (25) and (26) be
X = c1X1 + c2X2 + c3X3 + c4X4. Using (13), (14) and (23) the conditions are

c1 = 0

and
(α + β) (c4 + γ (c3 + (t+ x)c4)) = 0.

From the above conditions two specific subcases occur:

• Subcase 4.1.2.1. c1 = c3 = c4 = 0, c2 6= 0

For this case the only symmetry that keeps invariant both Eq. (22) and
(23) is the X2 = 2∂x − u∂u.

• Subcase 4.1.2.2. β = −α 6= 0, γ 6= 0, c1 = 0

For this case the only symmetries that keeps invariant both Eq. (22) and
(23) are

Z1 = 2∂x − u∂u,

Z2 = (1− ex/2u)e−
x
2
+γt∂u

Z3 =
2

γ
eγt∂x +

γ(t+ x)ex/2u− (1 + γ(t+ x))

γ
e−

x
2
+γt∂u

The common denominator for all the above cases is the symmetry 2∂x −
u∂u. This symmetry gives the invariant solution

u(x, t) = C(t)e−x/2.

Going back to the Eq. (1) we see that it corresponds to the trivial assumption

u(x, t) = C(t),

i.e. solutions that do not have dependency on the variable x.
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4.2. The condition for barrier option

Case 4.2.1. f(ζ) = α(ζ − β)2, α 6= 0

Let the arbitrary element of the Lie algebra spanned by (25) and (27),
X = c1X1+ c2X2+ c3X3. Using (15) and the equivalence transformations the
first condition turns to the ODE:

(

2
√
2r (c1 + 2tc3) + σ

((

2−
√
2σ
)

c1 + 4c2 − 2
√
2tσc3t

))

H

+ 4
√
2c3H log|H| − 2

√
2 (c1 + 4tc3)H

′ = 0 (28)

two cases are discerned, c3 6= 0 and c3 = 0:

• Subcase 4.2.1.1. c3 6= 0

The solution of (28) is

H(t) = e
− σ√

2
λ+(r− 1

2
σ2)(t+A

√
κ+t) (29)

where κ = c1
4c3

, λ = c1+2c2
2c3

and A the constant of integration. Using this
solution, conditions (16) and (24) we get the ODE

β − R− (κ+ t)R′ = 0. (30)

Its solution is

R(t) =
B + βt

κ+ t
, (31)

where B the constant of integration.
Having found the functions H,R admitted by the symmetries we proceed

with the reduction of the Eq. (22). From the invariant surface condition (12)
the invariant solution is

u(x, t) =
e−

1
2
(x+λ)

(

4e
λ
2 βt+ F

(

x+t+λ√
κ+t

))

4(κ+ t)
. (32)

Substituting (32) to (22) for this particular case for f we arrive at the re-
duction

16e
1
2
λβκ(βκ+

1

α
)− 8(

1

2α
+ βκ)F (ζ) + e−

1
2
λF (ζ)2 − 2

α
ζF ′ +

1

α
F ′′ = 0,
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where ζ = x+t+λ√
κ+t

. Although the general solution of this equation cannot be
found in a closed form, it has the special solution

F (ζ) = 4e
1
2
λ

(

βκ− 3

2αζ2

)

.

Using it in combination with (32) we arrive to the invariant solution

u(x, t) =

(

β(t+ x+ λ)2 − 6
α

)

(t+ x+ λ)2
e−x/2.

Finally, using the equivalence transformations and the boundary condition
(4a) we arrive to the similarity solution for Eq. (1) with f(ζ) = α(ζ − β)2

u(x, t) = β − 24σ2

α
(

2λσ +
√
2(σ2 − 2r)t+ 2

√
2 log|x|

)2

with
H(t) = e

− σ√
2
λ+(r− 1

2
σ2)(t+A

√
κ+t)

and

R(t) = β − 12σ2

A2α(t+ κ) (σ2 − 2r)2

• Subcase 4.2.1.2. c3 = 0

For c3 = 0 the solution of (28) becomes

H(t) = Ae
1
2
(2r−σ2)t+λt (33)

where λ = (c1+2c2)√
2c1

σ1 and A 6= 0 the constant of integration. Using this

solution, conditions (16) and (24) we get the ODE

c1R
′ = 0. (34)

Hence
R(t) = B, (35)

where B is constant.

1
c1 6= 0 otherwise c2 must also be zero.
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Having found the functions H,R admitted by the symmetries we proceed
with the reduction of the Eq. (22). From the invariant surface condition (12)
the invariant solution is

u(x, t) = e−x/2F

(

x+ t
(

1−
√
2λ
)

1−
√
2λ

)

. (36)

Substituting (36) to (22) for this particular case for f we arrive to the re-
duction

(√
2λ− 1

)(

α
(

1−
√
2λ
)

(β − F (ζ))2 −
√
2λF ′

)

− F ′′ = 0,

where ζ =
x+t(1−

√
2λ)

1−
√
2λ

. Although this equation cannot be analytically solved

it has for λ = 02 the special solution

F (ζ) = β − 6α

αζ2
.

Using it in combination with (36) we arrive at the invariant solution

u(x, t) = e−x/2

(

β − 6

α(t+ x)2

)

.

Finally, using the equivalence transformations and the boundary condition
(4a) we obtain the similarity solution for Eq. (1) with f(ζ) = α(ζ − β)2

u(x, t) = β − 12σ2

α (t (σ2 − 2r) + 2 log|x|)2

with
H(t) = Ae

1
2
(2r−σ2)t

and

R(t) = β − 3σ2

α log2|A|

Case 4.2.2. f(ζ) = −γ
β
(α + βζ) (δ + log|α + βζ |) , β, γ 6= 0

2Actually for λ = 0 its general solution can be given but in implicit form containing
transcendental functions, hence not suitable for our analysis.
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Let the arbitrary element of the Lie algebra spanned by (25) and (26) be
X = c1X1+c2X2+c3X3+c4X4. Using (15) and the equivalence transformations
the first condition turns to the ODE:

2

(

c3 +
c4
γ
etγ
)

+ c1

(

1 +

√
2r

σ
− σ√

2
−

√
2H ′

σH

)

= 0, (37)

where c1 6= 0. The solution of (37) is

H(t) = Ae
1
2
(2r−σ2)t+ 1

2
σ(λt+µeγt), (38)

where µ = 2
√
2c4

γ2c1
, λ =

√
2(1 + 2 c3

c1
) and A the constant of integration. Using

the above solution, conditions (16) and (24) we get the ODE

etγ
(

κ+ 2γµ
(√

2σ + σγλt+ 2γ logA
))

(α + βR)

+ 2e2γtγ2µ2σ(α + βR)− 8βσR′ = 0. (39)

Its solution is

R(t) = −α

β
+ Be

(κ+γµ(2
√

2−2λ+2γλt+γµetγ)σ+4γ2µ logA)
8γσ

eγt (40)

where κ = 8 c2
σc1

and B the constant of integration.
Having found the functions H,R admitted by the symmetries we proceed

with the reduction of the Eq. (22). From the invariant surface condition (12)
the invariant solution is

u(x, t) = −α

β
e−x/2 + e

1
8

(

(2γ(
√

2)γ(t+x)−λ)µ+κσ)
γ

etγ−2(
√
2λ−2)t−γµ2e2tγ

)

F

(

t+ x− λ√
2
t− µ√

2
etγ
)

. (41)

Substituting (41) to (22) for this particular case for f we arrive at the re-
duction

F (ζ)
(

2γ(2δ + ζ)− 1 +
√
2λ+ 4γ(log β + logF (ζ))

)

+ 2
(√

2λ− 2
)

F ′

− 4F ′′ = 0,

where ζ = t+x− λ√
2
t− µ√

2
etγ . Although for this equation the general solutions

cannot be found in a closed form, two particular solutions can be obtained,
one when λ 6= 0 and one when λ = 0. Each of them is considered separately:
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• λ 6= 0
F (ζ) = ∆1e

− 1
2
ζ−logβ (42)

with ∆1 = e−δ. Using it in combination with (41) we arrive at the
invariant solution

u(x, t) =
e−

x
2

β

(

∆1e
− γ2µ2e2γt−eγt(2γ(

√
2+

√
2(t+x)γ−λ)µ+κσ)

8γ − α

)

.

Again, using the equivalence transformations and the boundary condi-
tion (4a) we arrive to the similarity solution for Eq. (1) with f(ζ) =
−γ

β
(α + βζ) (δ + log|α + βζ |)

u(x, t) =
∆1

β
e

eγt(σ(κσ+γµ(2
√

2−2λ−γµeγt+2γσt))−4rγ2µt)
8γσ |x| γµ2σ eγt − α

β

with
H(t) = Ae

1
2
(2r−σ2)t+ 1

2
σ(λt+µeγt)

and

R(t) =
∆1

β
e

eγt(σ(γµ(2
√

2−2λ+2γλt+γµeγt)+κσ)+4γ2µ logA)
8γσ − α

β
.

• λ = 0
F (ζ) = ∆2e

1
4
γζ2+Cζ (43)

where C is a constant and ∆2 = e
(γ(2−4δ)+(1+2C)2−4γ log β)

4γ . Using it in
combination with (41) we arrive to the invariant solution

u(x, t) = e−x/2

(

∆2e
1
8

(

2(t+x)(2+(t+x)γ+4C)+ eγt (κσ−4
√

2γµC)
γ

)

− α

β

)

.

Again, using the equivalence transformations and the boundary con-
dition (4a) we obtain the similarity solution for Eq. (1) with f(ζ) =
−γ

β
(α + βζ) (δ + log|α + βζ |)

u(x, t) =

∆2e
σ2(κσ−4

√
2γµC)etγ+γ(σ2−2r)(σ(γσt+2

√
2(1+2C))−2rγt)t+4γ2 log2|x|

8γσ2 ×
|x|γ(

1
2
− r

σ2 )t+ 1+2C√
2σ − α

β
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with
H(t) = Ae

1
2
(2r−σ2)t+ 1

2
σµeγt

and

R(t) = ∆2e
1
8

(

e2tγγµ2+
etγ(2

√
2γµ+κσ)
γ

+
4γ log2|A|

σ2

)

A
γµeγt+

√
2(1+2C)

2σ − α

β
.

5. Conclusion

In the present paper a generalization of the celebrated Black–Scholes–
Merton equation (2) was proposed and studied under the prism of the mod-
ern group analysis or symmetry method. To that end, we harnessed the
advantage that the equivalence transformations offer when studying classes
of differential equations, the knowledge of the best representative for this
class of equations. This fact substantially simplifies the task of classifying it
and obtaining its point symmetries.

Through this classification interesting cases, from the point of symme-
tries, arise. Nonlinear equations in general have few or no symmetries so
cases that augment the set of symmetries at disposal are like an oasis in the
desert. Quite commonly a dynamical system possessing an ample number
of symmetries is more probable to relate with a physical system or model
a more realistic process. Furthermore, in the case that we wish to study a
boundary problem, because of the fact that not all of the symmetries admit
the boundary and its condition, some of the symmetries will be excluded.
Hence the bigger the set of symmetries the bigger the probability that some
will survive the scrutiny of the boundary conditions and give an invariant
solution for the problem in its entirety.

For the equation studied here both sides of this fact were revealed. The
terminal condition was too strict and gave only trivial solutions. On the
other hand the boundary condition imposed for the barrier option allowed us
to obtain non trivial invariant solutions, undoubtedly, the arbitrary functions
involved in the boundary condition helped in that direction.

The insight provided through the above symmetry analysis might prove
practical to anyone looking for a more realistic economic model without de-
parting from the reasoning behind the Black–Scholes-Merton equation that
made it such a successful model on the first place. Moreover, when one
studies more exotic kinds of options that gain ground in the Asian markets
that in turn play an ever increasing role in the world market. Last but not
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least although the Black–Scholes-Merton model is a standard way to price
traditional options it encounters difficulties with exotic ones. The nonlinear
variants of the traditional model given here, along with the found analytical
solutions, might turn the table in that respect. We leave to the interested
reader the possible economical interpretation and use of the obtained results.

Acknowledgements

Y. Bozhkov would like to thank FAPESP and CNPq, Brasil, for partial fi-
nancial support. S. Dimas is grateful to FAPESP (Proc. #2011/05855-9) for
the financial support and IMECC-UNICAMP for their gracious hospitality.

References

[1] Black, F., Scholes, M.. The valuation of option contracts and a test of
market efficiency. J Finance 1972;27:399–417.

[2] Black, F., Scholes, M.. The pricing of options and corporate liabilities.
J Polit Econ 1973;81:637–659.

[3] Merton, R.C.. On the pricing of corporate debt: The risk structure of
interest rates. J Finance 1974;29:449–470.

[4] Ugur, O.. Introduction to computational finance. Imperial College
Press and World Scientific; 2008.

[5] O’Hara, J.. Lecture notes on exotic options. 2011. URL
http://courses.essex.ac.uk/cf/cf966/.

[6] Kwok, Y.K.. Mathematical Models of Financial Derivatives. Springer;
2nd ed.; 2008.

[7] O’Hara, J., Sophocleous, C., Leach, P.G.L.. Symmetry analysis of
a model for the exercise of a barrier option. Commun Nonlinear Sci
Numer Simul 2013;18(9):2367–2373. doi:10.1016/j.cnsns.2012.12.027.

[8] Olver, P.J.. Applications of Lie Groups to Differential Equations; vol.
107 of Graduate Texts in Mathematics. New York: Springer; 2nd ed.;
2000.

22



[9] Gazizov, R.K., Ibragimov, N.H.. Lie symmetry analysis of differential
equations in finance. Non Dyn 1998;17:387–407.

[10] Sinkala, O., Leach, P., O’Hara, J.. Invariance properties of a general
bond-pricing equation. J Diff Eq 2008;244:2820–2835.

[11] Dimas, S., Andriopoulos, K., Tsoubelis, D., Leach, P.G.L.. Complete
specification of some partial differential equations that arise in financial
mathematics. J Non-Linear Math Phys 2009;16, s-1:73–92.

[12] Bluman, G.W., Kumei, S.. Symmetries and differential equations. New
York: Springer; 1989.

[13] Ovsiannikov, L.. Group Analysis of Differential Equations. Academic
Press; 1st ed.; 1982. 432 pages.

[14] Ibragimov, N.H.. Equivalence groups and invariants of linear and non-
linear equations. Archives of ALGA 2009;4:41–100.

[15] Popovych, R.O., Eshraghi, H.. Admissible point transformations of
nonlinear Schrödinger equations. In: Ibragimov, N., Sophocleous, C.,
Damianou, P., editors. Proceedings of the 10th International Conference
in MOdern GRoup ANalysis. 2005, p. 167–174.

[16] Romano, V., Torrisi, M.. Application of weak equivalence transforma-
tions to a group analysis of a drift-diffusion model. J Phys A: Math Gen
1999;32:7953. doi:doi:10.1088/0305-4470/32/45/310.

[17] Cherniha, R., Serov, M., Rassokha, I.. Lie symmetries
and form-preserving transformations of reaction–diffusion–convection
equations. J Math Anal Appl 2008;342(2):1363–1379. doi:
10.1016/j.jmaa.2008.01.011.

[18] Cardoso-Bilho, E.D.S., Bilho, A., Popovych, R.O.. Enhanced prelim-
inary group classification of a class of generalized diffusion equations.
Commun Nonlinear Sci Numer Simul 2011;16(9):3622–3638.

[19] Ivanova, N.M., Popovych, R.O., Sophocleous, C.. Group analysis
of variable coefficient diffusion-convection equations. I. Enhanced group
classification. Lobachevskii J Math 2010;31(2):100–122.

23



[20] Vaneeva, O.O., Popovych, R.O., Sophocleous, C.. Enhanced group
analysis and exact solutions of variable coefficient semilinear diffusion
equations with a power source. Acta Appl Math 2009;106(1):1–46.

[21] Head, A.K.. Lie, a pc program for lie analysis of differential equations.
Comput Phys Comm 1993;77:241–248.

[22] Nucci, M.. Interactive reduce programs for calculating lie point, non-
classical, lie-backlund, and approximate symmetries of differential equa-
tions: manual and floppy disk. In: Ibragimov, N., editor. CRC Hand-
book of Lie Group Analysis of Differential Equations. Vol. III:New
Trends. CRC Press; 1996, p. 415–481.

[23] Nucci, M.. Interactive reduce programs for calculating classical, non-
classical and lie-backlund symmetries for differential equations. In:
Ames, W., Van der Houwen, P., editors. Computational and Applied
Mathematics II. Differential Equations. Elsevier; 1992, p. 345–350.

[24] Baumann, G.. Symmetry Analysis of Differential Equations with Math-
ematica. New York: Telos/Springer; 2000.

[25] Wolfram Research, I.. Mathematica Edition: Version 8.0. Champaign,
Illinois: Wolfram Reasearch, Inc.; 2010.

[26] Dimas, S.. Partial differential equations, algebraic computing and non-
linear systems. Ph.D. Thesis; University of Patras; Patras, Greece; 2008.

[27] Dimas, S., Tsoubelis, D.. SYM: A new symmetry-finding package
for Mathematica. In: Ibragimov, N., Sophocleous, C., Damianou, P.,
editors. The 10th International Conference in MOdern GRoup ANalysis.
Nicosia: University of Cyprus; 2005, p. 64–70.

[28] Dimas, S., Tsoubelis, D.. A new Mathematica-based program for
solving overdetermined systems of PDEs. In: Papegay, Y., editor. Ap-
plied Mathematica, Electronic Proceedings of the Eighth International
Mathematica Symposium (IMS’06). Avignon, France: France: INRIA;
2006,ISBN 2-7261-1289-7.

[29] Ibragimov, N.H.. Transformation groups applied to mathematical
physics. Translated from the Russian Mathematics and its Applications
(Soviet Series) 1985;.

24



[30] Hydon, P.E.. Symmetry Methods for Differential Equations. Cam-
bridge: Cambridge University Press; 1st ed.; 2000. Cambridge Texts in
Applied Mathematics.

[31] Stephani, H.. Differential Equations: Their Solution Using Symme-
tries. Cambridge: Cambridge University Press; 1st ed.; 1990. Editor:
MacCallum, Malcolm.

[32] Hydon, P.E.. How to construct the discrete symmetries of partial dif-
ferential equations. Euro J Appl Math 2000;11:515–527.

[33] Zhdanov, R.Z., Lahno, V.I.. Group classification of heat conductivity
equations with a nonlinear source. J Phys A: Math Gen 1999;32:7405–
7418.

25


