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Abstract

In a dissipative system the time to reach an attractor is1oftduenced by the pecu-
liarities of the model and in particular by the strength @f tlissipation. In particular, as a
dissipative model we consider the spin—orbit problem mhog the dynamics of a triaxial
satellite orbiting around a central planet and affectedidgl torques. The model is ruled
by the oblateness parameter of the satellite, the orbitargdcity, the dissipative param-
eter and the drift term. We devise a method which providediabte indication on the
transient time which is needed to reach an attractor in the-spbit model; the method is
based on an analytical result, precisely a suitable norarat £onstruction. This method
provides also information about the frequency of motion.aliant of such normal form
used to parametrize invariant attractors provides a spédoitnula for the drift parameter,
which in turn yields a constraint - which might be of interesastronomical problems -
between the oblateness of the satellite and its orbitalndciy.

Keywords. Spin—orbit problem, transient time, dissipative systettnaetor.

1 Introduction

We consider a nearly—integrable dissipative system daagrthe motion of a non-rigid satel-
lite under the gravitational influence of a planet. The motd the satellite is assumed to be
Keplerian; the spin—axis is perpendicular to the orbit pland it coincides with the axis whose
moment of inertia is maximum. The non-rigidity of the satelinduces a tidal torque provok-
ing a dissipation of the mechanical energy. The dissipatepends upon a dissipative parame-
ter and a drift term. If the dissipation were absent, theesydbecomes nearly—integrable with
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the perturbing parameter representing the equatoriakesidas of the satellite. The overall
model depends also on the orbital eccentricity of the Kegoheellipse. This problem is often
known as thalissipative spin—orbit modehd it has been extensively studied in the literature
(see, e.g., [5], [7], [22]).

The spin—orbit model exhibits different kinds of attrastoe.g. periodic, quasi—periodic
and strange attractors (compare with [1], [2], [9], [15]k iBoften happens in dissipative sys-
tem, the dynamics evolves in such a way that the attract@aished after an initial transient
regime of motion. The prediction of the transient time tocteshe attractor is often quite
difficult (see, e.qg., [18], [19]), but it is obviously of pital importance to test the reliability
of the result (think, e.g., to the problem of deciding abd& tonvergence of the Lyapunov
exponents). The first goal of this paper is to give a recipecviailows to decide the length
of the transient time, namely the time needed to go over #resient regime and to settle the
system into its typical behavior. Our study is based on thesttaction of a suitable normal
form for dissipative vector fields (see [8], compare alsdii3], [16], [20], [24]) that gener-
alizes Hamiltonian normal forms that are usually impleradraround elliptic equilibria (see
[14]). We compute the frequency in the normalized variables use it - as well as its back—
transformation to the original variables - for a comparisotih a numerical integration of the
equations of motion. Several experiments are performetieasttength of the dissipation is
varied. It should be kept in mind that in dissipative systems has to tune the drift parameter
in order to get specific attractors, since it does not sufbamadify the initial conditions like
in the conservative case ([3], [6]). A different formulatiof the normal form, precisely a suit-
able parametric representation of invariant attractdi®wa to obtain an explicit form for the
drift on the attractor. Taking advantage of the physicalrdidin of the drift term, precisely
as a function of the eccentricity ([23], see also [11]), oma derive interesting conclusions
on a link between the oblateness parameter and the ecagrassociated to a given invariant
attractor. We believe that this constraint might be usefalancrete astronomical applications.

This paper is organized as follows. In Section 2 we presen¢tfuations of motion of the
spin—orbit problem in the conservative and dissipativesa¥he construction of the normal
form is developed in Section 3, while the parametric reprg®on of invariant attractors is
provided in Section 4. The investigation of the transiemitiand the analysis of the drift term
are performed in Section 5. Some conclusions are drawn inoBeg:

2 The spin—orbit problem with tidal torque

In this Section we describe the spin—orbit model, providimg equation of motion in the
conservative case (Section 2.1) and under the effect ohatbdjue, due to the internal non—
rigidity of the satellite (Section 2.2).

2.1 The conservative spin—orbit problem

The spin—orbit model describes the dynamics of a rigid boiti wmassm, sayS, that we
assume to have a triaxial structure with principal momehisestia /; < I, < I3. The satellite



S moves under the gravitational effect of a perturbing b@&dwith mass)M. Moreover, we
make the following assumptions:

i) the bodysS orbits on a Keplerian ellipse arouf®| we denote by: ande the correspond-
ing semimajor axis and eccentricity;

i1) the rotation axis of5 is assumed to coincide with the direction of the largestqapial
axis of inertia;

i1i) the spin—axis is assumed to be aligned with the orbit normal;

iv) all other perturbations, including dissipative effectg maeglected.

In order to simplify the notation, we normalize the units ofasure; precisely, the mean
motion %—ﬁ4 (whereg is the gravitational constant) is normalized to one. An inbgat role is
played by the following quantity, which is named tbguatorial ellipticity:

_ 3L,
=ihoh

To describe the rotation & with respect tg?, we introduce the anglespanned by the largest

physical axis (that we assume to lie in the orbital planehhe perihelion line (see Figure 1).
The Hamiltonian function describing the spin—orbit modetier the assumption$-iv)

is (see [5])

2

H(y, x,t) = % _ %(%)3(308(2x —2f), 1)

wherey is the momentum conjugated i r is the orbital radius and is the true anomaly.
Hamilton’s equations associated to (1) are given by

= —e(2Ysin(2z — 2f)
T
o=y,
which are equivalent to the second—order differential #qna

a
r

i+e(=)*sin(2r —2f) = 0. (2)

Remark1 a) The parameter = g% plays the role of the perturbing parameter: the
Hamiltonian (1) is integrable whenever = 0, which corresponds to the equatorial
symmetryl; = I,. For almost spherical bodies, like the Moon or Mercury, tiaéue of

¢ is of the order ofl0—%.

b) Itis important to stress thdil) is a non—autonomous Hamiltonian function, due to the
fact thatr and f are Keplerian functions of the time. Introducing the ecderanomaly
u, defined in terms of the mean anoméJywhich is a linear function of time) through



Figure 1: The geometry of the spin—orbit problem: orbitaliua r, semi-major axis:, true
anomalyf, rotation angler.

the well-known Kepler's equatiofy = u — esinu, the orbital radius and the true
anomaly can be determined by means of the following Keplerxpressions:

r = a(l—ecosu)
1

f = Qarctan( +etang>. 3)
1—e 2

c) The Hamiltoniar(1) depends parametrically on the orbital eccentricitthroughr and
f provided by(3). We remark that in the case of circular orbits, equat{@) becomes
integrable, since is constant and’ coincides with time (up to a shift).

Expanding- andf given in (3) in power series @f, the Fourier expansion of equation (2)
can be written as

+00
iPte Y W(%,e) sin(2z —mt) = 0, (4)

m#0,m=—00

where we introduced the coefficierits( 3, e), decaying as powers ef(see, e.g., [5]). Using
a compact notation, we write (4) as

Z+eVy(e,t) =0, (5)

whereV = V(z,t) is a time—dependent periodic function (the subscrigenotes derivative
with respect to the argument). In particular, we consideigohometric function by retaining
in (5) just the most important harmonics (see [5]). Pregidateping the same notatidnfor
the trigonometric approximation, we define

1 5 13
V(z,t) = — [(5 - 162 + @64) cos(2z — 2t)
7123, 17, 115,
+(4e 33 ¢ ) cos(2x — 3t) + ( ¢ T3¢ )cos(2x — 4t)| . (6)



We now introduce the definition of @: ¢ spin—orbit resonander p,q € Z with ¢ > 0
as a periodic solution of (4), saye R — = = z(t) € R, such that it satisfies

x(t + 2mq) = x(t) + 27p forany t € R.

The above expression implies that the ratio between thegbefirevolution and the period of
rotation is equal tg/q. It is widely known that the Moon, alike most of the evolvetediites of
the Solar system, move in a 1:1 spin—orbit resonance (ysted#rred to as theynchronous
resonance); within the Solar system only Mercury moves im@-synchronous resonance
([10], [12]), precisely in a 3:2 spin—orbit resonahcsince twice the orbital period is equal to
thrice the rotational period within an error of the orden6f* (see [5]).

2.2 The dissipative spin—orbit problem

Due to assumptiofv) of Section 2.1, dissipative effects have been discardedrgpalticular
we neglected the effect of the non—rigidity of the satellltieis contribution, which turns out to
be the most relevant dissipative effect, induces a tidgue[21], [23]), which can be written
as a functiori/ depending linearly on the angular velocity

Tlit) = —K, [L(e, 1)i — N(e,t)] . @)
In the above expression we have introduced the functioasd NV as
ab ab .
L(e,t)zﬁ, N(e,t)zﬁf

(recall thatr and f are known functions of the time). Moreover, the coefficiént is the
dissipative constamiyhose explicit expression is given by
ko Re s M
Ky=3n —(=2)3—
i =3n gQ( =)

wheren denotes the mean motion (that we have normalized to éned,the so—called.ove
number(see [17]), the constaitis defined through; = ¢mR? with R, denoting the equa-
torial radius,( is called thequality factor(providing the frequency of oscillation with respect
to the rate of dissipation of energy, [17]). In order to conepthe size of the dissipative effect
with that of the conservative part, we notice that astromainineasurements provide a value
for K, of the order ofl0~® for the Moon or Mercury.

In the following we reduce the tidal torque by considering fa[11]) its average over
one orbital period. In particular, taking the average ofwith respect to time one obtains (see
[23])

T=T() = —Kq|L(e)i — N(e)] (8)

IThe astronomical consequence of a 1:1 resonance is thaittkite always points the same face to the host
planet. Mercury’s 3:2 spin—orbit resonance means thapstiexactly, during two orbital revolutions around the
Sun, Mercury makes three rotations about its spin—axis.



with

_ 3
= - 2 <4
L(e) T (1+3e +8e)
. 1 15 45 5}
N(€) = m (1+?62+§64+ Eeﬁ) . (9)

In conclusion, the following differential equation des®a$ the spin—orbit problem under the
dissipative effect due to the tidal torque:

3 _
# +5<%> sin(2z — 2f) = —Kq| L(e)i — N(e)] . (10)
As in (5), we use a compact notation re-writing (10) as
i+ eVala,t) = —p(@ —n), (11)

where we have introducedandy as follows:. = K,L(e), n = N(e)/L(e). As we can see,
1 depends on the dissipative constant (as well as)pand therefore we call itlissipative
parametemvhile 7 is just a function of the eccentricity, and we call it ttheft parameter

Remark 2 The tidal torque i(11)vanishes for: = n; in view of(8), the tidal torque vanishes
as far as

N(e) 1+ 1262 4 Bet 4 268 (12)
Lie)  (1—e2)3(1+43e2+ 3et)

Whene = 0 equation(12) implies that: = 1, which corresponds to the synchronous reso-
nance. For the actual Mercury’s eccentricity amounting te 0.2056, (12) provides the value

# = 1.256, while for future use we notice that= 0.285 corresponds ta: = 1.5, namely the
3:2 resonance.

T

3 A normal form construction

Our next task is to develop a normal form which transformg (&tb a system of equations
which is normalized up to a given order (see [8]). This allaygsto compute a normalized
frequency, which will provide useful information on the @mical behavior of the model
described by (11).

Let us write (11) as the first—order differential system

=y
= —eValz,t) —ply —n) - (13)

Let us denote the frequency vector of motion associatedetotie—dimensional, time depen-
dent equation (13) as(y) = (wo(y), 1). Assume that the vector field (13) is defined on a set



A x T?, whereA C Ris an open set. Let, € A be an initial condition such that the frequency
wo = wo(yo) satisfies the followingion—resonance condition:

lworm +n| >0 for any (m,n) € Z*, n#0.

We look for a transformation of coordinates defined up to table orderN € Z, in ¢, i, say
En: A x T? — R x T?, such that the new variables g X') with

(Y, X, t) =En(y,z,t), YeR, (X,t)eT. (14)
In the transformed set of coordinates we require that thatemns become:

):( = Q(Y:e) + Onsale, p)
Y = _M(Y o n) + ON+1(‘€7 M) ) (15)

whereOx .4 (e, 1) denotes a function whose Taylor series expansios, in contains only
monomialss’ ™ with j +m > N + 1.

According to [8], the transformation (14) is obtained as¢beposition of two transfor-
mations. The first one brings the original varialflesy, ¢) into intermediate variablgs:, 7, t),
so to remove terms depending grthen, from(z, ¢, t) we implement another change of vari-
ables to( X, Y, t) in such a way to obtain (15).

The normal form (15) is particularly useful, since neglegt) v .1 (¢, ) one can integrate
the second equation as
Y(t)=n+ (Yo —n) et (16)

where we denote b{X, Y;) the initial conditions at time = ¢, in the normal form variables.
The expression (16) shows that, in the approximation obthireglecting higher order terms,
the solution tends td” = 7 as time tends to infinity. Inserting (16) into the first of (8¢
obtain the dependence &F on time, whose integration providés = X (t) with X (0) = X.
Indeed the solution (16) provides tmaturalattractor, which can be found in the original
coordinates by integrating equations (13) witk: 0.

The local behavior near quasi—periodic attractors of sors&mhtive systems, precisely
conformally symplectisystem$, has been studied in [4]. The main result of [4] is that there
exists a transformation of coordinates such that the tinoduéen becomes a rotation in the
angles and a contraction in the actions. The normal form iEl6pnsistent with such result:
indeed, neglecting higher order terms, the expressionghiéys that the normalized action
contracts exponentially in the dissipative parameter|enthie first of (15) shows that the lim-
iting behavior of the normalized angle is a linear rotatigthvirequency2(n).

For details on the normal form algorithm used to obtain (18)refer to [8]; here we just
state the final result. At the normalization ord€ér= 3 the normalized frequencf(Y;¢) in

2A flow f; : M — M defined on a symplectic manifolttt is conformally symplecticiwhen f;Q = e#tQ)
for somey real with(2 the symplectic form. Notice that (13) is a conformally syewiic flow according to such
definition (see [3]).



(15) turns out to be

g2 1, 5 98

1, 63 3444 578
61° <‘<Y “1P @Y -3 (¥ - 2)3) i
1 4 ( 31280 390 45387
768" ((Y— EREVES I (3—2Y)3) } ’
where we expanded the coefficients up to the 6th order in tbenédcity. The expansion of
the drifty = N(e)/L(e) (with N, L as in (9)) to the same order is given by:

et 173€5
77=1+6e2+%+ 86. (18)

Equations (15) together with (17), (18) will be used in Sat.2 for a dynamical investigation
based on a normal form approach; precisely, we will backfiaam the frequency? in the
original variables and compare the result with a numerit&igration.

4 A parametric representation of invariant attractors

With reference to equation (11), we introduce in this Sectigparametric representation of an
invariant KAM attractor with Diophantine frequency; asstwell known ([3], [6]), the equa-
tions for the embedding can be solved under suitable cobifigtconditions, which provide a
relation between the frequency and the drift. In partigidach compatibility conditions allow
us to provide an explicit computation of the drift that wefpem up to the 4-th order in the
series development in the perturbing parameter. Thesé#sesa used in Section 5.3 in order
to investigate in some specific cases the relation betweedrift and the frequency, as well
as the dependence on the other parameters (most notablylgteress and the eccentricity).
Let us recall that the frequency vector of motion associabe(ll) is written asv =

(wo, 1). We say that satisfies the Diophantine condition, whenever the inetyuali

lwom +n|™t < Cm|  forall (m,n) €Z®>, m#0 (19)

is satisfied for some positive real constahtNext we provide the following definition of a
KAM attractorfor (11).

Definition 3 A KAM attractor for(11) with rotation numbetw = (wy, 1) satisfying(19)is a
two—dimensional invariant surface, described paramathcby

r=0+udt), (0t €T, (20)

where the flow in the parametric coordinate is linear, nantely w, and whereu = (6, t)
is a suitable analytic, periodic function, such that

1 +ug(6,t) #0 forall (0,t) € T?. (21)

3The requirement (21) guarantees that (20) is a diffeomerphi




Let D be the partial derivative operator defined as
0 8
06 81& '

Inserting (20) in (11) and using the definition (22), it isdia seen that the function must
satisfy the differential equation

D= Wo—== (22)

2uw¢)+guxe+4matyo::—M(M,+Duw¢)—n). (23)

Notice that the inversion of the operatb? provokes the appearance of the well-known prob-
lem of the small divisors ([5]). An approximate solution @3 can be found as follows. Let
us expand: andn in Taylor series ot as

0,0) => w(0,0)",  n=> me". (24)
k=1 k=0
Inserting (24) in (23) and equating same orders,iane obtains the iterative equations
D2U1 (6, t) + ,uDul(H, t) = —‘/;(6, t) + pum
DQUQ(Q, t) + ,LLDUQ(@, t) = —V;m(ﬁ, t) Ul(e, t) + U2
Dzuk(e, t) + LLDuk(@, t) = Sk(ﬁ, t) + ung , (25)

where at the ordek the functionsS;, is known and it depends on the derivatives/oas well as
onus, ..., u,_1. At each order one determines firgtso that the right hand sides of (25) have
zero average. After having determingd the k—th equation in (25) can be used to fingas
the solution of the following equation:

D?uy(0,) + pDug(0, 1) = Sk(6,1) (26)

where§k has zero average (in fa&k = S, — S;, where the bar denotes the average @ver
andt). To solve (26), let us expand, in Fourier series as

uk 6) t Z A(k z (mé+nt) ’

(m,n)€Z?

wherei) denote the (unknown) Fourier coefficientsQf Inserting the Fourier series in (26)
and expanding also the left hand side in Fourier series, wagrob

Z |:_ (wom + n)2 + iu(wom + n)] Agm)m i(mb4nt) _ Z S(k i(mf+nt) ’ (27)

(m,n)€Z? (m,n)61<k)

WhereI denotes the set of the Fourier indexesSpf Equation (27) allows to determing,
as

G(k)
Shan 6i(m6+nt) ] (28)

0,t) =
ur(0,1) > —(wom +n)2 + ip(wem + n)
(m,n)GIék)




Notice that the assumption (19) ar guarantees thai, is well defined (no zero divisors
appear in (28)). An alternative (weaker) assumption woddHat |wom + n| > 0 for all
(m,n) € Iék).

Due to the fact that the functiovi is assumed to be a trigonometric function (see (6)),
alsoS;, is trigonometric and it is convenient to write it as

Sk(6,t) = Z [S(k <) cos(mf + nt) + SE) sin(mé + nt)

(k)
(m,n)€ZLy

for suitable real coefficients'’:” and S, Then in place of (26) we can write the solution
in a real form which is suitable for numerical computatiosas a

S(k’C)

- = mZEI [ (wom + 2)[(wom + )% + 2] <(w0m + n) cos(mf + nt) — psin(mb + nt))

S(kvs)

mn

(@orn + ) (wom + n)? + 42)

((wom + n) sin(mé + nt) + pcos(mb + nt))} .

In conclusion, the algorithm to compute the drift consistsalving iteratively equations (25)
to obtain the functions.,; at each order, by imposing that the right hand sides havwe zer
average, we obtain the termg of the series expansion (24) of the drift.

We provide here the, expanded up to the third order (the fourth order can be obdain
through a reasonable computer time, but the expressiomiextoo long to be displayed
here):

o = Wo
m = n3=0
a? b?
BT W) (AW —1)?) (2w—3) (2 + (3= 2w)?)
2
C
_ 29
(2w —1) (12 +4(1 — 2w)?) (29)
with
5e? 13e* 76 123¢3 1
L Eh— = ——¢? (115e* — 51) .
‘ > 16 R TR L G D

The above solution fon defines the drift parameter in (24) up to finite order; thisrezpion
will be used in Section 5.3 to obtain in particular a consiréetween the parameters of the
model (precisely, the oblateness parameter and the emigmir

5 Transient time and attractor’s drift

We devote this Section to the discussion of some dynamiealifes of the attractors associ-
ated to the model described by equation (11). In particwarprovide a numerical method

10



(see Section 5.1) which allows to determine the time needlegdich an attractor. Indeed, the
computation of such transient time is a critical issue indtugly of dissipative systems. Next,
we make a comparison between the results obtained throgghaimal form computation
of Section 3 as well as those provided by the parametrizatiddection 4 with the results
obtained from direct numerical simulations (see Secti@). A link between the oblateness
parameter and the eccentricity is provided in Section 58@msequence of the construction
of the drift term through the parametric representationeaftion 4.

5.1 A numerical investigation of the transient time

The numerical determination of the frequency of an attrastosually a cumbersome problem,
since the time necessary to reach an attractor is oftengdyramfluenced by the strength of
the dissipation. With reference to (11),/fis small, then one typically needs to wait for a
longer time to be on the attractor, while farlarge, the transient time is shorter. There is an
intrinsic difficulty to measure the time to reach the attoaeind of course this might affect also
the computation of the frequency. In principle, Lyapunop@&@xents can be used to compute
the transient time by evaluating the moment at which theghe@nvergence. It should be
remarked that Lyapunov exponents provide more indicatmnghe dynamics, precisely on
the rate growth of the phase space volume. Notwithstandiaget remarks, we present an
alternative numerical recipe which provides informationtbe attractor’s frequency. It turns
out, that the computer execution time becomes longer wipeet to the computation based
on our method (about a factor 2).

First, we integrate the original equations of motion (13hwWi given in (6) in the param-
eter space x ¢ x e for fixed iz (e.g.. = 1073, 107, 1075), on a finite grid (e.g30 x 30 values)
in given intervals of, e (.9.0 < ¢ < 1073, 0 < e < 0.3). The value of the drift has been
computed as a function of the eccentricityras= N(e)/L(e). We use different integration
timesty = 2«7 with T' = 100, 200, 400, . . ., 12800 (the last value is taken in order to obtain
results within a reasonable computer time).

Our choice of the parameters is made to cover the regimeex&sit for physical applica-
tions. The upper bound 0.3 on the eccentricity encompasgbdiie eccentricity of Mercury,
about equal to 0.2, which is the largest body in a spin—odsibnance, and it is bigger than
the value 0.285 which corresponds to the 3:2 resonance (@ewiR 2). Moreover, typical
values fore are10~* for the Moon or Mercuryl10~2 or even larger for the irregular satellites
of our solar system. Using ~ 0.3, e ~ u ~ 1073, a third order normal form gives an error,
e.g. in (17), of about0~'2, which is well below the numerical error that we introducedir
numerical studies.

Let {x\, yx} be an orbit computed at times multiple f, namelyx, = x(27k), y, =
y(2rk) with k£ = 1,...,T. We are interested in the limiting behavior of the frequengy=
w (yx) ask approached". Let us focus on the value of the frequency when approactieag t
maximum timeT’, sayk = 9/107), ..., T. From the expression

T

10
Wnum = ? Z Wk
k=9/10T

11
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Figure 2: The valuev,,,, in the spacele,¢) for 4 = 107° and integration time§’ =
200, 800, 3200, 12800. The colors show the values of the frequency as given in themo
bar.
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Figure 3: The valuev,,,, in the spacge, <) for p = 10~* and different integration times
T = 200, 800, 3200, 12800. The colors show the values of the frequency as given in thawo
bar.
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Figure 4: The valuev,.,, in the spacege,¢) for 4 = 1073 and different integration times
T = 200, 800, 3200, 12800. The colors show the values of the frequency as given in therao
bar.
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we are able to estimate the mean valugwf} in the proximity of 7", taking the first part of
the orbit as transient. Next step consists in finding a limeadel of the formw, = w,um + ok
through{wy }: the parameter quantifies the slope ifw; }. We claim thatv,,,,,,, is close to the
final frequency on the attractordf — 0. We provide now an example and we add a discussion
ono at the end of this Section.

We implement this procedure in a specific case, which istithied in Figure 2. We start
with a sample where,,.,,,, does not coincide with the final frequency on the attractofatt,
for 4 = 107° no regular pattern fow,,..,,, can be seen in Figure 2. The dynamics takes place
in an intermediate regime, whets,,,,,, still suffers huge variations in time. In this example,
the slopeo is still of the order ofl0~=2 for 7' = 100 and 10=° for 7" = 12800. After an
integration time long enough, @t = 12800 we start observing some structures, singg, =
1 accumulates for smad, while w,,..,, = 1.5 is obtained for larger values of the eccentricity.
This behavior would be more evident for longer integratiarets and it will occur for a larger
value of the dissipative parameter (see Figures 3 and 4)cdhelusion is that for this set of
parameters a longer time is necessary to obtain that thendgadas reached the attractor.
If we increase the dissipative parameter, we obtain bettrlts on the above time scales. In
fact, for . = 10~* we find (see Figures 3 and 5) thatuns from10~2 for 7" = 100 to 10~6
for T' = 12800. Therefore, increasing by one order of magnitude the slopalecreases by
one order afl’ = 12800. For integration times long enough, we also clearly seewlaget a
frequencyw,,.., Wwhich is almost constant for a fixed value of the eccentriafty varies.

When we increase further the strength of the dissipationseee that the attractor is
reached on a shorter time scale. Indeed, for= 102 the slopes ranges from10~3 for
T = 100 to 10~7 for T = 12800. Again we see a very clear separationugf,,, at fixed
values ofe, and that the dependencywf,,, on«< is small (see Figure 4).

It is possible to quantify the level of accuracy of our nuroarapproach by investigating
the size ofs and its dependency on the integration time. In Figure 5 weigeothe absolute
value ofo versus the integration timg that we increased up t6 = 102400 to be able to see
also the limiting behaviour for all values of the parametérsludingy = 10~°. We clearly
see that the larger the value obr the longer the integration timé&§ the smaller the value of
o. Such behavior of provides a strong indication on the transient time to rebhehattractor.

5.2 Using the normal form approach

We proceed to compute the normalized frequency, that we btairoby implementing the
normal form described in Section 3. Precisely, we use théisolfor the normalized frequency
(17), where (with a little abuse) we replageby its limiting valueY,, = 7. The drifty is
expanded up to finite order in the eccentricity as in (18)sTkhelds a good approximation
of the normalized frequency that we c8ll,, = Qq,,(c, ¢) . The analytical result will be
compared with the frequenay,...,, that we obtained from the numerical simulations described
in Section 5.1.

In Figure 6 (left) we show the frequen¢y,,, obtained from the normal form equation
in the plange, e). By comparing Figure 6 with Figures 2— 4, one can see thatrdtpiéncies

15



0.001

S
N
N~
~——
~

.....
.........

......
s, .
. S

~, 3
Sel
'~y

10°5¢

lol

1077k

==
-

107°¢ ‘ ‘ ‘ L ‘ ‘
100 500 1000 500C 1x10* 5x10* 1x10°

T

Figure 5: The maximal absolute value @iversus the integration timg for different values

of the dissipative parameter The largeru or the longer the integration timg, the smaller

the linear drift|o| (we increased” for these specific cases to reach the error of the numerical
integration scheme, that also explains the fluctuationsabse to10~%).

1.

0.8

0.6 1.5
5 1.4
% 13

04 12

1.1

0.2

0. 0.

000 005 000 015 020 025 030 000 005 010 015 020 025 030

€ €

Figure 6: FrequencieS,,, andwq,,(y(Y, X«;&, 1)) in the parameter spage, <) obtained
from the normal form approach: normalized frequency (Jdfgck-transformed frequency
(right) with ;o = 1073, The figures have to be compared with the panels of Figure 4.

16



calculated using the normal form coordinates are in goodeagent with the frequencies that
we obtain from the numerical approach. We also report thguiracy that we calculated in
the normalized variables in terms of the original variablesthis end we need to compute
the inverse of the transformatic®w (v, z,t; ¢, 1) in (14), say=y' (Y, X, t; ¢, i), replace for
X, Y the limits X, Y., and calculate the average over time to @g},(y (Yoo, Xoo: €, 11)).
The results concerning the normalized frequency in thaermlyariables are given in Figure 6
(right); the values of Figure 6 (right) and those of Figurda&i panel) perfectly agree in the
non-resonant regime, while close to the main resonancesspmnding to the white empty
zones (precisely, 1:1, 5:4, 3:2 resonances, corresponditige outermost left zone close to
e = 0, the tongue originating at = 0.2 and the right white zone at about= 0.29), the non-
resonant normal form together with the transformation cdbe used, due to the accumulation
of zero divisors in the denominators of the analytic expamsi Note that in Figure 6 (left) the
plot is independent of, sinceQ,,, = Q,,(c, €), see (17), turns out to be independenfof
while there is a parametric dependency.gf, on ;. due to the fact that we used the inverse
transformatiore ' (X, Y, t; ¢, ).

5.3 A constraint resulting from the parametrization

In the previous sections we concentrated on the computafitime frequency of motion for
given values of the parameters, including the drift par@métevertheless, in many physical
situations we might be interested to focus on a specific #rqy; however, fixing the fre-
guency means that we need to find the drift parameter in tefisisob frequency as well as
e. This can be done in the case of non-resonant frequencieagigmenting the parametric
representation of invariant tori described in Section dekd, in order to be able to solve the
equations (25) we must compute the temp®f the series expansion gfin (24) as given by
the expressions (29), say= n(w, e, , ). Normally the procedure is to fix ¢ and to find a
relation between the driff and the frequency. Given thatis a function of the eccentricity,
this procedure amounts to producing a relation betweendbtengricity and the frequency for
fixed values ofy, . However, we can decide to fix the frequengynd to let= vary in order
to obtain an expression between the eccentricand the shape parameter

More precisely, the quantity, itself, is given as a function of the eccentricityhrough
n = N(e)/L(e), as we can notice from the original equation of motion (1 herEfore, we are
led to introduce the function

Clw,e,e,p) = N(e)/L(e) —n(w, e, e, ) (30)

and we look for contour plots daf'(w, e, ¢, i) in the space x ¢ for fixed values otv, u. To
avoid zero divisor evaluations we replacewith irrational frequenciess, obtained through
the formula
o=Pe 1
q k+v
wherep/q denotes the exact resonant valyes (/5 — 1)/2, andk = 50, 60, 70, 80, 90, 100.
We show the results for the : 1,3 : 2,4 : 3, and1 : 1 resonance in Figure 7. For the
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1:1 resonance we can compute the approximations only fraweafmamelyw, = 1 + ﬁy),
since the rotational history of the satellites allows tdesthat celestial bodies rotated fast in
the past and that they slowed down due to the dissipatiomteatty ending their evolution
in a 1:1 resonance, which corresponds to circular orbithéncse of vanishing tidal torque
(see Remark 2). In Figure 7 the dissipative parameter is fixed= 10~3 ande versuse is
shown. Since the eccentricity is related to the drift pat@mthroughn = N(e)/L(e), the
above picture is essentially equivalent to showing theupking versus the drift parameter.

As Figure 7 shows, using equation (30), which depends oraimpatation of the parametriza-
tion of the invariant attractor, we are able to relate thgosh@arameter of the rotating body
with the orbital parametet, thus providing an interesting information from the astnorcal
point of view. On the other hand, though typically periodibits are used to approximate in-
variant tori (just taking the rational approximants to thrational - Diophantine - frequency),
Figure 7 provides an indication of how the invariant KAM tapproximate the main reso-
nancesZ : 1,3 : 2,4 : 3,1 : 1). In Figure 7 we observe the accumulation of straight lines,
which are parallel to the dashed lines that indicate thetex@sitions of thep/q = 4 : 3 and
p/q = 2 : 1resonances. Though not being possible to distinguish therate lines graphically
in Figure 7, we confirm that the curves defined®y-= 0 tend to the dashed curves defined by
n(e) = p/q for largerk, and arbitrary:. On the contrary, for thé : 1 and3 : 2 resonances we
observe that the curves start to converge to the dashedt¢inemalle, while they bend foe
larger. We believe that a higher order expansion should bgated for larger values of the
perturbing parameters, since getting closer to the res@msathe effect of the small divisors
becomes amplified, thus leading to the divergence of thesdgfining the parametrization.

Thel : 1 resonance is very common for several natural satellitelkarsblar system. A
future study of thd : 1 resonance may provide further information. Beside thatthirk that
our relation provides an interesting information concegninow the oblateness parameter is
linked to the eccentricity in the proximity of the differekinds of resonances.

6 Conclusions

We have investigated some dynamical features of the dissmpin—orbit problem, modeling
the dynamics of a non—rigid satellite orbiting on a Kepler&@lipse around a central planet.
In particular we have focused on the transient time to reachtactor; this transient time
is often decided on the basis of numerical experimentsgiatang the vector field on longer
time scales and looking for the convergence of some questitioviding an indication that
the attractor is reached. Here we have proposed a methodhughlmased on the analytical
development of a dissipative normal form. This construcéthows to compare the normalized
frequency with that obtained integrating the original etres on longer time scales. The
normal form, suitably developed to parametrize invaridtraators, provides also an explicit
expression of the drift term for a specific attractor with éiXeequency. This allows to give
a constraint between the oblateness parameter and thargdtgmwhich may be particularly
relevant in astronomical applications.
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