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a b s t r a c t
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Lef-

fler function were found. This paper follows those expressions to design an efficient algo-
rithm for the approximate calculation of expressions usual in fractional-order control
systems. The numerical experiments demonstrate the superior efficiency of the proposed
method.
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1. Introduction

During the last decades Fractional Calculus (FC) became a major area of research and development and we can mention
its application in many scientific areas ranging from mathematics and physics, up to biology, engineering, and earth sciences
[18,22,14,19,6,9,21,11,2,1,13,7]. The Mittag-Leffler function (MLf) plays an important role in FC, being often called by schol-
ars the ‘‘queen’’ of the FC functions. Nine decades after its first formulation by the Swedish Mathematician [3] Magnus Gösta
Mittag-Leffler (1846–1927), the MLf became a relevant topic, not only from the pure mathematical point of view, but also
from the perspective of its applications.

Bearing these ideas in mind, this short communication addresses the application of the MLf and real-time calculation in
control systems of the expression eaðtÞ ¼ Eað�taÞwhere a denotes the fractional order, t stands for time and Ea represents the
one parameter MLf to be recalled in the sequel.

The paper is organized as follows. Section 2 introduces the fundamental aspects of EaðtÞ and eaðtÞ. Section 3 develops the
approximation for the numerical calculation of eaðtÞ and analyses its computational load. Finally, Section 4 outlines the main
conclusions.

2. Fundamental aspects

2.1. The Mittag-Leffler function

The MLf, defined as
EaðtÞ ¼
Xþ1

n¼0

tan

Cðanþ 1Þ ð1Þ
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is a special function, first studied and discussed in [16,15,17], which generalises the standard exponential et ¼
Pþ1

n¼0
tn

Cðnþ1Þ. It
can in its turn be generalised [25,26] as
Ea;bðtÞ ¼
Xþ1

n¼0

tan

Cðanþ bÞ ð2Þ
which is the two-parameter MLf. Its main properties and applications can be found in [5] and in chapter 18 of [4]; it is of
great importance in Fractional Calculus (and thus in the study of dynamic systems of fractional order) [24]. It also appears
when studying related fields such as Lévy flights, random walks, viscoelasticity, or superdiffusive transport. Further gener-
alisations of the MLf to three and more parameters (up to ten) have also been used [8], but are not needed in what follows.

The computation of the MLf is not trivial since it poses numerical problems that may compromise the result; several strat-
egies are known to deal with such numerical problems whenever they appear [10]. One of them is the use of asymptotic
approximations.

2.2. The Mittag-Leffler function in control systems

Consider function
eaðtÞ ¼ Eað�taÞ ¼ Ea;1ð�taÞ ¼
Xþ1

n¼0

ð�1Þn tan

Cðanþ 1Þ ; t > 0; 0 < a < 1 ð3Þ
which is a particular case of the MLf often appearing in control applications.
In fact, for the elementary fractional-order control system represented in Fig. 1, where s represents the Laplace variable,

when the reference input is a unit step r ¼ 1; t P 0 the output results cðtÞ ¼ eaðtÞ ¼ Eað�taÞ.

2.3. Asymptotic approximations of the Mittag-Leffler function

Function eaðtÞ is often computed using the two following approximations:
eaðtÞ � e0
aðtÞ ¼ e�

ta
Cð1þaÞ; t � 0 ð4Þ

eaðtÞ � e1a ðtÞ ¼
ta

Cð1� aÞ ; t � 0 ð5Þ
Recently the two following alternative rational approximations were proposed [12] and proved [23]:
eaðtÞ � faðtÞ ¼
1

1þ ta
Cð1þaÞ

; t � 0 ð6Þ

eaðtÞ � gaðtÞ ¼
1

1þ taCð1� aÞ ; t � 0 ð7Þ
The three functions eaðtÞ; f aðtÞ and gaðtÞ are shown in Fig. 2.
In this study we propose to approximate eaðtÞ interpolating faðtÞ and gaðtÞ:
eaðtÞ � haðtÞ ¼ /aðtÞfaðtÞ þ ð1� /aðtÞÞgaðtÞ ð8Þ
Here /aðtÞ is a weight function. We will find an explicit expression for /aðtÞ and show why haðtÞ is a good approximation of
eaðtÞ.

3. Approximation and numerical calculation

3.1. Determining the weight function /aðtÞ

Function eaðtÞwas calculated using Matlab and the routine in [20] for reference purposes. Weights /aðtÞwere determined
for a 2�0; 1½ with a step of Da ¼ 0:01, and for t 2 ½10�5; 105� with 20 logarithmically-spaced points per decade. They are
shown in Fig. 3: those for a < 0:5 ^ t > 1 were not further considered because numerical instability arises spoiling the
results.
1
sα

R(s) + C(s)

−

Fig. 1. Elementary fractional-order control system.
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Fig. 2. Function eaðtÞ and its approximations faðtÞ and gaðtÞ for 0 < a < 1 (left) and for the particular case a ¼ 0:8 (right).
Cuts of this surface for constant values of a can be approximated by functions of the type
/aðtÞ ¼
1

1þ e�x1ðaÞlog10tþx2ðaÞ
ð9Þ
The curve fitting was performed using the Nelder–Mead simplex method. Parameters x1 and x2 are seen to depend on the
value of a as third-order polynomials. The final approximate expressions for x1ðaÞ and x2ðaÞ yield:
x1ðaÞ ¼ �3:0438a3 þ 2:2634a2 � 1:749aþ 0:033976 ð10Þ

x2ðaÞ ¼ �0:35668a3 þ 0:43597a2 � 0:61079aþ 0:012472 ð11Þ
−5−4−3−2−1012345
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Fig. 3. Values of /aðtÞ calculated numerically.
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Fig. 4. Absolute values of the relative error, j�ðtÞj ¼ �aðtÞ
eaðtÞ

���
���, calculated numerically for faðtÞ (top left), gaðtÞ (top right) and haðtÞ (bottom). Points where the

absolute relative error is larger than 1 are not shown.

Table 1
Time to calculate functions eaðtÞ and haðtÞ 20,100 times.

eaðtÞ haðtÞ

Average/s 10.9016 0.0048
Std. dev./s 0.0438 0.0002
Minimum/s 10.8139 0.0047
Maximum/s 11.6674 0.0105
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Fig. 5. Histograms of the time to calculate functions eaðtÞ (left) and haðtÞ (right) 20,100 times, using 100 equally spaced containers.
3.2. Computational performance

Expressions (8)–(11) define haðtÞ, which is an approximation of eaðtÞ. This approximation eaðtÞ � haðtÞ presents good
results on two accounts: first, errors committed by haðtÞ are much inferior to those of the approximations faðtÞ and gaðtÞ
on which it is based; second, it can be computed much faster than eaðtÞ.

Concerning errors, given by
�aðtÞ ¼ eaðtÞ � haðtÞ ð12Þ
for haðtÞ, we have maxa;t j�aðtÞj ¼ 0:0861, against 0.2036 for faðtÞ, and 1.0 for gaðtÞ. Absolute relative errors
�ðtÞj j ¼ �aðtÞ
eaðtÞ

����

���� ð13Þ
are shown in Fig. 4; it can be seen that results are also far superior for haðtÞ.
As to computational speed, function haðtÞ runs rather faster than function eaðtÞ: hence its usefulness in applications where

many values or eaðtÞ have to be computed in real time. To exemplify this, the two functions were calculated for 100 values of
a (from a ¼ 0:01 to a ¼ 1, with a spacing of Da ¼ 0:01) and 201 values of t (logarithmically spaced from t ¼ 10�5 to t ¼ 105);
these are actually the values shown in the first plot of Fig. 2. These 20,100 calculations were repeated 4000 times in a Pen-
tium@2.10 GHz computer running Windows 7 and Matlab R2010b; the statistics for the time each of these 4000 iterations
took to run are presented in Table 1 and Fig. 5. Notice that calculating haðtÞ is in average 2277 times faster than calculating
eaðtÞ.
4. Conclusions

The MLf is an important function in mathematics, numerical calculus, engineering and applied sciences that are studied
with the formalism of FC. Currently new phenomena are discovered and analysed adopting the FC perspective and requiring



efficient computational schemes for expressions involving the MLf. This paper joined two recently proposed asymptotic
expressions for deriving a fast numerical procedure useful in expressions common in fractional order control algorithms.
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