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Abstract

The ssmplest nonlinear Schrédinger equation that contains the
time derivative of the probability density is investigated. This
equation has the same stationary solutions as its linear counterpart,
and these solutions are the eigenstates of the corresponding linear
Hamiltonian. The equation leads to the usual continuity equation and
thus maintains the unitarity of the wave function. For the
non-stationary solutions, numerical calculations are carried out for
the one-dimensiona infinite square-well potential and for several
time-dependent potentials that tend to the former as time increases.
Results show that for various initia states, the wave function aways
evolves into some eigenstate of the corresponding linear
Hamiltonian of the one-dimensional infinite square-well potential.
For a small time-dependent perturbation potential, solutions present
the process similar to the spontaneous transition between stationary
states. For a periodical potential with an appropriate frequency,
solutions present the process similar to the stimulated transition.
This nonlinear Schrodinger equation thus presents the state
evolution similar to the wave-function reduction.
PACS numbers: 02.60.Cb, 03.65.Ta, 03.65.Ge

1. Introduction

In standard quantum mechanics, the wave-function reduction is introduced to
interpret the quantum measurement [1,2]. As a quantity is measured for a quantum
system, the wave function collapses into one of the eigenstates of the corresponding
operator. This reduction cannot be described by the standard linear Schrodinger
equation (LSE), because in general the final state should be the superposition of those
eigenstates. Why a single eigenstate is finally realized is the central problem of the
quantum measurement [3]. Enlightening researches have demonstrated that the
nonlinear Schrodinger equation (NLSE) may play an important role in describing the
reduction, especially for the combination of the microscopic system, the macroscopic
apparatus, and the environment [4-8]. In the original meaning of the wave-function
reduction, however, details are still unclear, and the reduction is generally assumed to
be an instantaneous, indeterministic, and irreversible process[1,2,9].

The NLSE containing the probability density [10-15] has been being widely
investigated for its applications in nonlinear optics [10,16-18], in plasma physics [19],
and to the Bose-Einstein condensates [20,21,22]. The most important feature of this
equation is the solutions in the form of solitons. In quantum mechanics, the NLSE
containing the probability density varies the eigen energies of the Hamiltonian
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corresponding to the LSE [23]. The NLSE containing the derivative of the probability
density with respect to the space coordinates also has applications in plasma physics
and nonlinear optics [24]. The NLSE containing the derivative of the probability
density with respect to the time coordinate, however, is less popular in the literature
and mainly appears in the field of nonlinear optics [25]. In this paper, it is
demonstrated that to exactly describe the wave-function variation of a quantum
particle, the time derivative of the probability density should be involved in the
equation of dynamics. The simplest NLSE that contains this time derivative is
investigated. This NLSE has the same stationary solutions as its linear counterpart,
and these stationary solutions are the eigenstates of the corresponding linear
Hamiltonian. Besides, this NLSE leads to the usual continuity equation and thus
maintains the unitarity of the wave function. To obtain non-stationary solutions,
numerical calculations are carried out for the one-dimensiona infinite square-well
potential (1D ISWP) and for severa time-dependent potentials that tend to the 1D
ISWP as time increases. Results show that for various initial states, the wave function
always evolves into some stationary state that is an eigenstate of the linear 1D ISWP
Hamiltonian. This NL SE thus presents the state evolution similar to the wave-function
reduction. For a small time-dependent perturbation potential, the NLSE presents the
process similar to the spontaneous transition between stationary states. For a
periodical potential, the NLSE presents the process similar to the stimulated transition,
if the frequency of the potential equals the energy difference of two stationary states.

The remaining part of the article is arranged as follows:. In section 2, inexactness of
the standard LSE is discussed. In section 3, the simplest NLSE containing the time
derivative of the density is investigated. In Section 4, numerical solutions of this
NL SE for the 1D ISWP are presented. In Section 5, the time-dependent potentials are
considered. In Section 6, we conclude the present work.

2. Inexactness of the standard linear Schrddinger equation

Suppose a particle with mass m, and charge q moves in the external

electromagnetic field E, B. The field is also described by the scalar potential
o(F,t) and the vector potential A(F,t). In quantum mechanics, the Hamiltonian of
the particle,

H =1 (inv + gAY + qo, (1)
2m,
is obtained according to its non-relativistic classical counterpart [26,27]
.5 1 = =
H(F.P) = —(P~aA)* +dp. @
m,

The way is to substitute the canonical momentum P = my + gA in Eq. (2) with the

operator P =—iaV , where V is the velocity. Further backward, the Hamiltonian of
the classica particle is derived from the Lagrangian L(F,V)=mVv?*/2—q(p V- A).
Finally, the Lagrangian has this form because the Lagrange equation
(d/dt)(oL/ov,)—-oLl/ow=0 with w=X,y,z for the classical particle is equivalent

to the Newton equation

rrb%: (E+VxB). (3)



Hence procedurally, the Hamiltonian operator H originates from the Lorentz force
that governs the motion of the classical particle.

The charged classical particle radiates electromagnetic wave if it moves in
acceleration. However, Eqg. (3) does not include the damping effect due to this
radiation. Consequently, Eq. (2) is an approximation and so is its quantum mechanics
counterpart, EQ. (1). This means that the standard L SE

oy
1h—— P =Hy, (4
where w(F,t) is the wave function, does not exactly describe the state variation of
the quantum particle because effects of the radiation are not included. While Eq. (3)
describes the motion of the classical particle very well, the radiation may affect the
state variation of the quantum particle quite differently.

The charged quantum particle generates electromagnetic field of its own. If the
particle stays in a bound state , this field at distant positions can be described by

the followi ng retarded potentials [27]:

0u(F.1) = j”(r tlrl_r—llr 179) g 5)

J(F, t |r—r |/c)dﬁ,
-]

dre,

Ah(r t)= /qu-[

where p(r,t):x//(r,t)z// (r,t) is the probability density and
J(F,t)=—(@n/2m)(y' Vi —yVy*)—(a/m)Apy” isthe current density. The asterisk
denotes complex conjugate throughout this paper. The remote field is given by
E,=-Vo,—0A/ot and B,=VxA.

If the particle stays in a stationary state w (7,t) = ¢()exp[i&(t)], where 6(t) isa
real function, both p and J areindependent of time. Hence E, and B, are also
stationary. This corresponds to the case without radiation. For a general wave function
w(F,1), both p and J vary with time, and the particle radiates electromagnetic
wave described by Egs. (5) and (6) at distant positions. It is thus a reasonable
argument that derivatives of p and J with respect to time should appear in the

more exact equation of dynamics, if effects of the radiation on the wave-function
evolution are to be included. The NLSE containing the time derivative of the
probability density thus becomes a necessary and interesting topic.

(6)

2. Thesimplest nonlinear Schrédinger equation containing
thetimederivative of the probability density

The simplest NLSE that contains the time derivative of the probability density
seemsto be

-a_l//__ 2 = o(yy’)
| ol aV l//+V0(I’)l//+ﬂ—6t v, (7

where V,(F') is a time-independent potential, « >0 and £ are real parameters.
Values of ¢ and S depend on the system of units. Roughly speaking, « is
related to the mass of the particleand £ represents the intensity of nonlinear effects.
For instance, « =0.5 corresponds to the electron in atomic units. For £ =0, we



recover the standard LSE. In Eq. (7),

H =—aV?* +V,(F) (8)
is the usual linear Hamiltonian of the particle. Equation (7) leads to the same
continuity equation as the L SE of ﬁo, that is,

op =

i -v-J, 9)
where J=—ia(y'Viy —yVy") is the ordinary current density. Equation (7) thus
maintains the unitarity of the wave function. Due to Eq. (9), Eq. (7) can aso be
expressed as

. a — - * *
|a—'i’=—av2y/ Vo (Fy +iap(y Vi —yViy )y . (10)

Depending on boundary conditions, I—AIO has real egenfunctions ¢.(f) and
corresponding eigenvalues E, that satisfy
Hof, = Edh, (12)
with n=12,---. For smplicity we supposethat all E, are non-degenerate. Hence all
#,(r) are independent and constitute a complete set of orthonormal functions.
Equation (7) has the stationary solutions
W, (F,t) = 4,(F) exp(-iEt) (12)
with n=12,---, since y,w, are independent of time and for every y,, Eq. (7)
reduces to the standard LSE. In fact, except for phase factors exp(id,) where 6,
are real constants, y,(7,t) with n=12,--- are all possible stationary solutions of

Eq. (7). Hence Eq. (7) and its linear counterpart have the same stationary solutions.
A genera bound state /(r,t) determined by Eq. (7) can be expanded in terms of

functions ¢, () with n=212,.-, thatis,

w(F,t) =2 C,(D4(F), (13)
n=1
where C (t) with n=12,--- are coefficients. One substitutes Eq. (13) into Eq. (7)

and obtains i) 4dC /dt=>" AEC +B>. > " > 44,4Cd(C,C,)/dt.
One may then expand the products ¢ (7)¢,.(F)é,(r) with [,mn=12,--- interms of

4(F) with k=12, thatis, ¢(F)g(F)d(F) =" Dy, mih(F), where

Dtmn = M(f)ﬂ (M) (F)g, (F)dr (14)
with k,I,mn=212,--- arereal coefficients. Finally one obtains
dC d(C,C
CEC,+ A3 33D, G dCCa). (15)
d I=1m=1n=1 dt

where k=12,---. Obviousdy D,, .. isindependent of the order of the subscripts.
For apair of numbers |,k e{1,2,---}, one multiplies the complex conjugate of Eq. (15)
for k by C, and muItipIi%the Eq. (15) for j by C,.A subtraction then leadsto

[C o o]

5m5kn+ﬁ Doy miC,C — D, mnGC) | ) _ (e _Ejccr, (19)
] ] ] dt

m=1n=1



where j,k=212,--, and &,

5,m?

o, ae Kronecker functions. This is a set of
differential equations of the products C C. with mn=12,-- and is suitable for
numerical treatment. Equation (16) and the initial values C,(0)C.(0) completely

determine functions C_(t)C.(t) with mn=212,--. For the normalized initial wave
function, one has

" C,(1)C; (1) =1 (17)

for dl t>0. Besides, (C,C.)(C.C.) =(C,C.,)(C.C;)<1. Hence |C.C. K1 for
mn=12,---.

4. Numerical solutionsfor the one-dimensional infinite square-well potential

For the 1D ISWP where V,(x)=0 for O0<x<1 and V,(Xx)=+c for other x,
Eq. (7) becomes
Oy Oy | Lo(yy")
| = — + , 18
a- TP a Y (18)
where 0<x<1 and y(0,t) =w(Lt)=0. With zero boundary-conditions, the linear

Hamiltonian H, =-ad?/0x? has orthonormal eigenfunctions

#,(X) = v2sin(nx) (19

and corresponding eigenvalues

E, =a(nr)? (20)

with n=12,..-. Coefficients D, , ., for k,I,mn=12,..- arecalculated to be

Dk,l,m,n = %(§O,k+l—m—n + §O,k—l+m—n + §O,k—l—m+n (21)
- §O,k+l+m—n - 50,k+|—m+n - 50,k—|+m+n - 5O,k—l—m—n)'

By taking the first N terms of the series in Eqg. (13) and the first N terms of the
expansion of ¢ ()¢, (7)¢,(F), one obtains from Eq. (16) aset of N x N first-order

differential equationsof N x N functions C_(t)C;(t) with mn=212,---,N . These

equations are numerically solved for various normalized initial values C_(0)C.(0)

with standard fourth-order Runge-Kutta method combined with high-accuracy
solutions of linear systems. The initial values depend on the state at t =0 according
to

y(r.0)= ZCn (0)¢,(r). (22)

Calculations are carried out with double-precision FORTRAN programs.

Results show that for every initial state, there is always a product C,C, with
ke{12,--,N} suchthat
tlirﬂo C.(H)C. (1) =1 (23)

and for al other products C_C, with (mn) = (k,Kk)
tIim C.(HC:(t)=0. (24)



Hence the wave function evolves into a stationary state C, (+o0)¢, (X), or except for a
phase factor, asymptotically

w(X,t) = v/2sin(kax) exp[—i a(kr)?t] (25)
for t— +o0.

Initial states are catalogued according to the values of C,(0)C.(0) with
n=12,---,N. This amounts to fixing the modulus of every C (0). Typical cases
include states where C (0)C.(0) are identica for severd n, states where
C,(0)C.(0) decreases with increasing n, states where C,(0)C;(0) are non-zero
only for two or three n, stateswhere C,(0)C,(0) are centered on a specific n like
a pulse, and states where C_(0)C (0) are randomly chosen. Vaues of other

C..(0)C.(0) with m=n are obtained by randomly choosing the angles of C,(0)

with n=12,---,N. In most calculations, the time step h=0.0001 is used and the
cut-off number N is between 10 and 20. In some testing calculations, smaller h
and greater N are attempted. In general h=0.0001 gives reliable results. Usually

N is chosen such that the last five C (0)C-(0) with n=N-4,---,N are zero. In
other testing calculations, we choose the initial state to be an eigenstate C; (0)¢;(x)

with je{12---,N}. Inthiscase, al C,C, with mn=212.--,N do not vary with
time.
Typica results are presented in figure 1. Usually the product C,C, of the fina

state may eventually satisfy |C,.Cy —1]<10™™ and products C,.C’ for n=k may

satisfy |C.C! <10 as time increases (due to the calculation errors, C.C can be

minus numbers that are nearly zero). Equation (17) is aways satisfied in the
caculations. The fina states C, (+x)g, (x) differ for different initial states.

Parameters « and f affect the time needed to realize the final state. A smaller
a and a smaler |#| lead to a smaler convergent rate. Most calculations are
carried out for ¢ =05 and g =1. For afixed initia state, the sign of S affects

the final state. For =0, dl CC, with n=12,---,N do not vary with time.

Calculations lead to the solutions of the LSE, that is, V/(X,t)zz::lcn(t)%(x)
where C (t)=C, (0)exp(-Et) for n=212.--N. For >0, the fina sate
Ci(+0)¢ (x) satisfies k<n for any ne{l2---,N} with C,(0)=0. Hence the
wave function evolves into a lower eigenstate. For £ <0, the fina state satisfies
k>n forany ne{l2:---,N} with C,(0)=0 and the wave function evolvesinto a
higher eigenstate. Calculation resultsfor # <0 may beincorrect because in this case,
states ¢, with n> N are needed to express the wave function. We note that | S |

should be small for Eq. (7) to correctly describe the wave-function evolution. For
small values of >0, the wave function demonstrates the same tendency of

evolution asfor f =1, but the time needed to realize the final stateislonger and so is
the CPU time of calculations. Conclusively, the nonlinear term in Eq. (7) with g >0

always makes the wave function to evolve into the possible lowest eigenstate of the
corresponding linear Hamiltonian.
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Figure 1. Evolution of the wave function (X,t) = znlen (t)4,(X) represented by C.C,, as

functions of time t, determined by the NLSE with 1D ISWP. CnC; with n=12,---,N are
calculated from Eq. (16) and ¢@,(X) = V25 n(nzx) with Nn=212,---,N are the eigenfunctions of

the linear 1D ISWP Hamiltonian. Graphs (a)~(i) correspond to different initial values C,,(0)C;(0)
with n=12,---,N.

5. Time-dependent potentials

For atime-dependent potential V (F,t), the corresponding NLSE is

i%-‘f:—avw/w(r,t)ymﬁ%w. (26)

Equation (26) also leads to the continuity equation (9) and maintains the unitarity of
the wave function. Suppose the potential depends on time in such away that
tILrI;lOV(F,t) =V, (). (27)
Equation (26) then has asymptotical stationary-solutions expressed in Eq. (12) as
t > +o0. If for any initia state w(r,0), the solution of Eq. (7) evolves into some
stationary state, then so should the solution of Eq. (26).

Solutions of Eq. (26) can also be expanded in terms of functions ¢,(r') with
n=12,--, as expressed in Eqg. (13). Equation (26) corresponds to a time-dependent
linear Hamiltonian
H, = —aV2+V(F,t) (28)

that satisfies Hg, = Hog, + (V =Vo)d, = Eigh + (V =Vo)gh, . Suppose V(7,t) =V, (F)



on the boundaries. One expands the function V(F,t) -V, () intermsof ¢ (') with
n=212,--, thatis, V(F,t)—VO(F)=Z:=1Vn(t)¢n(F)where V. (t) with n=12,--- are
real coefficients that satisfy

limV, (t)=0 (29)
;:;rdi ng to Eq. (27). Then after substituting Eq. (13) into EQ. (26), one expands the
products ¢,(Mg,(r) in terms of () with [1=212..- , that s,
BTV (1) = 2, Dy ok (T) . where

Dy = [ (M) (Pl (30)

with I,mn=212,--- are coefficients. Like Eq. (16), one obtains

22[5,m5kn+ﬁ2( k1mnCiCl — DJ|mnCC):|d(c(:jt )

m=1n=1

(31)
~(E,~E)CC;+3>V,(D, ..C.C; - D, n,C,C;)

j,mn~’n k,mn~j™~n
m=1n=1

for j,k=212,---. Equation (31) can be solved by the same method as Eq. (16).
Numerical calculations are carried out for V(") being the 1D ISWP.

Coefficients V, completely determine the potential V(r,t) . We take the
time-dependent potential according to
V, (t) = y t* sin(at + ¢,) exp(—At), (32
where n=212,---,N and y,, #20, >0, ¢,, 4120 arerea constants. For 1D
ISWR, coefficients D with I,mn=212,.- arecalculated to be

D :Q[—D(I +m+n)+D(l+m-n)+D(I —m+n)—-D(l - m-n)], (33)
T

I,m,n

I,m,n

where the function D(k)=1/k for an odd number k and D(k)=0 for an even
number k with k=12,

First we take V. (t)=y,, where y, are randomly chosen. In this case, al C.C;,
with mn=12,---,N will eventually not vary with time in the calculations, but in
generd no CC, for n=12,---,N will become unit. Hence the wave function
evolves into a stationary state that is the superposition of ¢, with n=212,---,N. We
note that V,(t) =y, amounts to a time-independent potential V(x) =V,(Xx). Hence

the final state is a stationary eigenstate of the time-independent linear Hamiltonian
corresponding to V(x) . This indicates that the main conclusion in Section 1V is aso

correct for more complicated potentials than the 1D ISWP. Typica results are
presented in figure 2.

Then we respectively take V (t)=y,exp(-At) , V,(t)=y,texp(-4t) , and
V, (t) = y,,sin(wt) exp(—At) . For every initial state, the calculation leads to a stationary
final state C,(+x)@ (x) with ke{l2,--,N}. In some cases, a stationary state
C(t)a (x) isfirst realized and the wave function continues to evolve into the ground

state C,(+x)¢@ (x). This process aso takes place for a small g >0, but the time
needed is longer. Typical results are presented in figure 3.
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Figure 2. Evolution of the wave function (X,t) = znlen (t)4,(X) represented by C.C,, as
functions of time t , determined by the NLSE with a timeindependent potential
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with n=12,---,N.
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Figure 3. Evolution of the wave function (X,t) = znlen(t)¢n(X) represented by C.C., as
functions of time t , determined by the NLSE with a time-dependent potential
V(x,t) =" Vo () (X) that tends to 1D ISWP as t - +0. C,Cp with n=12,-,N
are calculated from Eg. (31) and ¢n(x)=x/§Sin(n7zX) with n=212---,N are the

eigenfunctions of the linear 1D ISWP Hamiltonian. Graphs (a)~(f) correspond to different initial values
C,(0)C.(0) with n=22,---,N and different V(X,t).



If the initial state is an eigenstate C,(0)¢;(x) with je{12,--,N}, calculations
present the transition between stationary states. Even a small potential disturbance
V(x1t)=V,(x) may result in the transition from C,(0)¢,(x) to the final state
Cy(+0)¢ (X). For the same initial eigenstate, different potentials lead to different

final states. Calculations also demonstrate that sometimes the realized eigenstate
C(t)a (x) as an excited state may continue to evolve and the wave function

eventually transforms into the ground state C,(+w)¢,(X), as long as the perturbation

potential persists. Transition may aso be realized for a small periodical potential that
does not satisfy Eq. (27). Typical results are presented in figure 4.

Finally we take the initial state C,(0)¢;(x) and the coefficients V, (t) = y, cos(at)
where n=12,---,N and a):|Ek—Ej| with j,ke{12,---,N} . According to
ordinary perturbation theory, for the LSE the wave function evolves from the initial
state C;(0)¢,(x) in such a way that C (t)C,(t)—>1 and C (1)C (1) >0 for
n=k as t— 4. Our calculations for g =0 demonstrate this kind of evolution.

For the NLSE, the same results are also obtained from the calculations for small
£ >0. For instance, for V,(t)=cos(E; - E,)t], £ =0.0001, and the initial state

¢,, ater t=35 we have C,(t)C,(t)>0.99. If the initia state is ¢,, we obtain
C,(t)C;(t)>0.99. For g =1, however, the results are C,(t)C;(t) > 1, athough
o+ E;—E and o #E,—-E,;. Resultsare presented in figure 5.
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Figure 4. Transition between stationary states from the same initia state ¢5(X) determined by the
N
NLSE with a time-dependent perturbation potential V(X,t) = an W ()4, (X) , where

¢n(x)=\/§Sin(n7zX) with n=212,---,N are the eigenfunctions of the linear 1D ISWP
Hamiltonian. Graphs (8)~(f) correspond to different potentials.
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Figure 5. Stimulated transition between two stationary states ¢,(X) and @;(X), determined by the
N
NLSE with a periodica potentid V(Xt)= zn=1¢n(x) cog(E;—E))t] , where

¢.(x)=+2sin(nzx) ad E,=05nz)> with n=212--,N ae respectively the
eigenfunctions and eigenvalues of the linear 1D ISWP Hamiltonian. Graphs (a) and (b) respectively
correspond to the transition from @;(X) to ¢,(X) and thetransition from ¢@,(X) to @;(X).

The NLSE expressed in EQ. (26) with a small positive f may thus present both

the stimulated transition and the spontaneous transition between stationary states. For
the stimulated transition, the external potential dominates the wave-function evolution.
For the spontaneous transition, however, the nonlinear term plays a key role because
L SE without this term cannot describe this transition. The spontaneous transition is
dominated jointly by the nonlinear term and the perturbation potential: Without the
nonlinear term, the wave function will not necessarily evolve into a stationary state;
without the perturbation potential, the wave function will remain in the initial
stationary state. The relative magnitudes of the perturbation potential and the
nonlinear term determine the final state of the transition. Both stimulated transition
and spontaneous transition are the result of the competition between the external
potential and the nonlinear term.

6. Conclusions

In conclusion, the inexactness of the standard LSE indicates the necessity of an
NLSE that contains the time derivative of the probability density. One such NLSE is
investigated because it has the smplest form and maintains important properties of
the corresponding LSE. For the 1D ISWP and some time-dependent potentials that
tend to the 1D ISWP, numerical calculations demonstrate that this simplest NLSE
presents the state evolution similar to the wave-function reduction, because the wave
function always evolves into an eigenstate of the linear Hamiltonian of the 1D ISWP.
This NLSE may be an approximation of a more complicated and more exact equation
of dynamics, and tentative calculations indicate that its redization of the
wave-function reduction may be a universal conclusion valid for any potentials. The
nonlinear term containing the time derivative of the probability density may provide
clues to the solutions of some unsolved problems in quantum mechanics.
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