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We present exact rational solution for a modified nonlinear Schrödinger equation that takes into
account quintic nonlinearity and nonlinear dispersion corrections to the cubic nonlinearity, which
could be used to describe rogue wave in nonlinear fibers. We find the rogue wave with these
higher order effects has identical shape with the well-known one in nonlinear Schrödinger equation.
However, the quintic nonlinear term and nonlinear dispersion effect affect the velocity of rogue wave,
and the evolution of its phase.
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Introduction—- Rogue wave(RW) phenomena in the
ocean, are reported to have disastrous consequence, such
as destroy ships, oil platform, etc [1, 2]. To avoid its neg-
ative effects, people need to know its character, mecha-
nism, even find the ways to control it. Recently, scientists
have done lots of studies on them [3]. It is shown that
it possesses many exceptional properties, such as much
higher than surrounding waves, abrupt appearance and
disappear without any trace, etc. Between the studies,
the nonlinear theory have been paid much attention [4–8].
It has been found that the dynamics equations for RW in
ocean, Bose-Einstein condensate, plasmas, and nonlinear
optical fibers are identical fundamentally. Therefore, the
studies on RW in nonlinear fibers would help us to un-
derstand the ones in other systems [9]. It is well known
that the nonlinear Schrödinger equation (NLSE)

iψz + ψtt + 2|ψ|2ψ = 0, (1)

which describes the optical pulse propagation in optics
fibers when the pulse width is greater than 100 femtosec-
ond [10–12], Where ψ = ψ(t, z) is the slowly varying am-
plitude of the pulse envelope, z represents the distance
along the direction of propagation and t is the retarded
time. It is shown that the rational form solution of the
NLSE, could be used to describe RW well [8]. Further-
more, RW has been observed recently in one-mode non-
linear fibers experimentally [10, 11], which would highly
stimulate RW studies in a lot of nonlinear systems.

However, the dynamics of these nonlinear systems is
significantly more complicated than the one modeled by
the simple NLSE. For example, for femtosecond optical
pulse, higher-order terms that take into account third-
order dispersion, self-steepening and other nonlinear ef-
fects have to be added to this equation [13]. Thus, a ques-
tion arises: do rogue wave solutions exist for these more
complicated equations? Considering third-order disper-
sion and delayed nonlinear response effects, RW in Hirota
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equation have been studied in [14, 15]. Distinct from
them, we study RW for the integrable Kundu-Eckhaus
(KE) equation as following [16–19],

iψz + αψtt + γ|ψ|2ψ + 4β2|ψ|4ψ − 4iβ(|ψ|2)tψ = 0, (2)

where the subscripts represent the partial derivatives, α
is the group velocity dispersion coefficient, γ is the non-
linear parameter responsible for the self-phase modula-
tion, β2 is the quintic nonlinearity coefficient, the last
term is a nonlinear term which results from the time-
retarded induced Raman process. Eq. (2) has been
derived in [16, 17] and possesses some applications in
the nonlinear optics [21], quantum field theory [20] and
weakly nonlinear dispersive matter waves [22].
In this letter, we present exact rational solution for

the KE model through Darboux transformation. It is
found that properties of the rational solution are similar
to RW’s. Therefore, it could be used to describe RW
in the model as the previous works [6, 7]. We find that
the quintic nonlinear coefficient and nonlinear dispersion
effect affect the velocity of rogue wave, and change the
evolution of its phase, under the integrable condition,
which is the additional requirement on the coefficients to
solve it analytically. Interestingly, the rogue wave with
these higher order effects has identical shape with the
well-known one for NLSE.
Exact rational solution and rogue waves—- The Eq.(2)

has been solved to get soliton solution on trivial back-
ground through Darboux transformation(DT) method in
[19]. As done in NLSE, one can get rational solution on
nonzero plane wave background. We perform the DT
method to derive rational solution from a plane wave
seed solution. With α = 1, γ = 2, the corresponding
Lax-pair is given in Appendix part. The nontrivial seed
solutions, which can be seen as the background for RW,
are derived as follows

ψ0 = s exp [ikt+ i(4β2s4 + 2s2 − k2)z], (3)

where s and k are two arbitrary real constants, and de-
note the amplitude of background and its wave vector re-
spectively. Because there are trivial transformations con-
nected with different s and k, we can set them s = 1 and

http://arxiv.org/abs/1312.3397v1
mailto:zhaolichen3@nwu.edu.cn
mailto:zyyang@nwu.edu.cn


2

(a) (b)

(c) (d)

FIG. 1: (color online) The evolution of RW with different
nonlinear parameters β. (a) β = 0; (b) β = 0.5; (c) β = −0.5;
and (d) the density distribution of RW with different β at
z = 0 (the red dashed one with β = 0, and the blue one with
β = 0.5). It is shown that the density distribution on time
are unchanged with β, and the parameter β just affect its
velocity.

k = 0 without losing generality. With spectral parame-
ter λ = β + i and the nontrivial seed solutions, we can
derive the rational solution as following, through making
the matrix U be Jordan forms,

ψ1 =

[

−A2

1
(t, z) +

i16z + 4

K(t, z)
A2

1
(t, z)

]

exp [i4β2z + i2z],(4)

where

K(t, z) = (2t+ 8βz)2 + 4(2t+ 8βz) + 16z2 + 5,

A1(t, z) = exp [4iβ
2t+ 8βz + 2

(2t+ 8βz + 2)2 + 16z2 + 1
].

Based on the rational solution, we can study how quintic
nonlinear and nonlinear dispersion term affect on RW in
nonlinear fibers through varying the value of β. When
β = 0, namely, the higher order effects are neglected, the
solution will become the well-known one for NLSE, shown
in Fig.1(a). When β > 0, the RW will have negative
velocity on the retarded time, such as Fig.1(b). When
β < 0 it will have positive velocity, such as Fig.1(c). The
velocity of RW increases with the value of |β|. Com-
pare the density distribution of the localized waves, it is
found that they have identical shape. As an example,
we show their intensity distribution at z = 0 in Fig.1(d).
It is pointed that they emerge on different retarded time
with the same shape at z 6= 0. This indicates that the
higher-order effects affect RW’s velocity on retarded time.

Furthermore, this character can be verified through cal-
culating |ψ1|

2 expression.

(a) (b)
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FIG. 2: (color online) The evolution of RW’s phase with dif-
ferent nonlinear parameters β. (a) β = 0, and (b) is the
density plot of (a). (c) β = 0.5, and (d) is the density plot
of (c). It is seen that the symmetric character of RW’s is
violated with nonzero β.

Furthermore, we could plot the phase evolution of RW
with different β. To show the evolution more clear, we
ignore the phase of the background, (4β2+2)z, which just
increase with propagation distance z. Then, the RW’s
phase can be given as

θ = 8β
2t+ 8βz + 2

(2t+ 8βz + 2)2 + 16z2 + 1

+Arccos[
M1

√

M2

1
+M2

2

], (5)

M1 = −1 +
4

K(t, z)
,

M2 =
16z

K(t, z)
.

The phase evolution of RW with β = 0 is shown in
Fig.2(a) and (b). When β 6= 0, the phase evolution is
shown in Fig.2(c) and (d). It is seen that the symmetric
evolution of RW in NLSE is broken by the quintic nonlin-
ear coefficient and nonlinear dispersion effect. Moreover,
we find that the phase distribution are opposite for β and
−β (β 6= 0).
Discussion and Conclusion—- In summary, we present

exact rational solution for the KE model through Dar-
boux transformation method. This indicates that RW
can exist with proper higher-order effects. Based on the
analytical solution, it is convenient to study dynamics
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of RW with the cubic and quintic nonlinear terms and
nonlinear dispersion effects. It is found that RW with
these higher-order effects has identical shape with the
one of NLSE. The quintic nonlinear terms and nonlinear
dispersion effects just affect the velocity of RW on the
retarded time. Moreover, they could violate the sym-
metric evolution of the standard NLSE RW’s phase. The
phase distribution with −β is opposite to the one for
β (β 6= 0). We believe this character would help us
to understand properties of RW in many related nonlin-
ear systems with the higher-order effects. However, we
just investigate this character theoretically, the underly-
ing reason is still unknown. It is known that there are
always some requirements on the nonlinear coefficients to
solve it analytically. Maybe these certain requirements
make related nonlinear effects balance with each other.
This brings that RW with higher-order term has identical
shape with standard NLSE one, which just considering
second-order dispersion term and Kerr nonlinear effect.
This work has been supported by the National Nat-

ural Science Foundation of China (NSFC)(Grant No.
11047025), and the ministry of education doctoral pro-
gram funds (Grant No. 20126101110004).

Appendix

The Lax pair of Eq.(2) with α = 1, γ = 2 could be
given as

∂t

(

Φ1

Φ2

)

= U

(

Φ1

Φ2

)

, (6)

∂z

(

Φ1

Φ2

)

= V

(

Φ1

Φ2

)

, (7)

where

U =

(

−iλ+ iβ|ψ|2 ψ

−ψ̄ iλ− iβ|ψ|2

)

,

V =

(

−2iλ2 + a1 2λψ + b1
−2λψ̄ + c1 2iλ2 − a1

)

.

and

a1 = −β(ψtψ̄ − ψψ̄t) + 4iβ2|ψ|4 + i|ψ|2,

b1 = iψt + 2β|ψ|2ψ,

c1 = iψ̄t − 2β|ψ|2ψ̄.

Between the above expressions, the over bar denotes com-
plex conjugate, and λ is spectral parameter.
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