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Abstract

We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor
model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread
of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to
convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when
the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontrya-
gin’s Minimum Principle and a modified version of forward backward sweep technique for numerical computation
to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be
applied to similar optimal control problems in other areas.

We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model
practical situations when the interest level of the population in the subject of the campaign changes with time. The
shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also
studied the variation of the optimal campaigning costs withrespect to various model parameters. Results indicate that,
for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static
control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant
value throughout the campaign horizon. This work finds application in election and social awareness campaigns,
product advertising, movie promotion and crowdfunding campaigns.
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1. Introduction

Rumor models (e.g. Daley Kendall, Maki Thompson) are used to model social contagion processes like spreading
of information, ideas, fashion trends, etc. [1, 2, 3] in a population. A piece of information affects human behavior
which may be exploited by political and crowdfunding campaigners, companies for advertising their new products
etc.. The goal of the campaigner is to reach as many people as possible by the campaign deadline, while making most
efficient use of the available resources (e.g. money, manpower). Since the contagion process is epidemic in nature,
the allocation of resources over the campaign duration is important for optimal information spreading.

Rumor models are, in principle, similar to biological epidemic models like Susceptible-Infected-Susceptible (SIS)
and Susceptible-Infected-Recovered (SIR), used for modeling the spread of pathogens in a population [4, 5]. The
population is divided into three compartments (or classes): ignorants (those who don’t have the information), spreaders
(those who are spreading the information) and stiflers (those who have stopped spreading). Spreaders are generated at
some rate due to ignorant-spreader contact—dynamics whichis similar to the biological epidemic models. However
the recovery process in the rumor models is different from that in biological epidemic models, which is explained in
the following.

Why rumor models are more appropriate than SIS/SIR models for information spreading: Recovery of a
spreader to a stifler is spontaneous and independent of others in SIS/SIR models. To be specific: if the recovery
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rate isγ, then a spreader recovers after a time duration which is exponentially distributed with mean 1/γ, independent
of her interaction with people in the population. On the other hand, in a rumor model, a spreader converts into a
stifler at some rate, if she comes in contact with other spreaders or stiflers [1, 2, 3]. For a recovery rateγ, the quantity
1/γ provides a measure of the average number of interactions of aspreader with others, who are aware of the rumor,
before she turns into a stifler [1, Sec. 10.2]. Information spreading is a psychological phenomenon, meeting oth-
ers who already have the information changes the spreader’sperception about information being new and she stops
spreading. Due to this difference from SIS/SIR models, rumor models are more accurate in capturing information
spreading dynamics. Similar arguments are applicable for fashion trends.

In this work, we aim to devise optimal information dissemination strategies, from the perspective of single cam-
paigner, using the theory of optimal control. We assume thatinformation spreading dynamics can be influenced by
a control, which transfers individuals from the ignorant and stifler classes to the spreader class. Depending on the
application—e.g. political/crowdfunding campaigns; advertisement campaign for new products/services like smart-
phones, video games, satellite TV plans; fashion products like clothing, cosmetics—this can be done in various ways.
Examples of ways in which control can be implemented in real systems include publishing manifestos, organizing
political rallies/door-to-door campaigns, advertising in mass media and giving out discounts on new products, signing
up brand ambassadors etc.. When an ignorant comes across theadvertisement, she becomes aware of the information
and starts spreading. Also, when a stifler sees the advertisement, her perception about an information being stale
or fashion/product being old changes, and she starts spreading the information again or following the fashion trend
again. Note that the control acts in addition to the epidemicignorant-spreader contact which transfers ignorants to the
spreader class.

Readers should not be misled by the term ‘rumor’ in the Maki Thompson model. They can be used to model both
useful and malicious information. In this work, we have usedthem for modeling only useful information and then
attempt to maximize its reach. This paper does not address the problem of suppressing malicious information. Also
note that apart from the direct applications listed in the previous paragraph, the tools and techniques developed in
this paper can be used in other optimal control problems, such as mitigating the spread of biological epidemics and
computer viruses, treating cancer [6] and suppressing corruption, terrorism and drug use [7].

Related work and differences compared to the previous literature: Optimal control of SIS and SIR information
epidemics was studied in [8, 9]. This work employs a more accurate information diffusion model, namely Maki
Thompson model, as explained above. In addition, this work has an explicit budget constraint and non-linear resource
application costs, which differentiates it from [8, 9]. The authors in [10, 11] studied impulsive control strategies to
maximize Maki Thompson rumors. The rumor starts with a broadcast, and then there is an opportunity to trigger a
second broadcast at a later stage. The work in [10, 11] determined the optimum time to trigger the second broadcast so
that the number of ignorants in the system is minimized. In contrast, our formulation allows the system to be controlled
throughout the campaign duration. In the applications considered—e.g. political campaigns, product marketing,
movie promotion—the campaigner tries to influence the system on a continuous basis. Advertisements appear in the
mass media on a frequent basis, and not just once or twice; this motivates our model.

The work in [12] devises an optimal advertising and pricing plan for a newly launched product; however, it does
not consider epidemic information diffusion in the population, as is the case in this paper. The authors in [13, 14]
analyze ‘push’, ‘pull’ and ‘push/pull’ strategies for message diffusion, where nodes in the network either push the
information to their neighbors, or pull it from them. Their aim is not to control the system but to find bounds on the
number of communication rounds required to spread the information to almost all nodes in the network.

Optimal control of disease and computer virus epidemics is awell studied problem [15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25]. In addition to the differences in the epidemic model, biological epidemics need tobe contained, which
is the opposite of spreading information. A biological epidemic has constant spreading rate, assuming the pathogens
will not mutate within a season. In contrast, we have allowedthe spreading rate to vary during the campaign duration
to capture varying interest level of the population in the subject of the campaign during the time horizon of interest.

There is a sizeable literature on (uncontrolled) Maki Thompson rumor model and its extensions/generalizations.
See for example [26, 27, 28, 29, 30].

The following are the primary contributions of this paper:

(i) We have formulated and numerically solved the optimal control problem for maximizing information spread in
the Maki Thompson model. In our formulation, the system can be controlled throughout the campaign duration,
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which is different from the impulsive control in [10, 11]. The control directly recruits ignorants and stiflers to
spread the information. This can be done via methods such as placing advertisements in mass media. We assume
a non-linear cost for applying the control and a fixed budget constraint. The standard forward backward sweep
method used to solve the problem numerically needs to be modified due to the isoperimetric budget constraint.

(ii) Unlike previous literature, we have proved the existence of a solution to a system which has an isoperimetric
budget constraint in the presence of non-linear costs. Standard Filippov/Cesari theorems are not applicable due to
non-linear costs, because of which the control affects the system non-linearly, violating one of the requirements
of the Filippov/Cesari theorem.

(iii) We have captured the varying interest level of the population in the subject of the campaign by a time-varying
spreading rate over the campaign duration. In applicationslike poll campaigns, chatter about the election can
be increase with time as the polling date approaches. In product marketing or movie promotion campaigns, the
interest level of the population in the newly launched product/movie may decrease with time after its release. For
applications such as crowdfunding or social awareness campaigns, the spreading rate is expected to be constant
over time.

The rest of this paper is organized as follows: Sec. 2 formulates the optimal control problem. Sec. 3 proves the
existence of a solution to the optimal control problem formulated in Sec. 2. Sec. 4 provides a framework to solve the
problem formulated in Sec. 2. Sec. 5 discusses the results and Sec. 6 concludes the paper.

2. System model and problem formulation

In this section we will briefly state the uncontrolled Maki Thompson model and use it to formulate an optimal
control problem for the controlled system. Later in the section, we illustrate the developed model with a real world
example of political campaigning. We have collected the definitions of all the parameters used in this paper in Table
1.

Table 1: Definitions of parameters used in this paper

Symbol Definition

i(t) fraction of ignorants in the population at timet
s(t) fraction of spreaders in the population at timet
r(t) fraction of stiflers in the population at timet
β1(t) per contact message spreading rate at timet
γ1 per contact recovery rate
k number of other individuals an individual is in contact at any given time
β(t) = kβ1(t) spreading rate at timet
γ = kγ1 recovery rate
T campaign deadline
u(t) control at timet (e.g. rate at which advertisements are put across in mass media)
umax maximum allowed control, 0≤ u(t) ≤ umax

c(u(t)) instantaneous cost incurred due to application of control
B budget
b(t) (cumulative) resource spent during [0t]

Our objective is to minimize the number of ignorants at the end of the campaign. This is natural because we want
to maximize the number of individuals who are aware of the information we are trying to spread.

Uncontrolled Maki Thompson model: We consider a system with fixed population size. At timet, the fractions
of ignorants, spreaders and stiflers in the population are represented byi(t), s(t) and r(t) respectively, withi(t) +
s(t) + r(t) = 1. ‘Per contact message spreading rate’ at timet is β1(t) and ‘per contact recovery rate’ isγ1. They are
interpreted in the subsequent paragraphs.

We first derive the rate of decrease of fraction of ignorants in the population at timet. In the beginning, att = 0,
the system starts withi(0) = 1− s0, s(0) = s0, r(0) = 0, wheres0 is the initial fraction of spreaders which acts as the
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seed for the epidemic. ‘Per contact message spreading rate’can be interpreted as follows: in a small time intervaldt at
time t, the message passes from a spreader to an ignorant due to a single ignorant-spreader contact with a probability
β1(t)dt. We assume that every member of the population interacts with an average ofk others at any time. Thus, an
ignorant is in contact with (an average of)ks(t) spreaders at timet. The message will be passed to the ignorant with
probability, 1− (1−β1(t)dt)ks(t) ≈ β1(t)ks(t)dt. Since the fraction of ignorants at timet is i(t) so the decrease in fraction
of ignorants in small intervaldt at timet is β1(t)ks(t)i(t)dt. Definingβ(t) , β1(t)k, we get Eq. (1a). In the rest of this
paper, we refer toβ(t) as the ‘spreading rate’.

Now we derive the rate of increase of fraction of stiflers at time t. A spreader recovers to become a stifler due to
interaction with other spreaders and stiflers. ‘Per contactrecovery rate’ is interpreted as follows: at any timet, any
spreader in contact with a single spreader or stifler will convert to a stifler with probabilityγ1dt. Any member of the
population interacts withk others at any time. Hence, a spreader is in contact with an average ofk(s(t)+r(t)) spreaders
and stiflers, increasing her probability of recovery to 1− (1− γ1dt)k(s(t)+r(t)) ≈ k(s(t) + r(t))γ1dt, in a small intervaldt
at timet. Since the fraction of spreaders at timet is s(t), so the increase in fraction of spreaders at timet in a small
intervaldt is given bys(t)k(s(t) + r(t))γ1dt. Definingγ , γ1k, we get the rate of increase of stiflers in the population
asγs(t)(s(t) + r(t)) (Eq. (1c)). We refer toγ as the ‘recovery rate’ in the rest of this paper. Eq. (1b) is a consequence
of Eqs. (1a) and (1c).

Thus, the evolution of the ignorants, spreaders and stiflersin the population in the uncontrolled Maki Thompson
system is given by [1, Sec. 10.2, adapted for time varyingβ(t)]:

i̇(t) = −β(t)i(t)s(t), (1a)

ṡ(t) = β(t)i(t)s(t) − γs(t)
(

s(t) + r(t)
)

, (1b)

ṙ(t) = γs(t)
(

s(t) + r(t)
)

. (1c)

These equations are mean field equations and are most accurate in the limit of large population size.
Admissible controls: We denote the campaign deadline byT and the set of all admissible controls byU. To

defineU, we first define the set,Ψ of all equicontinuous functions over the campaign horizon [0 T ]. For allσ ∈ Ψ,
|σ(t) − σ(t̂)| ≤ CΨ(ǫ), for t, t̂ ∈ [0, T ]; |t − t̂| ≤ ǫ, with CΨ(ǫ)→ 0 asǫ → 0 [31, Sec. 1.6]. Then, any control signal

u ∈ U , {σ ∈ Ψ : 0 ≤ σ(t) ≤ umax, ∀t ∈ [0, T ]} (2)

is admissible. Hereumax is maximum allowed control strength. Practical considerations will require control signals
to be bounded at all times. For example, there is a limit to howmany advertisements one can place in newspapers in
a day. We assume equicontinuity of the setU as it aids in proving the existence of a solution to the optimal control
problem. Note that assuming equicontinuity is milder than,for example, assuming differentiability and a large class
of functions satisfy it.

The controlled system: Notice thaṫi(t)+ ṡ(t)+ ṙ(t) = 0, so only Eqs. (1a) and (1b) are sufficient to capture system
dynamics, withr(t) = 1 − i(t) − s(t). System (1) can be controlled by a functionu ∈ U which transfers individuals
from ignorant and stifler class to the spreader class as explained earlier. This is captured in Eqs. (3b) and (3c). We
assume that application of the control incurs a non-linear cost, given byc(u(t)) at timet. Also, we have a fixed budget,
which is captured by Eq. (3e). The functionc(.) is assumed to be continuous and increasing in its argument.We want
to maximize the number of individuals who are aware of the information by the campaign deadlinet = T . We do not
worry about the system evolution duringt < T , so the reward function iss(T )+ r(T ) = 1− i(T ). Hence we choose the
cost function (to be minimized) to beJ = i(T ) (Eq. (3a)). The optimal control problem is:

min
u∈U

J = i(T ), (3a)

subject to: i̇(t) = −β(t)i(t)s(t) − u(t)i(t), (3b)

ṡ(t) =
(

β(t) + γ
)

i(t)s(t) − γs(t) + u(t)i(t) + αu(t)
(

1− i(t) − s(t)
)

, (3c)

s(0) = s0, i(0) = 1− s0, (3d)
∫ T

0
c(u(t))dt = B. (3e)
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Notice that we have removed the redundant equation involving ṙ(t) and have made use ofr(t) = 1− i(t) − s(t) in Eq.
(3c). The factorα captures the effectiveness of the control on stiflers relative to ignorants.Also, Eq. (3e) can be
replaced by an equivalent condition given by:

ḃ(t) = c(u(t)), (4a)

b(0) = 0, b(T ) = B. (4b)

whereb(t) is a variable representing cumulative resource spent uptotime t, 0 ≤ t ≤ T . This is a standard method to
handle isoperimetric constraints in optimal control problems [32, Sec. 16].

Notice that forB ≥ c(umax)T , the optimum strategy is to apply the full strength control throughout the campaign
duration. We will not discuss this case any further and will concentrate on more interesting—both practically and
mathematically—resource constrained case,B < c(umax)T . Also notice that given a budget constraint, it is never
optimal to underutilize the budget, hence we have used equality in Eq. (3e) without loss of generality.

The example of political campaigning: In the strict sense, this example is discrete in nature, withsystem and
control variables being discrete. But for modeling convenience, we use a continuous time model. This is common
practice and all the examples cited in the ‘Related works’ section do the same. These (mean field) models are accurate
in the limit of large population size.

In this example, a political party wants to make the voters ina constituency aware of its candidate and manifesto.
As noted before, in this work we are not studying the problem of suppressing misinformation/negative information
about this party or candidate. The ignorants, whose fraction is denoted byi(t) at timet, are not aware of the candidate.
The spreaders,s(t), are not only aware, but are also talking about this person whenever they get into conversation with
others. And lastly, the stiflers,r(t), have encountered enough number of spreaders and other stiflers—people who
already have the information—to convince themselves that the information is no longer new, hence they have stopped
spreading. They know about this candidate nonetheless. Thepolling day, which is the campaign deadline, isT time
units ahead. The spreading rate,β(t) will be determined by the interest level of the population in talking about the
upcoming election; a higher value means more interest. The reciprocal of the recovery rate, 1/γ, is the measure of
average number of spreaders/stiflers a spreader encounters before turning into a stifler.

The strategies employed by the political party to accelerate information diffusion act as the control here. These
may be one, or a combination of the following strategies: advertising and publishing manifesto in newspapers/TV
channels, door to door campaigns, SMS campaigns, distributing leaflets etc.. The intensity with which the above
strategies are employed at timet is denoted byu(t), with umax denoting its maximum value which is enforced by
physical limitations of the system.

The instantaneous monetary cost incurred due to the application of the above strategies is captured by the function
c(u(t)) and the total money allocated by the party for this constituency is denoted by the budgetB. The obvious goal
here is to minimize the fraction of population who are not aware of the candidate at the polling day,i(T ). To do so, we
need to select the best possible strategy,u∗ from the set of large number of available strategies,U. The solution to the
optimal control problem providesu∗. If money is not a concern, the party would like to put across maximum possible
numbers of advertisements, leaflets, SMSs etc. everyday before the deadline. But, as noted before, we are interested
in the resource-constrained case where such a strategy is not feasible.

3. Existence of a solution

Proving the existence of a solution to the optimal control problem is of practical importance because not all
problems admit their minimum/maximum, examples can be found in [33, Chap. 3, Sec. 1]. The standard methods to
show the existence of a solution to an optimal control problem, Filippov/Cesari Theorems [33, Chap. 3, Secs. 2 and
4], which were used in [16, 17, 18, 19] and many other works, are not applicable to Problem (3). This is because in
Problem (3)—with Eq. (3e) replaced by the equivalent condition (4)—the control affects the system non-linearly. This
is due to the non-linear functionc(.), which violates the linearity requirement of Filippov/Cesari Theorem. Hence we
prove existence from first principles.

To this end, we make use of the fact that a continuous functiondefined on a compact set achieves its mini-
mum/maximum [34, Theorem 4.16],i.e., the solution exists. This is carried out in the following three steps:
Step 1: we define a compact setW using the definition ofU in Eq. (2) and budget constraint in Eq. (3e).

5



Step 2: we show thatJ in (3a) is continuous in the setW.
Step 3: we show that the solutions to the constraint Eqs. (3b), (3c) and (3d) exist for all elements inW.

Step 1: Notice that the setU being equicontinuous, equibounded and closed (all by definition) is compact [31,

Theorem 1.6.3]. Also, the setV ,

{

σ : 0 ≤ σ(t) ≤ umax,
∫ T

0
c(σ(t))dt = B

}

is closed (because c(.) is continuous

function by assumption). Since the intersection of compactand closed set is a compact set [34, Pg. 38], hence,
W , U ∩ V is compact.

The following problem is equivalent to Problem (3):

min
u∈W

J = i(T ),

subject to: (3b), (3c) and (3d).

It remains to show thatJ is continuous inW and constraints are satisfied for allu ∈ W.
Step 2: In fact the continuity ofJ is valid at anyu ∈ U ⊇ W. The functionJ : U → [0, 1] is continuous at

u ∈ U if, for any ǫ > 0, we can find aδ > 0, such that
∣
∣
∣J(u) − J(û)

∣
∣
∣ < ǫ, for all û ∈ U ∩ {p̂ : |u − p̂| < δ} [34]. Let

the system variables be denoted byx(t) =
(

i(t), s(t)
)

. The vector equation formed by combining Eqs. (3b) and (3c) is
ẋ(t) = X(x(t), t) where,

X(x(t), t) =

(

β(t)i(t)s(t) − u(t)i(t)
(

β(t) + γ
)

i(t)s(t) − γs(t) + u(t)i(t) + αu(t)
(

1− i(t) − s(t)
)

)

.

The control signalu is an explicit function oft, henceX(.) which is a function ofx(t) andu(t) is basically a function
of x(t) andt.

We use 1-norm for vectors and sup-norm for functions to measure the distance between them. We show the
continuity of i(T ) = i(t)|t=T by invoking the ‘Theorem on Continuous Dependence’ [35, pg.145] of the solution
of an ordinary differential equation on the vector fieldX(x(t), t). It states that ifx(t), t ∈ [0, T ], is a solution of
ẋ(t) = X(x(t), t); then givenǫ there existδ such that

∣
∣
∣x(t)− x̂(t)

∣
∣
∣ < ǫ, whenever

∣
∣
∣X(x(t), t)− X̂(x(t), t)

∣
∣
∣ < δ, for t ∈ [0, T ].

Here x̂(t) is the solution of perturbed version of ˙x(t) = X(x(t), t), denoted by ˙x(t) = X̂(x(t), t), whereu in the vector
field X(x(t), t) is perturbed to ˆu to get the perturbed vector field̂X(x(t), t).

We have,

|X(x(t), t) − X̂(x(t), t)| =
∣
∣
∣
(

u(t) − û(t)
)

i(t)
∣
∣
∣ +

∣
∣
∣
(

u(t) − û(t)
)

i(t) + α
(

u(t) − û(t)
)(

1− i(t) − s(t)
)∣∣
∣

≤
∣
∣
∣
(

u(t) − û(t)
)∣∣
∣ +

∣
∣
∣
(

u(t) − û(t)
)∣∣
∣ +

∣
∣
∣α

(

u(t) − û(t)
)∣∣
∣

≤ (2+ α)|u − û|.

Note thati(t) and (1− i(t) − s(t)) has maximum values 1. Thus,

|u − û| ≤ δ

2+ α
⇒ |X − X̂| ≤ δ⇒ |x(t) − x̂(t)| ≤ ǫ,∀t ∈ [0 T ];

which establishes the continuity ofi(t)|t=T (a component ofx(t) evaluated at the final timeT ) in u.
In addition, the theorem on continuous dependence requiresLipschitz continuity ofX(.) in x(t). Lipschitz conti-

nuity is also required for step 3 and is shown in the following.
Step 3: The constrained initial value problem ˙x(t) = X(x(t), t) (with initial conditions given by (3d)) has a solution

for anyu ∈ W if X(x(t), t) is Lipschitz continuous inx(t) for all u ∈ W [36, pg. 185]. Again, Lipschitz continuity of
X(x(t), t) in x(t) is valid for all u ∈ U ⊇ W. We denote (̂i(t), ŝ(t)) by x̂(t) Notice that,

|X(x(t), t) − X(x̂(t), t)| =
∣
∣
∣β(t)

(

i(t)s(t) − î(t)ŝ(t)
)

− u(t)
(

i(t) − î(t)
)∣∣
∣

+
∣
∣
∣
(
β(t) + γ

)(
i(t)s(t) − î(t)ŝ(t)

) − γ(s(t) − ŝ(t)
)
+ u(t)

(
i(t) − î(t)

) − αu(t)
(
i(t) − î(t) + s(t) − ŝ(t)

)∣∣
∣

≤
∣
∣
∣β(t)

(

i(t)s(t) − î(t)ŝ(t)
)∣∣
∣ +

∣
∣
∣u(t)

(

i(t) − î(t)
)∣∣
∣ +

∣
∣
∣
(

β(t) + γ
)(

i(t)s(t) − î(t)ŝ(t)
)∣∣
∣

+
∣
∣
∣γ
(

s(t) − ŝ(t)
)∣∣
∣ +

∣
∣
∣u(t)

(

i(t) − î(t)
)∣∣
∣ +

∣
∣
∣αu(t)

(

i(t) − î(t) + s(t) − ŝ(t)
)∣∣
∣
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≤
∣
∣
∣
∣
∣

(

2β(t) + γ
) (

i(t)s(t) − î(t)ŝ(t)
)

︸                ︷︷                ︸

i(t)s(t)−î(t)s(t)+î(t)s(t)−î(t)ŝ(t)

∣
∣
∣
∣
∣
+

∣
∣
∣u(t)(2+ α)

(

i(t) − î(t)
)∣∣
∣ +

∣
∣
∣
(

γ + αu(t)
)(

s(t) − ŝ(t)
)∣∣
∣

≤
∣
∣
∣
∣
∣
max

t∈[0 T ]

{

2β(t) + γ + u(t)(2+ α)
}

.
(

i(t) − î(t)
)
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

max
t∈[0 T ]

{

2β(t) + 2γ + αu(t)
}

.
(

s(t) − ŝ(t)
)
∣
∣
∣
∣
∣

≤ max
t∈[0 T ]

{

2β(t) + γ + u(t)(2+ α), 2β(t) + 2γ + αu(t)
}

.
∣
∣
∣
(

x(t) − x̂(t)
)∣∣
∣ .

Thus,|X(x(t), t) − X(x̂(t), t)| ≤ C|x(t) − x̂(t)| which establishes Lipschitz continuity ofX(x(t), t) in x(t) for all u ∈ U.

4. Solution to the optimal control problem

In this section we first discuss the solution to Problem (3)—with Eq. (3e) replaced by the equivalent condition
(4)—using Pontryagin’s Minimum principle [32]. This leadsus to a system of ordinary differential equations (bound-
ary value problem (BVP)) which are necessary conditions foroptimum. Then we discuss a numerical method to solve
the BVP. The standard forward backward sweep method used to solve the BVPs yielded by optimal control problems
(see for example [16, 19, 20]) is not directly applicable andneeds to be adapted to take care of the isoperimetric
budget constraint (4).

4.1. Solution by Pontryagin’s Minimum Principle

We denote the adjoint variables byλi(t), λs(t) and λb(t). At time t, u∗(t) denotes the optimal control and,
i∗(t), s∗(t), b∗(t) andλ∗i (t), λ

∗
s(t), λ

∗
b(t) the state and adjoint variables evaluated at the optimum.

Hamiltonian: The Hamiltonian for Problem (3), with (3e) replaced by the equivalent condition (4), is given by,

H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t) = λi(t)
[

β(t)i(t)s(t) − u(t)i(t)
]

+ λs(t)
[(

β(t) + γ
)

i(t)s(t) − γs(t) + u(t)i(t) + αu(t)
(

1− i(t) − s(t)
)]

+ λb(t) [c(u(t))] .

State equations: Same as (3b), (3c), (3d) and (4) withi(t), s(t), b(t), u(t) replaced byi∗(t), s∗(t), b∗(t), u∗(t) respectively.
Adjoint equations: λ̇∗i (t) is − ∂

∂i(t) H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t) evaluated at the optimum.

λ̇∗i (t) = −
∂

∂i(t)
H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)

∣
∣
∣
∣
∣ i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗ (t),
λi(t)=λ∗i (t),λs(t)=λ∗s (t),λb(t)=λ∗b(t)

= λ∗i (t)β(t)s∗(t) + λ∗i (t)u
∗(t) − λ∗s(t)β(t)s∗(t) − λ∗s(t)γs∗(t) − λ∗s(t)u∗(t) + λ∗s(t)αu∗(t). (5)

Similarly,

λ̇∗s(t) = −
∂

∂s(t)
H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)

∣
∣
∣
∣
∣ i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗(t),
λi(t)=λ∗i (t),λs(t)=λ∗s (t),λb(t)=λ∗b(t)

= λ∗i (t)β(t)i
∗(t) − λ∗s(t)β(t)i∗(t) − λ∗s(t)γi∗(t) + λ∗s(t)γ + λ∗s(t)αu∗(t). (6)

And,

λ̇∗b(t) = − ∂

∂b(t)
H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)

∣
∣
∣
∣
∣ i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗(t),
λi(t)=λ∗i (t),λs(t)=λ∗s (t),λb(t)=λ∗b(t)

= 0. (7)

Hamiltonian minimizing condition: At the interior points,

∂

∂u(t)
H(i(t), s(t), b(t), u(t), λi(t), λs(t), λb(t), t)

∣
∣
∣
∣
∣ i(t)=i∗(t),s(t)=s∗(t),b(t)=b∗(t),u(t)=u∗(t),
λi(t)=λ∗i (t),λs(t)=λ∗s (t),λb(t)=λ∗b(t)

= −λ∗i (t)i∗(t) + λ∗s(t)i∗(t) + λ∗s(t)α
(

1− i∗(t) − s∗(t)
)

+ λ∗b(t)c′(u∗(t)) = 0.
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Hence this condition leads to,

u∗(t) =






0 if c′−1
(
λ∗i (t)i∗(t)−λ∗s (t)i∗(t)−λ∗s (t)α(1−i∗(t)−s∗(t))

λ∗b(t)

)

< 0,

c′−1
(
λ∗i (t)i∗(t)−λ∗s (t)i∗(t)−λ∗s (t)α(1−i∗ (t)−s∗(t))

λ∗b(t)

)

if 0 ≤ c′−1
(
λ∗i (t)i∗(t)−λ∗s (t)i∗(t)−λ∗s (t)α(1−i∗ (t)−s∗(t))

λ∗b(t)

)

≤ umax,

umax if c′−1
(
λ∗i (t)i∗(t)−λ∗s (t)i∗(t)−λ∗s (t)α(1−i∗(t)−s∗(t))

λ∗b(t)

)

> umax,

⇒ u∗(t) = max

{

0,min

{

umax, c
′−1

(
λ∗i (t)i

∗(t) − λ∗s(t)i∗(t) − λ∗s(t)α(1− i∗(t) − s∗(t))

λ∗b(t)

)}}

. (8)

Transversality conditions: The transversality conditions yield,

λ∗i (T ) = 1, λ∗s(T ) = 0, λ∗b(T ) = free. (9)

4.2. Numerical solution and issues in computation

To solve the optimal control problem numerically, we have tosolve the BVP involving state and adjoint equations,
also called the optimality system. The state equations are given by (3b), (3c), (3d) and (4); and the adjoint equations
are given by (5), (6), (7) and (9). Note that the value of the control variable (from Eq. (8)) has to be substituted in the
above mentioned differential equations to get a system entirely in terms of stateand adjoint variables.

The optimality system may be solved using boundary value problem solving techniques such as the shooting
method [37, Sec. 1.3, 1.4]. But we found that the naive implementation of the shooting algorithm stalls before
converging to a correct solution—possibly because of inaccuracies in the numerically computed gradient values.
Also, due to the isoperimetric constraint,b(0) = 0 andb(T ) = B in (4), it is not possible to implement naive forward
backward sweep algorithm. Hence we briefly discuss the adaptation of the forward backward sweep algorithm which
was used to solve the optimality system in the following.

Due to (7) and (9),λ∗b(t) is an unknown value which is constant over time, 0≤ t ≤ T , for the optimality system,
call it λc∗

b . We have taken the approach of findingλc∗
b using bisection algorithm. Initialize the computation with two

approximate values ofλc∗
b (call themλc∗

b−high andλc∗
b−low), one for whichb(T ) < B, and other for whichb(T ) > B. Then,

refine the value ofλc∗
b using bisection method till the constraintb(T ) = B is satisfied with desired tolerance. Details

are in Algorithm 1.
The values ofλc∗

b−low, λ
c∗
b−high, Bth, λth andNsweep used in all of the computations in this paper are 0, 100, 10−4,

10−4 and 50 respectively. Sinceλc∗
b−low is small, so control computed by (8) is large, hencebλc∗

b−low
(T ) is large (very

close to maximum allowed budget,c(umax)T ). Similarly λc∗
b−high is large, so control computed by (8) is small, hence

bλc∗
b−high

(T ) is small (very close to 0). These values were found to be suitable to initialize the bisection method.
We have implemented Algorithm 1 in MATLAB and have used its initial value problem solverode45() to evaluate

the differential equations. The solver uses fourth order Runge-Kutta algorithm with variable step size for computation
and is capable of integrating backwards as required by the adjoint equations.

5. Results

We first discuss the shapes of the control signal for constantand variable spreading rate profiles in Secs. 5.1 and
5.2 respectively. Depending on the application, the spreading and recovery rate of the information epidemic may vary
a lot. This depends on interest of people in conversing aboutthe topic in question. Thus, we have used different
parameter values in Secs. 5.1 and 5.2 to model epidemics of varying virulence. The shape of the control signals varies
considerably when the values of spreading and recovery rates are changed, as will be seen in Figs. 1a and 3a. Later
in Sec. 5.3, we discuss the variation in the cost function (3a) with respect to various model parameters and compare
the performance of the optimal control with the static control. In this paper we have assumed the cost of application
of control to be,c(u(t)) = u2(t).
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Algorithm 1 Modified forward backward sweep algorithm.

Input: λc∗
b−low, λ

c∗
b−high, Bth, λth, B, Nsweep (and other inputsT , β(t) ∀t ∈ [0, T ], γ, umax, s0 andα).

Output: The optimal control signalu∗(t).
1: repeat
2: λc∗

b ← (λc∗
b−low + λ

c∗
b−high)/2

3: u∗(t)← 0, ∀t ∈ [0, T ]
4: for j = 1to Nsweep do
5: Calculatei∗ ands∗ using state equations (3b) and (3c) with initial conditionsi∗(0) = 1− s0 ands∗(0) = s0.

% forward sweep
6: Calculateλ∗i andλ∗s using adjoint equations (5) and (6) with terminal conditionsλ∗i (T ) = 1 andλ∗s(T ) = 0. %

backward sweep
7: Calculateu∗ using (8).
8: end for
9: bλc∗

b
(T )←

∫ T

0
c(u∗(t))dt

10: if bλc∗
b
(T ) > B then

11: λc∗
b−low ← λ

c∗
b

12: end if
13: if bλc∗

b
(T ) < B then

14: λc∗
b−high ← λ

c∗
b

15: end if
16: until

(∣
∣
∣bλc∗

b
(T ) − B

∣
∣
∣ < Bth

)

and
(∣
∣
∣λc∗

b−high − λ
c∗
b−low

∣
∣
∣ < λth

)

.
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(b) Cumulative resource spent by the optimal and static controls.

Figure 1: Parameter values:c(u(t)) = u2(t), T = 5, umax = 0.06, B = u2
maxT/8, s0 = 0.01, α = 0.5.

5.1. Shape of the control signal, constant spreading rate

We first study the shape of the control signal when the spreading rate profile is constant over time,i.e. β(t) = β, for
t ∈ [0 T ]. The parameter values used to generate the given figure can be found in its caption. The campaign deadline
is fixed atT = 5, maximum control effort umax = 0.06, effectiveness of the control on stiflersα = 0.5, initial fraction
of spreaderss0 = 0.01 and budgetB = u2

maxT/8 (resource constrained case). Since we have assumedc(u(t)) = u2(t),
and 0≤ u(t) ≤ umax, this value ofB corresponds to one-eighth of the maximum possible value.

In contrast to SIS/SIR models, the Maki Thompson model does not have an epidemicthreshold [1, Sec. 10.2].
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Wheneverβ/γ > 0, which is always satisfied for non zeroβ, the information epidemic kicks off. In Fig. 1a we have
shown the shapes of the control signals for three different values of the spreading ratesβ and recovery ratesγ. Our
formulation aims to minimize the fraction of ignorants at the end of the campaign deadline (Eq. (3a)), hence the
application of the optimal strategy leads to lower value ofi(T ) when compared to the non-optimal strategies where
no control or a static control is applied. The static controlrespects the same budget as the optimal strategy and has
constant value throughout the campaign horizon.

For strong epidemic with slow recovery (β = 1.2, γ = 0.1) it is advisable to exert more control effort at the
beginning stages of the epidemic. Doing so increases the spreaders at early stages of the campaign, slow recovery
means the population is sustained in spreading state, whichhelps in further information dissemination. For this case,
the final fraction of ignorants with optimal strategy, static strategy and no control are 0.0697, 0.0909 and 0.2150
respectively showing the effectiveness of the optimal strategy over the static strategy.

Fig. 1b shows the cumulative budget spent over time by the optimal strategy,b∗(t) =
∫ t

0
c(u∗(t))dt. It gives an idea

of how monetary expenditure should be planned over the time horizon of interest. To implement the optimal strategy,
either follow the advice in Fig. 1a for the intensity with which the control (e.g. advertisements in mass media) is
applied to the system; or alternatively allocateb∗(t2) − b∗(t1) amount of resource during time interval [t1 t2].

The variability in the strength of the control signal over time decreases for mild epidemics with slow spreading and
recovery (β = 0.2, γ = 0.1). In this case a more uniform control is desired to keep the population of spreaders large
enough throughout the campaign duration. If a large portionof the budget is used in the early stages like the previous
case, the recovery of individuals will reduce the number of spreaders in middle and final stages of the campaign,
which is counter-productive. Since spreading is slow, not enough new spreaders are generated. For this case, the final
fraction of ignorants with optimal strategy, static strategy and no control are 0.6121, 0.8178 and 0.9733 respectively.

Shift in the control effort to later stages of campaign is even more prominent when recovery rate is too high for
the given campaign deadline (β = 4, γ = 6). In this case, control strength is very small in the initial stages, however it
picks up in the middle stages before reducing again at the final stages.

5.2. Shape of the control signal, variable spreading rate

0 1 2 3 4 5
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0.5

1

1.5

2

β
1
(t)

β
2
(t)

Time, t

β(
t)

Figure 2: Variable spreading rate profiles given in Eq. (10).Parameter values:βm = .01, βM = 2, T = 5, a1 = 2, c1 =

3, a2 = 2, c2 = 2.

Often in practical scenarios, the interest level of the population in talking about the subject of the campaign varies
with time. In the case of a political campaign, interest of people in talking about polls will increase as the election
date approaches. Similarly, as a product or a movie becomes old, people lose interest in them. We have modeled these
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(b) Cumulative resource spent by the optimal and static controls (variable
spreading rate).

Figure 3: Parameter values:c(u(t)) = u2(t), T = 5, umax = 0.06, B = u2
maxT/8, s0 = 0.01, α = 0.5.

two scenarios by using increasing and decreasing spreadingrate profiles given by the following equations:

β1(t) = βm +

(
βM − βm

1+ e−a1(t−c1)

)

, (10a)

β2(t) = (βM − βm)

(

1− 1
1+ e−a2(t−c2)

)

. (10b)

The parameter values are set to:βm = 0.01, βM = 2, T = 5, a1 = 2, c1 = 3, a2 = 2, c2 = 2 andt ∈ [0, 5]. The spreading
rate profiles are shown in Fig. 2.

The shapes of the control signals and cumulative resource expenditure, for the spreading rate profiles given in
Fig. 2, are shown in Fig. 3 for two different values of recovery rate,γ=0.1 and 4. We can see that the spreading rate
profile affects the optimal control. When the recovery rate is set to a small valueγ = 0.1, for the decreasing profile
β2(t), the optimal control is strong in the beginning stages and gradually tapers off. But for the increasing profile
β1(t), the control is relatively smaller in the beginning stages. The reason for such a behavior is the small value of
spreading rate, in the case of increasing profileβ1(t), in the beginning stages, which will not aid further information
dissemination in that period of slow spreading. At later stages spreading is stronger, so some resource is saved to
be utilized in middle and final stages by the optimum strategy. When the recovery rate is raised toγ = 4, we see a
behavior which is, in principle, same as in the case of fast recovery in Sec. 5.1. The control effort is shifted to middle
and final stages of the campaign in the cases of bothβ1(t) andβ2(t) for γ = 4 when compared to the case ofγ = 0.1.
This facilitates in having a sizeable population of spreaders throughout the campaign horizon which keeps dwindling
due to fast recovery.

5.3. Effect of various parameters

In this section we consider a spreading rate which is constant over the whole campaign duration,i.e. β(t) = β,
for t ∈ [0 T ], and study the effect of various model parameters on the cost function defined in Eq. (3a). We have
also compared the cost achieved by the optimal control to that achieved by the static control and show significant
performance gains for certain parameter values.

From Fig. 4a, the performance gains due to optimal control compared to static control are significant only for low
and intermediate budget values. The shape of the optimal control increasingly resembles the static control for high
budget values (Fig. 4b). In both the cases, for the maximum value of the budget (u2

maxT ), the strategy is to apply
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Figure 5: Cost,J vs. spreading rate,β. Parameter values:c(u(t)) = u2(t), γ = 0.1, T = 5, umax = 0.06, B =
u2

maxT/8, s0 = 0.01, α = 0.5.

maximum control strengthumax throughout [0T ], so the performance is also the same. For values of the budget close
to the maximum possible, both strategies lead to controls ofsimilar shape and hence have similar performances.

From Fig. 5, as the epidemic becomes more viral, the relativeimprovement offered by the optimal control over
the static control increases. However, at extremely high spreading rate, for a given recovery rate, the benefit offered
by campaigning (optimal or static) compared to no campaign scenario is negligible. For the political campaigning
example discussed in Sec. 2, this means that we gain in the fraction of spreaders/stiflers as people are more and more
interested in talking about upcoming elections. However, if the interest becomes very high, the absolute difference in
the fraction of spreaders/stiflers is almost negligible compared to the case when no campaigning is used. This is so
because the spreading rate is so high that we are able to reachalmost the whole population even without campaigning.

From Fig. 6, increasing the recovery rate for a fixed spreading rate has qualitatively the same effect as decreasing
spreading rate for a fixed recovery rate. Once someone recovers and becomes a stifler, she does not disseminate the in-
formation (unless recruited by the control). With a higher recovery rate, a larger fraction of spreaders becomes stiflers
quickly. They lose interest and do not spread the information actively. Due to diminished information dissemination,
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Figure 7: Cost,J vs. campaign deadline, T. Parameter values:c(u(t)) = u2(t), β = 0.8, γ = 0.1, umax = 0.06, B =
u2

max(5)/8, s0 = 0.01, α = 0.5.

the fraction of ignorants on the election day increases. This is true for any control strategy, even the ‘no control’
strategy, as the three plots in Fig. 6 show. It is observed also that the relative performance improvement achieved by
the optimal strategy over the static strategy reduces.

From Fig. 7, for givenβ andγ, as the deadline increases, the relative performance improvement of optimal control
compared to static control increases. But for large deadlines, it is possible to reach more people compared to the case
of shorter deadline, for chosen values ofβ andγ. This fraction is close to the equilibrium value which the chosen
values ofβ andγ allow. Hence, the advantage offered by campaigning (optimal or static) over no campaign strategy
decreases. If the deadline is larger, the fraction of peoplewho remain ignorant on the polling day is expected to
reduce, simply because there is more time for the information to spread (to its equilibrium value).

Fig. 8 reveals that optimal campaigning offers benefit over static campaigning only if we start the campaign early,
i.e., when number of spreaders in the population att = 0, represented bys0, is low. This means that one should not
bother about calculating/implementing an optimal campaigning strategy if a sizeablepopulation already knows the
message at the beginning of the campaign—the static controlstrategy is good enough. For practical scenarios, lows0

is usually satisfied, hence the optimal strategy is expectedto outperform the static strategy by a considerable margin.
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Figure 8: Cost,J vs. initial number of spreaders,s0. Parameter values:c(u(t)) = u2(t), β = 0.8, γ = 0.1, T = 5, umax =
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Figure 9: Cost,J vs. maximum control effort, umax. Parameter values:c(u(t)) = u2(t), β = 0.8, γ = 0.1, T = 5, B =
(0.06)2 × T/8, s0 = 0.01, α = 0.5.

More often than not, we know about the information as a resultof the ongoing campaign.
We plot the variation ofJ with respect to maximum control effort umax in Fig. 9. As expected, the improvement

of the optimal control over the static control gradually increases and then saturates. The minimum allowed value of
umax is the value of the static control. Asumax increases the system benefits from stronger early control effort, which
is beneficial for parameter values chosen. But for too high values ofumax the optimal control never saturates to the
maximum value and hence further improvement in the cost is not possible by increasingumax. Fig. 9 studies the effect
of umax on J, hence other parameters, specificallyB andT are fixed. Thus the value of the static control,ustat =

√
B/T

is fixed throughout the figure.
Fig. 10 shows variation of the cost function with respect toα. As expected, increasingα leads to reduction in

fraction of ignorants on the polling day. It increases the conversion of stiflers to spreaders, which enhances information
dissemination. Higher values ofα can be attained by better designed advertisements. In addition, we observe that
increasingα leads to increase in relative improvement of the cost function achieved by the optimal strategy compared
to the static campaigning strategy.
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Figure 10: Cost,J vs. effectiveness on stiflers,α. Parameter values:c(u(t)) = u2(t), β = 4, γ = 6, T = 5, umax =

0.06, B = u2
maxT/8, s0 = 0.01.

6. Conclusion

In this work we have formulated an optimal control problem tomaximize the spread of information under a
fixed campaigning budget constraint. The information spread dynamics is assumed to follow the Maki Thompson
rumor model, which is more suitable in this context than SIS/SIR epidemic models used in some of the previous
studies. The control signal converts ignorants and stiflersinto spreaders. This can be done via strategies such as
advertising in mass media, publishing manifestos, door-to-door campaigns etc., depending upon the application—
election, product promotion, crowdfunding, social awareness campaigns, to mention a few. We assume general non-
linear campaigning costs and show the existence of a solution to the formulated optimal control problem. Note that
the standard Filippov/Cesari theorems are not applicable in this situation. We solve the optimal control problem
using Pontryagin’s Minimum Principle and a modified versionof forward backward sweep technique for numerical
computation, to accommodate the isoperimetric budget constraint in our formulation. The techniques developed in
this paper are general and can be applied to other similar optimal control problems.

To model practical situations, such as increasing interestof people in talking about elections as polling day ap-
proaches or diminishing interest in a movie after its release, we have allowed the spreading rate profile of the infor-
mation epidemic to vary during the campaign duration. We have studied the shape of the optimal control signal for
different model parameters and spreading rate profiles. Variations of the optimal campaigning costs with respect to
various model parameters are also studied and results compared with the static campaigning strategy. In the static
strategy the control is constant throughout the decision horizon and respects the same budget constraint as the optimal
strategy. We have found that the optimal strategy achieves significant performance improvements compared to the
static strategy for a wide range of model parameters.
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