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Abstract

We construct a generalized Darboux transformation (GDT) of a general coupled nonlinear
Schrodinger (GCNLS) system. Using GDT method we derive a recursive formula and
present determinant representations for N-th order rogue wave solution of this system.
Using these representations we derive first, second and third order rogue wave solutions
with certain free parameters. By varying these free parameters we demonstrate the
formation of triplet, triangle and hexagonal patterns of rogue waves.
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1. Introduction

In recent years the study of rogue waves (RWs) got impetus due to their phenome-
nal properties and their use in potential applications, say for example supercontinuum
generation in photonic crystal fibers and Bose-Einstein condensates ﬁl, ] RW is a lo-
calized object in both space and time and appears from nowhere and disappears without
a trace B] A wave is classified under this category when its wave height (distance
from trough to crest) reaches a value which is at least twice the significant wave height
@, E, E] Even though it was first observed in arbitrary depth of ocean, the phenomenon
is now shown to appear in diverse areas of physics including nonlinear optical fibers M],
BEC |[5], super fluid He [6], capillary waves [7], multi-component plasmas |§] and so
on. The most common mathematical description of RWs is based on certain rational
solutions of the nonlinear Schrédinger (NLS) equation, namely i1, + 9., + 2[¢|?% = 0,
where 1) represents amplitude of the wave and subscripts denote partial differentiation
with respect to that variable. Certain kinds of exact solutions of NLS equation have
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been considered to describe possible mechanism for the formation of RWs such as Pere-
grine soliton [9], time periodic breather or Ma soliton (MS) [10, [11] and space periodic
breather or Akhmediev breather (AB) [12]. Subsequently attempts have been made to
construct RW solutions through different methods for the NLS equation and its variants
113,114, 15, 116, 17, 18, 119, 120, 21, 22, 23, 24]. In this paper, we construct the N-th order
RW solution of a general two coupled nonlinear Schrodinger (GCNLS) system [25],

it + Paa + 2(alpl® + clg? + bpg* + b qp*)p =0, (1a)
it + quo + 2(alp* + |q|* + bpg* + b*qp*)q = 0, (1b)

where p and ¢ are slowly varying pulse envelopes and a and c are real constants. Here
b is a complex constant and * denotes complex conjugation. The constants a and ¢ de-
scribe the self phase modulation and cross phase modulation effects whereas the complex
constant b and b* describe the four wave mixing effects. When a = ¢ and b = 0, Eq. ()
reduces to the well known Manakov system [26]. When ¢ = —c¢ and b = 0 it reduces to
the mixed coupled nonlinear Schrédinger equation [27].

The Lax pair or eigenvalue problem of () reads as

U, =UV = (AJ + P)V, (2a)
U, =V = (A?Vy + AV; + Vo) U, (2b)

where U = (¢(z,t), p(z,t), p(x,t))T is the vector eigenfunction and the superscript T de-
notes the transpose of the matrix. The block matrices J, P, Vy, V1, Vo and A are given by

i1 0 0 0 0 p 10 0
J=(o i o), P={0 0 ¢|. vo=—2il0 1 o],
0 0 —1 re ro 0 0 0 -1
0 0 »p —ipr;  —ipra Pz
Vi==-210 0 gq|, Vo=|—igry —igre 1y (3)
rt r2 0 —iT1y  —irez  ipri+iqra

and A = diag(\, A, \) where 11 = —(ap™ +bq*), ro = —(b*p*+cq*) and A is the isospectral
parameter. Eq. () can be obtained from the zero curvature condition U;—V, +[U, V] = 0,
where the square bracket denotes the usual commutator.

Recently Wang et al [25] have obtained N-bright soliton solution for the system ()
through Riemann-Hilbert method and studied the collision dynamics between two bright
solitons. Later Lii and Penj have examined the Painlevé integrability of this model and
shown that it passes the Weiss-Tabor-Carnewell (WTC) algorithm [2&]. The authors have
also derived particular solutions through Painlevé-Béacklund transformation. Further, we
have constructed dark-dark soliton, general breather (GB), Akhmediev breather (AB),
Ma soliton (MS) and first order RW solutions of () using Hirota bilinearization method.
We have captured the dark-dark soliton in the defocusing regime and identified the other
solutions, namely GB, AB, MS and RW in the focusing regime and also analyzed the
characteristics of the above profiles with respect to the four-wave mixing parameter. In
addition to the above we have considered RW solution as the starting point and derived
AB, MS and GB in the reverse direction. In a follow-up work, we have constructed explicit
higher order RW solutions of (IJ) using modified Darboux transformation method (DT).
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Very recently efforts have also been made to construct N-th order RW solution of
certain nonlinear evolution equations, see for example Refs. [29,130,131],132, 33,134,135, 136].
Motivated by this contemporary development, in this paper, we intend to construct the
N-th order RW solution of this model. Since it is difficult to construct explicit N-th order
RW solution using modified DT, we consider the generalized Darboux transformation
method (GDT) and derive the N-th order RW solution of this system. In the conventional
N-fold DT one has N-distinct eigenvalues. However, it has been shown that the higher
order RW solutions do contain only one critical eigenvalue Ag. As our aim is to construct
higher order RW solutions through DT we need to restrict all the eigenvalues \;, ¢ =
1,2,...,N, such that \; — A; = Ag. It has been demonstrated that in the GDT, N
distinct eigenvalues can be restricted to a single critical eigenvalue through a suitable
limit process. Applying this limit process successively we can construct the recursive
formula for N-th order RW solution. Applying the same limit process on the determinant
representation of N-fold DT we can get the determinant representation of N-th order
RW solution. In this paper, we present both the recursive formula and determinant
representation of N-th order RW solution. We also analyze the structure of these RWs in
detail with certain free parameters. We present the explicit expression of first and second
order RW solutions of (). Since the explicit expression of third order RW solution is
very lengthy we only give the third iterated GDT solution formula of it. We derive the
second and third order RW solutions with two and four free parameters respectively.
In addition to the above, we analyze the RW solutions based on these free parameters
and obtain certain interesting structures. For example, in the case of second order RW
solution we get triplet structure and in the case of third order RW solution we observe
triangular and hexagonal structures respectively.

The plan of the paper is as follows. In Sec. 2 we construct first, second and third
iteration of DT for () and present the N-th iteration of DT. In Sec. (B]), we discuss GDT
of Eq. (@) in detail and present both recursive formula and determinant expressions of
N-th order RW solution through GDT. In Sec. (@), we derive the explicit form of first,
second and third order RW solutions. A detailed description of first, second and third
order RW solutions based on the free parameters is also included in this section. Finally,
in Sec. (@), we present our conclusions.

2. Darboux transformation for GCNLS system

2.1. First iteration
A Darboux transformation (DT) is a special gauge transformation,

U[1] = T[]V = WA — S[1]V, (4)

where ¥ and ¥[1] are old and new eigenfunctions of ([2)), T'[1] is the Darboux matrix and
S[1] is a non-singular 3 x 3 matrix. The DT (@) transforms the original Lax pair (2] into
a new Lax pair,

w1, = U[(1] = (AJ + P[1])¥[1],
U] = VU] = (A*Vo[1] + AVA[1] + V2 [1])W[1], (5)
in which the matrices P[1], Vi[1], V1[1] and V3[1] assume the same forms as that of P,

Vo, V1 and V5 except that the potentials p and ¢ have now acquired new expressions,
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namely p[1] and ¢[1] in U[1] and V[1]. Substituting the transformation ) into () and
comparing the resultant expressions with (&), we find

Ul = (T[] + TU)TRI, VI = (T + TRIV)TR) (6)

Plugging the expressions U[1], V[1], U, V and T'[1] in Eq. (B)) and equating the coefficients
of various powers of A on both sides we get the following relations between old and new
potentials, namely

Vo[1] = W, (7a)
Vi[l] = V1 + [V, S[1]], (7b)
Va[l] = Vo + [Vi, S[1]] + [Vo, S[1]]S[1], (7c)
P[1] = P+ [J, S[1]], (7d)
S(1]e = [P, S[1]] + [J, S[1]]S[1], (7e)
S[1)e = [Va, S[1]] + [V1, S[AN)S[1] + [Vo, S[A]]S[1]*. (7f)

The eigenvalue problem given in (2)) remains invariant under the transformation (@)
provided S[1] satisfies all the Eqs. (7a)- (7).
We assume a general form for the matrix S[1], namely

S11 Sz Sis
S[] = [ S21 S22 Sz |. (8)
S31 S32 Sz

Substituting the assumed form of S[1] in Eq. (Zd) and equating the matrix elements on
both sides, we find

p[l] =p+2iS13, ¢[1] = q + 2iSa3. )

To determine the exact form of S[1] we consider S[1] to be [317],

S[1] = H A H P, (10)
where
@] 0 M 0 0
P11 —Y7 —1 0 0 A

In Eq. ) 91 = (¢1, ¢1, gol)T is the column solution of Lax pair equations (2] for the
initial potential (p, ¢) at A = A;. Then it follows from the orthogonality condition that
(¢%,0,—y1)" and (0, ¢, —¢7)" are also the solutions of (@) at A = A}.

The first iterated DT is given by ¥[1] = T[1]¥ = TA — S[1]¥ (vide Eq.()). If H; is
the solution of ¥[1] at A = A; then it should satisfy [37]

Uy[1] = T[1]H, = 0. (12)
In other words

HlAlfs[l]Hl:0:>S[1]H1:H1A1 (13)
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Expressing Eq. (I3)) in matrix form, we have

S11 S12 Sis V1 9} 0
So1 Saa Saz | x |1 O 1
S31 S3z Sz o1 Y7 —¢1
A1 Aol 0
= M 0 Aot |- (14)

Arpr AT —AToT

Using Cramer’s rule we can determine the exact expression of Si3 and Se3 which in
turn reads

v 1 0 v o9 0
?1 0 1 ¢ 0 ¢l
N T S N Y P 3 )
Y1 el 0 1 p] 0
1 0 e] ¢ 0 g1
p1 —Y7 —9] e

Evaluating the above determinants, we find
(A
[1]? + [o1]* + o1 [
Mgl
1] + 1] + |1 ]?
From (I6) it is evident that to determine Sj3 and Sa; one should know the explicit
expressions of 11, ¢1 and ¢; which are the solutions of the eigenvalue problem (2)).

They can be determined by solving the following six coupled linear first order partial
differential equations, namely

Y1z =iA1 + pepr,
P12 =iMd1 + g,
P12 =T1Y1 + 1201 — iAp1,
P1e =(=20A] —ipr1)r — iprady + (ipe — 2pA1)en,
pre =(—20X] — iqra)e1 — igrivy + (ige — 2¢\1) 1,
10 =(—1r1e — 2A\171)¢1 + (—ir2e — 2M172) b1
+ (ipry +igro 4 2iX3) 1. (17)

S13 (16a)

Sa3 (16b)

Solving the system of equations given in (I7]) with appropriate seed solution p and g,
one can obtain the explicit expressions of 11, ¢; and ¢;. With the known expressions
of Y1, ¢1 and ¢; the matrix elements S13 and Ss3 can now be fixed. Plugging the latter
into (@), we obtain the solution for the Eq. () in the form

(M= ADed
pll] = p+2 ,
1 R+ 161 + [oi]?
(= ADbigd
ql] = q+2¢ .
) o Tl + forP

(18)



Eq. (I8) can also be written in a more compact determinant form, that is

U1 01 0 Y19l 0
b1 0 7 ¢1 0 ¢f
| MY Ao 0 A1 0 ATy
pll]=p+2i . , gl =q+2i . (19)
1 el 0 Y1 Q] 0
¢ 0 o1 ¢ 0 o1
p1 —Y; —91 e

Through the formula (IX) or (I9) one can generate a class of solutions including solitary
wave solution, breather and RW solution for the Eq. ().

2.2. Second iteration
The second iterated DT reads,

U[2] = T[2]9[1] = U[1]A — S[2]¥[1], (20)

where ¥[2] and U[1] are the second and first iterated eigenfunctions respectively and T'[2]
is the second iterated DT matrix. The DT (20) transforms the first iterated Lax pair (B
into the second iterated Lax pair of the same type

V(2] = URJW[2] = (AJ + P[2])W[2],
V(2] = V[2]0[2] = (A*Vo[2] + AV [2] + V2 [2))¥(2], (21)
where the matrices P[2], V5[2], V1[2] and V3[2] have the same forms as that of P[1], Vp[1],
V1[1] and V5[1] except that the potentials p[1] and ¢[1] have now acquired new expressions

p[2] and ¢[2] in the matrices U[2] and V[2]. Substituting the transformation 20) into
I) and rearranging the resultant equations, we get

U2l = (T[2e + TRUADT2 ™, V(2] = (T[2e + TRIVIDT2] (22)

Substituting the matrix expressions of U[2], V[2], U[1], V[1] and T[2] in Eq. (22)
and equating the coefficients of various powers of A on both sides we get the following
relations between the first iterated and second iterated potentials, namely

Vol2] = Vo[t], (23a)
Vi2] = Val] + [Vo[1], S[2]], (23b)
Va[2] = Vo[l + [W[1], S[21] + [Vo[1], S[211512], (23¢)
P[2] = P[1] + [J, S[2], (23d)
S[2l. = [P[1], S[2]] + [, 5[2]]S[2], (23e¢)
S(2le = [Va[1], S[2]] + [Vi[1], S[2]]S[2] + [Vo[1], S[2]] S [2]* (23f)

The eigenvalue problem given in (ZI) remains invariant under the transformation (20),
provided S[2] satisfies all the Eqs. (23al)-(231).
We consider the matrix S[2] is of the form

S22l S[2li2 S[2]is
S[2] = | S[2]a1 S[2]22 S[2]23 (24)
S2]s1 S[2]s2 S[2]as
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so that upon substituting (24) in Eq. (23d) we can find the following two expressions
which link the new and old potentials respectively, that is

p[2] = p[1] + 2iS[2)1s, q[2] = q[1] + 2iS[2]as. (25)

We determine the elements in the matrix S[2] by assuming the latter to be

S[2] = Ha[1]AxHo[1]7 1, (26)
where
Yol]  pa[1]" 0 a2 0 0
@a[l]  —ha[1]" —g@o[l]* 0 0 A3

In Bq. @) Wa[1] = (2[1], ¢2[1], 02[1])" is the column solution of the Lax pair (ZI)
at A = Ag. It follows from the orthogonality condition that (p2[1]*,0, —t[1]*)" and
(0, @2[1]%, —$2[1]*)" are also the solutions of ZI) at A = A3. If Hy[1] is the solution of
U[2] at A = Ay then it should satisfy

U[2] = T[2]Hz[1] = 0. (28)
In other words
H3[1]Ay — S[2]H3[1] = 0 = S[2]H2[1] = Hz[1]As. (29)

The explicit matrix form of Eq. (29) is given by

S22l S[2li2 S[2]is Yo[l]  po[1]* 0
S[2]21 S[2]22 S[2]23 | x | ¢2[1] 0 p2(1]*
S[2z1 S[2]s2 S[2ls3 pa[l]  —a[1]" —@a[l]*
Ao2[l] Aspa[1] 0
= | Aagpo[1] 0 Aspa[1]* ] . (30)

Aogpa[l] =As[l]" —A5da(1]

Since we need to know the exact expression of only two matrix elements, namely
S12]13, S[2]23 (vide Eq.([28)), we determine them from the above equation with the help
of Cramer’s rule. Our result shows that

(e — X5)alt]o3 1]

ol + 0l + l2liE"

IR Tt

SRl = LR T 6 [ + 2P (3D

From (BI)) it is evident that to determine S[2]13 and S[2]23 one should know the
explicit expressions of 12[1], ¢2[1] and ¢2[1] which are nothing but the solutions of the

S[2l1s =




Lax pair equations,

Yo[1]z =iAath2[1] + p[1]p2[1],
P2[1]s =idad2[1] + q[1]p2[1],
p2[l]e =r1[1]12[1] + r2[1]g2[1] — idawpa(l],
Ga[1]s =(=2iA5 — ip[1)r1[1])¢ha[1] — ip[1]ra[1]ea[1] + (ip[L]e — 2p[1]A2)02[1],
$2[1]; =(=2i\3 — ig[1]ra[1])¢2[1] — dg[1)r1 [1]e2[1] + (ig[1]z — 2q[1]A2) 2 (1],
p2[1]y =(—ir1[1s — 2Xar1 [1])h2[1] + (—irz[l]s — 2A2r2[1]) @2 [1]
+ (ip[1]r[1] + ig[1)ra[1] + 2iA3) oo (1], (32)

with r1[1] = —(ap[1]* + bq[1]*), ro = —(b*p[1]* + ¢q[1]*) where p[1] and ¢[1] are the first
iterated potentials.

Solving Eq. (82)) consistently with first iterated potentials p[1] and ¢[1] we can obtain
the exact forms of ¥3[1], ¢2[1] and @2[1]. Substituting them in (BI]) we can get the matrix
elements S[2]13 and S[2]23. Plugging the latter into (25]) we arrive at the second iterated
solution for the Eq. () in the form

(A2 = A5)ia[1]5[1]
[W2[1]1? + 62[1]> + [@2[1]]*”
(A2 — A3)da[1]3(1]
|a2[1]1% + |@2[1][* + [2[1]?
Using ([B3)) one can generate a class of solutions including 2-soliton solutions, second order

breathers and so on for the Eq. (). Eq. B3] can also be written in a more compact
form, that is

pl2 = pl]+2

ql2] = q[1] + 2 (33)

[V [2]|
|DE2]|

| IV2[2]]

p2l=p+2i g2l =q+2i DRl

(34)

where the matrices N1[2], N2[2] and D[2] are given by

A1 Aape ATl ASps 0 0
Y1 o 1 ©5 0 0

Ny [2] _ A1 Ao 0 0 ATor Al
) $2 0 0 ©1 ©5 ’
M Ave APl APes 0 0
P1 P2 -] -5 -1 —93
A A2 ATpT As0s 0 0
(1 () 7 3 0 0
A1gr A2 0 0 AjotT Aol

Na[2] =

212 ¢ P2 0 0 <p1 @2 ’

Mo A3 0 0 APl A3
R 2 2 B R O3



and

A1 dae Al A3 0 0
U1 ) 1 5 0 0
AP Aago 0 0 AT A3ps
D[2] = . 35
12 #1 b2 0 0 h ©3 (35)

AMpr Aepr —ATYT Aoty —ATOT —A305
e R e S T

In the above determinant representations (12, ¢2, <p2)T is the column solution of Lax pair

equations (@) at A = Ay so that (¢3,0,—¢3)" and (0,5, —¢5)" are also the solutions of
@) at A = A3.

2.3. Third Iteration

Since we plan to construct third order RW solution also, in the following, we recall
the essential expressions to derive it. The third iterated DT matrix,

T[3) = A — Ha2]ABIH,[2) ", (36)
acts on the eigenfunction ¥[2] yields
V(3] = T[3]¥[2]. (37)

This transformation changes the second iterated solution p[2] and ¢[2] into new solution
p[3] and ¢[3] as

; (A — A5)ws[2]p5[2]
a2 + 922 + |2
) Do Xl
Al = R A Rl + a2l

where (¢3[2], ¢3[2], 3[2])T is the column solution of the Lax pair equation at A = )3
with p[2] and ¢[2] as the seed solution. From the formula (38) we can derive three soliton
solution and third order breather solution using suitable seed solution. Using the ideas
given in the previous subsection we can rewrite Eq. (88)) in a more compact form,

pB] = pl2]+2

(38)

N1 [3]] | N2[3]]
PI=p+ 20 gy a9 =0+ 2 ) .
where the matrices N1[3], N2[3] and DI3] are given by
A Ao Mys APl ASTel ATl 0 0 0
A Aahe Asz ATer Aspn Az 0 0 0
Y1 Y2 Y ©1 ©5 ©3 0 0 0
Aot A2 Aigs 0 0 0 APl APes AP
Ni[3] = A1 Aada A3 0 0 0 ATPT Az A3ps
?1 P2 ?3 0 0 0 ©1 ©5 ©3
A A Mys APl APel AP s 0 0 0
A1 Aawe Asps —ATUT —Asty =AYy —ATOT —Asdn —A3¢3

Y1 w2 w3 YT 0 S T - S S 2 S 21




N [3]

and

ATt
A1y
1
AL
A1é1

Ao
A1
©1

At
Ay

Al
A1¢1
o1
Afer
A1 P1

A3tha
A21)2
o
A3
A2gha

Ao
A2p2
©2

A5ta
Ao

Ao
A2¢2
b2
)\% ®2
A2 2
P2

A343
A313

A3¢3
A303

A3
A33
®3

A543
A33

A3
A3P3

A3p3
A33
¥3

Aot
Alp]

—7

A5 s
ASp5

—A33
3

Ay 0 0 0
PRI 0 0 0
o 0 0 0
0 )\1 ol )\2 3 )\3 ©3
0 ATl ASp5 A3¢3
0 ©1 ©5 ©3
0 APt APer APl
A3y —ATOT —A305  —A3¢;
—3 -1 —¢3 —¢3
AZ* 0% 0 0 0
b 0 0 0
o 0 0 0
0 Aot APes APel
0 ATPT A Az
0 ©1 ©5 ©3
205 Ao —AS05 — AU
L B TRV 1 B V10
I S B

is the column solution of Lax

—¢3)"

In the above determinant representations (vs, @3, gpg)T
pair equations (@) at A = As and (3,0, —¢3)" and (0, ¢%,
A= AL

are solutions of (2)) at

2.4. N-th Iteration

If N distinct basic solutions ¥y = (¢x, ér, )L, k = 1,2,..., N, of the Lax pair (2]
are given at A = A\, k = 1,2, ..., N, then the N-fold DT can be iterated successively. The
N-th iterated solution turns out to be

11 g Ow = X)un[N — T[N 1]
PINT = pIN =1+ 2o [on [N —1IF + [on [N — 1
B O = X3)ew[N — iV 1]
ANT = alN = A4 2 e (o IV~ 1P + o [N — 1P (1)
where U[N — 1] = T[N — 1]J¥[N — 2] = T[N — 1]T[N — 2]..T[1]T[0]¥ and
TIN] = Ay — Hy[N — 1JA[N]Hy[N — 1]~ with
AN 0 0
AN = [ o a0 |,
0 0 A
UV =1 @R[V - 1] 0
HN[N — 1] = ¢N[N — 1] 0 ga}‘V[N 1] (42)
on N — 1] CoRIN — 1]



By solving the Lax pair equations with suitable seed solution and substituting the ob-
tained forms in the solution formula (@Il we can construct a class of solutions including
N-soliton solutions, N-breather solutions and so on.

The determinant forms of the IN-th iterated solutions are given by,

Agy As
pIN] = pl0] + 2652, V] = ql0] + 2652, (43)
1 1
AT AN T AT T Y T e 0 0
v U 3 on 0 Lo
A ATl e AV len 0 0 Mo AT ek
B o NI e, gk
_ — *(N—=1) *(N—=1) % «(N=1) #(N=1) %
/\i\] 1991 )‘% l‘PN *)‘1( )d}l 7)‘N( )wN */\1( )d)l *)‘N( )¢N
®1 oN -7 —¥N —¢1 —dn
AN=Ly, Mty ATV Do AN D ox 0 0
Y1 YN [ PN o won
N-— N-— * (N — * *(N— *
A M Tl - AN T e 0 0 A )‘Pl Ay PN
o1 o 0 0 i oN
A e ANYN Af My N oy 0
$1 PN -7 -y -7 —dN
AV AN Ty AT T Per e A T Ve 0 0
P1 YN [oh oN (NOI (N01)
N— N-— * (N — * *(N — *
A M T e - AN T eN 0 0 A )‘Pl Ay PN
o1 o 0 0 % e
AVgr oo ANgw 0 0 ATt MY e
p1 e - ¥R —61 e ¢k

Eq. [@3) gives N-th iterated DT solution formula from which one can construct N-soliton
solution and N-breather solution explicitly.

3. Generalized Darboux transformation (GDT)

We have shown that the N-th iterated DT contains N-eigenfunctions ¥;, 7 =1,2, ..., N,
associated with N-distinct eigenvalues A;, 2 = 1,2, ..., N. In the conventional DT the N-th
iteration T[N] annihilates its generating eigenfunction. In other words, the generating
eigenfunction ¥; cannot be used more than once when we carry out the iteration in
the original DT scheme. However, to obtain a higher order RW solution for a critical
eigenvalue A\g we must apply repeated DTs. As mentioned in [30] this difficulty can be
overcome by noting that the annihilated eigenfunctions can be regained if we take the
limit A\; — A1 in the corresponding eigenvalues found in the DT. Adopting the procedure
developed in Ref. [29] we generate higher order RW solutions which involve only one

eigenvalue, namely \g.
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3.1. First iteration of GDT

From the classical Darboux theory, we infer that T[1]¥; = 0 and so we cannot apply

DT on ¥; again. Suppose ¥y = W1(A; + ) is a special solution for the Lax pair (2I).

Then w, where § is a small parameter, is also a solution of ([2]). Expanding the

eigenfunction Wy in Taylor series at A1, we get
Uy =0y (A +0) =00 olls p wlls? 4 wlVsN (44)

where \Il[lk] = %%‘I’l()\ﬂA:Ap k=0,1,2,---. Since \I/[lo] is the solution of (@) at A = Ay

with initial seed solutions p and ¢ the first step GDT of () turns out that

(A =AD"
12 + o] |2 + o2
o= apee
W2 + o112 + [} 2

pll] = p+2i

gl] = q+2 (45)

As far as the first iterated solution is concerned one may note that there is no difference
between the conventional DT and GDT.

3.2. Second iteration

Now we make the second iterated GDT through the limit process |29]. Doing so, we
find

g T =x 492 [0+ TP (M +9)
60 ) 5—0 )

= ol ey, ol = ey, (46)

where \11[10] and \Il[ll] are already determined through the expansion given in (@4]) and
U4 [1] is the new iterated eigenfunction obtained through GDT which is a function of A\
only. Since T[1] is also known, the right hand side of (@6l provides the exact form of
U1 [1] = (P1[1], ¢1[1], 1 [1])T. Substituting them in (B3] we arrive at the second iterated
GDT solution of () in the limit Ay — A1, that is

- = AD 1 [1]
P2 = Pl 2 e T + (o
- . a =D [1ei[1]
a2 = a2 E TG T 4 [

Performing the limit process on the determinants given in Eqs. [34) and ([B5) we can
get the determinant form of the solution ([@7). By comparing the Eqs. [33) and (1), we
observe that the eigenvalues and their corresponding eigenfunctions that appear in (B3]
are replaced by the eigenvalue A\; and its associated eigenfunction. To express (@7 in
the determinant form we need to perform the same limit process directly on ([34]). Doing
so, we find

(47)

[ M [2]|
[H [2]]

[ Mo[2]|

p=p ]

|)\2~>)\1; Q[Q] = q + 27’ |A2—)A17 (48)
2



where

)\11/11 wl[la 1] )‘TSDT 0 (101[13 1]* 0
wl wl[oa 1] (,DT 0 ¥1 [Oa 1]* 0
H[QHA e )\1¢1 ¢1[1ﬂ1] 0 7)\T90T 0 501[171]*
e o1 #[0,1] 0 ©1 0 ¢1[0,1] ’
¥1 (Pl[o, 1] _wf _(bf _Q/JT [Oa 1] —$ [Oa 1]*
)\1’(/11 ’lﬂl{l, 1} )\;ngT 0 ©®1 F, 1%* 0
Y1 10,1 f 0 ©1/0, 1" 0
A 1,1 0 — Ao 0 1,1]*
Ml [2] |>\2 A1 — ;ffl zi {0: 1} 0 s;fpl 0 (‘;{{[[0’7 1]]
e1 10,1 =y —¢7  —¢7[0,1] —1[0, 1]
)\1’(#1 ’lﬂl{l, 1} X{(p’{ 0 ®1 F, 1}* 0
Y1 0,1 ] 0 ©10,1]* 0
Mot ¢l 0 =Xy 0 e1[1, 1]
M2[2]|)\ —A — * *
2 ! ¢1 (bl [05 1] 0 #1 0 ¥1 [05 1]
e1 ¢1[0,1] —v7 97 —¢f[0,1] —¢1[0,1]"
with
, 1o ;
Yilg,n] = Ea—)\?[()\l +0) 1 (A1 +6)][s=o0,
) 1 97 .
¢1li,n] = Ew[@l +6)? o1 (A1 + 9)]|s=o0,
. 1
. 1 o ; .
e1li,n] = EW[()\l +8)?p1(M +6)]ls=0, J,m=0,1,2. (49)
. 1

Using the determinant representation ([@8) and (49) we can straightforwardly derive the
second order RW solution of GCNLS system ().
3.8. Third iteration

In this subsection we generate the third iteration through limit process. The resultant

action yields

11125, 48] [,
lim
§—0 1)

= O+ [T[1 (M) + Ta[2) (M)

T2 (M) T [1] (M)W 2

where \Il[lo], \11[11] and \11[12] are given in Eq. (44]) and ¥4[2] is the second iterated eigen-
function obtained through GDT which is a function of Ay only. Since Ti[1] and T}[2]
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are also known, the limit process (B0) straightforwardly gives a nontrivial solution to the
Lax pair (2)) with p[2] and ¢[2] as the seed solution with only one eigenvalue, that is A;.
The final form of third iterated GDT solution reads

- (= AD 2 (2]
Bl = PR B T R + [ T
- . a =D 2ei[]
3] = A AT R + [ B

(51)

where U1[2] = Ul 4+ [y [1](\) + 121 + Ty 2)(A) T[] (AT and Ty[2] =
A[1] — Hy[2]A[1]H,[2]7! with

¥12]  i[2] 0
Hi2] = ¢12] 0 eil2] |- (52)
e1[2] —v¥i2] —9i[2]

Applying the limit process on the determinants ([B9) we can get the third iterated
solution in the following form:

M [3]] | Ma[3]]
pB3l=p+2i Xa—As 3l =q+2i A2 Ars 53
where
A B C A B C
[Mi[3]] = D E F |, |MJ3]|= D FE F
Gi H J Gy H J
A B C
[H[3]| = D E F (54)
Gg H2 JQ

A (2,1 ¢1[2,2] APer 0 prf2,1]%
A = )\1’(/)1 ’(/)1[1,1] ’(/)1[1,2] 5 B = )\T(piK 0 @[1,1]* 5
wl 1/11 [Oa 1] 1/11 [Oa 2] (pf 0 90[0) 1]*
0 (,01[2, 2]* 0 )\%(ﬁl ¢1 [2, 1] ¢1 [2, 2]
¢ = 0 ¢L2* 0 ), D= Mo éi[1,1] #1[1,2] |,
0 @[032]* 0 ¢1 ¢1 [Oa 1] ¢1 [Oa 2]
0 —Af¢i 0 e12,1]" 0 ¢1[2,2)
E = 0 —Xe¢7 0 |, F= e1[1,1]* 0 ¢1[1,2)* ,
0 -] 0 ©1[0,1]* 0 ¢1[0,2]

14



)\fg(;ﬁl $113,1]  $1[3,2] 0 /\”1‘3501‘ 0
G = Neor @il ei[1,2] |, H=| —Myf —X\o]  —oi[1,1] |,
©1 ¢10,1] 1[0, 2] -7 —¢7  —n[0,1]
—¢1[3,1] 0 ©1[3,2]* AP 9i3,1] (3,2
J = —p1[1,1]F —f[1,2] —o1[1, 2] Go=| Ner @] @a[1,2] |,
_Qﬁl[oal]* —1/1’1*[0, ] _¢1[0’2]* Y1 (Pl[oal] @1[0’2]
>‘T2501 901[251] 901[272] *)\T%/)T /\TQQI)T - T[251]
Gz = Nor e[L1] ei[1,2] |, Ho= | —M\v7 —Mer =91 |,
©1 1[0,1]  ¢1[0,2] —f —¢7  —u[0,1]*
T[271] 1/)1[252]* ¢1[251]*
J2 = - ¢1[15 1]* l/ff [17 2] ¢1[15 2]* ) (55)
¢1 [Oa 1]* 1/]’1* [0’ 2] ¢1 [Oa 2]*
with
) 1 o™ .
Yilj,n] = EW[(A1+6)Jw1(A1+6)]|6:0’
alin) = i+ 8610+ 8l
alin] = gl + e+l jn=0123  (50)

The determinant representation (B3] also provides third order RW solution of ().

3.4. N-th iteration of GDT
Continuing the above limit process and combining all the Darboux matrices, we can
constitute the N-th step GDT which is of the form

(A1 = AD¢ [N — 1pf [N — 1]

PINT = pIN — 1]+ 2 e SN T 4 N = TP

(1 = M) [N — Ugi[N — 1] -
1V — 1P + 161 [V = 1+ a [V —

q[N]=q[N —1]+2i
with

¥y [N —1]

7+ Nf Ti[l)(\) | o)) +
=1 <
oo [TN = UOD)TN = 2] (A1) Ta[1] ()] 0]
and Ti[k] = A[1] — Hi[k — 1]A[1]H [k — 1]71. The matrix H;[k — 1] is defined by
(wl[kr—l] @ik —1] 0 )
Hik—1=| ¢k —1] 0 eilk—1] |. (58)

prlk — 1] —¢ilk—1] —¢ik —1]
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The expressions (B7) and (B8] turn out to be as N-th order RW solution of ().

To present the determinant form of the N-th iterated GDT we perform the limit
process on the determinants given in N-th iterated classical DT ([@3). Assuming that
N-distinct solutions W; = (5, ¢, )T, i = 1,2,...,n, are given for the Lax pair (@) at
A= A1, ..., \; = A\, and expanding the solutions in Taylor series in the following form

+¢1[jamz]6ml +,

(Xi + 0) i (Xs 4 6)

N + 035, 116 + 0[5, 2162 + ...
i +60) i\ +0) = 1

N i + ¢35, 1)0 + ¢:lj, 2102 + ...

1 j . . 2 . )
(A 6 pi(Ni +0) = Nwi+@ilj, 16 + @il4, 210° + ... + @[, mg]0™ + ..., (59)
where
1 o™
; J
Y1[j, m] —iam X T =xs,
1 g™
; J
liml = — VBN hen
, 1 om ,
@1[j, m] B M®;(N)]|a=r,, 7=0,1,2,...N, m=1,2,...N,
and applying the limit process on the determinants ([43]), we find
Do D3
pIN] =p+2i=2, ¢[N]=q+2i—". (60)
D1 D1
The determinants D1, Dy and D3 are given by
D =
(iv/e/2)N —1yy wl[zv71 N —1] (ive/2yN =1k [N—l N — 1] 0 0
Pq P1[0, N — 1] e [0 N — 1] 0 0
(ive/2)N =14, ¢1[N71 N —1] 0 0 ol (/e N-1 efIN —1,N —1]
1 ¢1[0, N — 1] 0 0 I ®10, N — 1]
(iv/e/2)N =1y, [N—l N -1  —@e/2)N~lys —¥i [N—l N -1 —(iVe/2)N 13 —¢F[N —1,N —1]
m m[o N —1] —';plf -7 [0 N —1] Ql#f ﬂﬁ[o',‘l‘v —1]
Dy =
(ive/2D)N 1y Y1IN =1, N —1]  (iv/e/2)N~let efIN —1,N —1] 0 0
w1 1[0, N —1] ) @30, N —1] 0 0
(iVer)N =1y $1[N — 1, N — 1] 0 0 efi/ernN -1 @IIN =1, N —1]
1 ¢1[U Nfl] 0 0 o3 @1[0 N—l]
(iv/e/2)N $1[N, N — 1] (ive/2)N ot @YIN, N - 1] 0 0
°1 ©1[0, N — 1] 3t 930, N — 1] —o3 — 1[0, N — 1]
D3 =
(ive/2)N 1y Y1IN =1, N —1]  (iv/e/2)N Lot efIN —1,N —1] 0 0
w1 1[0, N —1] ) @30, N —1] 0 0
(Ve N—1g, w1V - 1,N -1 0 0 e} (iv/erN -1 PilN - 1N -1
$1 #1(0, Nfl] 0 0 75 <p1[0 N—l]
(ive/2)N o1 $1[N, N — 1] 0 0 et (ivernN TN, N — 1]
°1 ®1[0, N — 1] 7t 930, N — 1] —o3 — 1[0, N — 1]



where

vl = G O+ 8P+ oo
hlin] = Tl + 876 (A + Dl
eilivn] = O+ P (s + oo (61)

Evaluating the determinants in (G0) we can get the N-th order RW solution of GCNLS
system () through GDT with plane wave solution as the seed solution.

4. Multi-RW solutions of GCNLS system

In the previous section, we have derived the necessary formula to generate N-th
order RW solution for the GCNLS system (IJ). In this section, using this description, we
construct explicit multi-RW solutions of the GCNLS Eq. ().

4.1. First order RW solution

We begin our analysis with plane wave solutions as the seed solution, that is p[0] =
aietrt and q[0] = ase’“2t where ay, as and c¢; and ¢y are real constants. Using the above
forms in Eq. (1) and restricting ¢; = ¢o = ¢ we obtain a consistent dispersion relation of

[&]

the form § = af + a3 + (b+ b*)ayaz. Substituting the above seed solution into the Lax

pair equations (I7) and solving the resultant system of equations we obtain the following
special solution with Ay = ih, namely

_a _ai -4
(kjthm/h2 C/Qe +k2 \/h2 5/26 )6
Ui(A1) = [ (k1 me + /€2\/ﬁeﬂ4)€7t ; (62)

(kle +l€2€ ) =t
where A = \/hZ — £(x — 2iht + ®(f)), where ®(f) = S 5%, s; ¢ C,

and by — 2c[(h — \/h? — ¢/2)? — ¢/2)] by — 2c[(h + \/h2 — ¢/2)? — ¢/2] (63)
(c—2h2)(h —\/h2 —¢/2) (c—2h2)(h++/h2 —¢/2)

We have also included an arbitrary parameter ®(f) in the phase factor to obtain triplet,
triangular and hexagonal structures of RWs. Plugging the above basic solutions, (62])
and (G3), in the first iterated DT formula (I8) we can obtain the Akhmediev breather
solution.

To obtain the RW solution we fix the critical eigenvalue to be, \;y = A\ = th =
i(1/c/2 + f?). We expand the critical eigenfunction W;(f) at f = 0 (vide Eq. @) to
obtain

o =0 (A + f2) =0 ol 2 wlPlpt etV g (64)
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Figure 1: (a) First order RW solution of the p component, (b) Corresponding contour plot. Similar
profile occurs for g also (not shown here).

where

ol —

wlt =

8ai(—iv2ct + x)es?

8a(—iv/2ct + x)es? ,

(8 — ict + 4y/2cx)e 2"t

Sa1[60 + 6im — 12t + 4ic*t? — 61/2¢*/ 242z — Gicta® + V2cz®]e 5t

8as[6 + 6im — 12it + 4ic*t® — 6123/ %22 — Gictz? + v2cx®le s

S13v2¢l + 3iv2em — 12iv/2ct — 6v/2c3/%% + (6 — 12ict — 6¢*%)x |’
+2iv/265/23 + 3v/2¢x? — 3iv263 % t2? + cx?’]e_Tict

(65)

a1(60e + 60ig — 60v2¢*/ 2112 — 60iv/2¢> *mit? 4 140iv/2¢% %13 — 4iv/27/28°
+120emtx — 300tz + 203t + 30v/2cla? + 30iv2ema? — 90iv/2cta?
+20iv2¢ 2130 +102° — 2022 2% — 5iv2¢3 2t + ca® — 120icltz),
az(60e + 60ig — 60v2¢* 2112 — 60iv/2¢> >mit? 4 140iv/2¢% %13 — 4iv/27/28°
+120emtax — 300ctx + 20c3t e + 30v/2cla? + 30iv2ema? — 90iv/2cta?
+20iv2¢ 2130 + 1027 — 20242 2% — 5iv2¢3 2t + ca® — 120icltz),
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ol = 60v2ce + 60iv/2cg + 120(1 + im) — 240it — 240iclt + 240emt — 600ct>
—120ic®mit® + 360ic*t® + 403" — 8ic*t® + 120V 2clx + 120iv/2ema
—360iv2ctz — 120iv2¢% ?1tx + 120v/2¢% ?*mitx — 4207263 %12
+80iv2c°?t3 1 + 20v/2¢7*t x4 602 + 60clz? + 60icma® — 300ictz?
—120¢%t%2% + 40icPt32? — 120212 + 30V 2ca® — 40iv2¢3 2t — 20v/265/ 21228
+10cz® + V2c3/ 225, (66)

Substituting \11[10] in (@), we can obtain the first order RW solution in the form

a1t (—6c2t? — 2v/2cx + c(8it 4 4(a? + a3)t? — 322) 4+ 2(1 + a?x® + a32?))

1] = ,
rlt] 2+ 2¢2t2 4+ 2/2cx + ca? + 2(a? + a3)(2ct? + z2)
Q= age’t(—6c2t? — 2/2cx + c(8it + 4(a? + a3)t? — 322) + 2(1 + atx? + a32?))

2+ 2c2t2 4 2/2cx + cx? + 2(a? + a3)(2ct? + 22)
(67)

One may note that the components p and ¢ are proportional to each other. The first
order RW solution is plotted in Fig.1, which is localized in both x and t.

4.2. Second order RW solution

-2

0
x

Figure 2: (a) Second order RW solution of the p component for the values | = 0 and m = 0, (c)
Corresponding contour plot. (b) Second order RW solution of the p component for the values [ = 15
and m = 0, (d) Corresponding contour plot. Similar profile occurs for ¢ also (not shown here).
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Figure 3: (a) Second order RW solution of the p component for the values | = 0 and m = 15, (c)
Corresponding contour plot. (b) Second order RW solution of the p component for the values [ = 15
and m = 15, (c) Corresponding contour plot. Similar profile occurs for g also (not shown here).

To obtain the second order RW solution, we use the limit approach given in Eq. ({6]),
that is

[if? 4+ Th[1]]¢1(f)

= Ty 44w, [0] = ¥, [1] (68)
with Ti[1] = A\ I — Hy[0]A[1]H,[0] 7. (69)

Since we know the expressions \11[10] and \11[11] through (G4)-(G8) and T1[1] (vide Eq. (@)
as well, we can get the exact form of Wy[1] = (¢1[1], ¢1[1], ¢1[1])T readily. Substituting
Uy[1] in Eq. {@T) we can obtain the second order RW solution. On the other hand we
can also get the second order RW solution from the determinant expressions itself (vide
Eq. (@])). In both the ways we end up at

6 n N 6 LT
a?4a2?)t Doneo Nnra™ +130 o Nnit
Doy ’
6 N gm0 N
Zn:O nrl” +1 Zn:O nil
Do ’

p[2] = 124,

q2] = 12a5e2i(ai +a2*)t

(70)

We have given the exact expressions of N,,., N; and Dy in Appendix A.
The results are shown in Figs. 2 and 3. The second order RW solution is derived
with two free parameters, namely | and m. We analyze the second order RW solution
20



based on these two free parameters. When [ = m = 0, we have the classical second order
RW solution which is demonstrated in Figs. 2(a) and 2(c). It contains one largest crest
and four subcrests with two deepest troughs. The RW gets deformed when we increase
the values tol =.3, m=0or =0, m = 0.3 or [l =m = 0.2. Increasing the parameter
values further we observe that the second order RW splits into three first order RWs and
they emerge in a triangular form which is known to be a triplet pattern. We observe
the formation of triplet structure at [ = 3, m = 0 and [ = 0, m = 2.8. When we
increase the free parameter values further the distance between the peaks in the triplet
increases. Figs. 2(b) and 2(d) display the triplet plot of second order RW for the value
I =15 and m = 0. When we interchange the values of [ and m, say for example [ = 0 and
m = 15, the triangular pattern still persists but the three peaks now appear in a different
orientation which is demonstrated in Figs. 3(a) and 3(c). Finally, when we increase the
values of both the parameters [ and m to 10, we get the same triangular pattern but in
a different orientation, which is displayed in Figs. 3(b) and 3(d).

4.8. Third order RW solution

We proceed to construct the third order RW solution of GCNLS system () through
the limit process (B0). Doing so, we find

U, (2] = — 0l i) + T2 ett + T2 e (71)

Substituting the data given in ([G4))-(G6]) into (B0) we can obtain the explicit expression of
U,[2]. Plugging the latter into the solution (&II) we arrive at the third order RW solution
for the GCNLS system (). Since the explicit expression of third order RW solution is
very lengthy we are not presenting the obtained form here. However, in the following,
we analyze the third order RW solution graphically.

2

Figure 4: (a)Third order RW solution of the p component for the values I = 0, m =0, e = 0 and m = 0,
(b) Corresponding contour plot. Similar profile occurs for ¢ also (not shown here).
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Figure 5: (a) Third order RW solution of the p component for the values I = 60, m = 0, e = 0 and g = 0,
(c¢) Corresponding contour plot. (b) Third order RW solution of the p component for the values | = 0,
m =70, e =0 and g = 0, (d) Corresponding contour plot. Similar profile occurs for ¢ also (not shown
here).

[ %]

Figure 6: (a) Third order RW solution of the p component for the values I = 60, m = 70, e = 0 and
g = 0, (c¢) Corresponding contour plot. (b) Third order RW solution of the p component for the values
1=0,m =0, e=2000 and g = 0, (d) Corresponding contour plot. Similar profile occurs for ¢ also (not
shown here).
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Figure 7: (a) Third order RW solution of the p component for the values | = 0, m = 0, e = 0 and
g = 2500, (c) Corresponding contour plot. (b) Third order RW solution of the p component for the
values | = 0, m = 0, e = 2000 and g = 1500, (c) Corresponding contour plot. Similar profile occurs for
g also (not shown here).

The third order RW solution is derived with four free parameters, namely [, m, e and
g. We analyze the formation of RW patterns with respect to these four free parameters.
To begin with, we reproduce the classical third order RW form by restricting all the free
parameters are to be zero. The resultant outcome is shown in Fig. 4. When we increase
the values of these parameters the third order RW splits into six first order RWs. The
third order RW gets deformed in the vicinity of the following parametric choices, namely
(i) I =0.1 m,e,g =0, (ii) l,e,g =0, m = 0.5, (iii) I,m,g =0, e = 0.2, (iv) [, m,e = 0,
g =0.5 and (v) I[,;m,e,g = 0.1. For large values of [ and m and small values of e and g
we observe triangular structure with six peaks. On the other hand for large values of e
and g and small values of [ and m we get a ring structure with same number of peaks.
In Figs. 5(a) and 5(c), we display the third order RW solution for I = 60, m,e,g = 0,
in which we observe a triangular pattern with six first order RWs. In Figs. 5(b) and
5(d) we depict the same solution for I,e,g = 0 m = 70, in which we observe the same
triangular pattern but the six peaks now appear in a different orientation. We increase
the values to [ = 60, m = 70, e = g = 0 and display the outcome in Figs. 6(a) and 6(c).
The triangular structure still persists but the peaks assemble in a different orientation.

When we investigate the structure of third order RW solution with I,m,g =0, e =
2000, we obtain a ring structure with six peaks as shown in Figs. 6(b) and 6(d). On
the other hand when we interchange the values of e and g as e = 0 and g = 2500 with
Il = m = 0 we again have the ring pattern but in a different orientation which is shown
in Figs. 7(a) and 7(c). Finally, we plot the solution for [ = m = 0, e = 2000, g = 1500
and present the outcome in Figs. 7(b) and 7(d) in which the ring structure is observed
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similar to Figs. 7(a) and 7(c) but in a different orientation. From these plots, we infer
that even for small variations in I and m (with e = g = 0) we can observe the triangular
pattern. On the other hand the ring pattern can be visualized only for large values of e
and g with [ =m = 0.

5. Conclusion

In this paper we have discussed the method of constructing N-th order RW solution
for the GCNLS system (). Since it is very difficult to construct N-th order RW solution
through conventional DT we have adopted the GDT method and presented a recursive
formula for the N-th order RW solution. We have given the explicit form of first and
second order RW solutions. Since the third order RW solution is very lengthy we have
given only the solution formula and determinant representation of it. However, we have
analyzed the third order RW profile graphically in detail. We have derived the second
order RW solution with two free parameters and the third order RW solution with four
free parameters respectively. These solutions satisfy the original equation when the four
wave mixing coefficient becomes pure imaginary. We have also analyzed the second
and third order RW solutions by varying these free parameters and obtained certain
interesting structures exhibited by them. For example, in the case of second order RW,
we have shown that these RWs exhibit a triplet pattern. As far as the third order
RW solution is concerned we have four free parameters, namely [, m,e and g. We have
captured the classical RW solution when all these free parameters are zero. We have
visualized a triangular pattern for certain non-zero values of [ and m with e,g = 0.
We have also observed that these RWs exhibit a hexagonal structure for I,m = 0 and
e,g # 0. In addition to the above, we have given the determinant representation of N-th
order RW solution which will be useful to generate higher order RWs through symbolic
manipulation program. The N-th order RW solution contains 2N — 2 free parameters
which will be useful again to generate certain interesting patterns that persist in higher
order RWs. The results obtained in this paper will be useful in the study of rogue waves in
birefringent optical fibers, multi-component Bose-Einstein condensates, multi-component
plasmas and so on.
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Appendix A. Forms of N,,, N,; and D, of second order RW solution

In the following we provide the exact expressions of N, Np;, n = 0,1,---6 and
which appear in (70).

NO’I“
Nlr

Nap
N3,
Ny,
N5,
Ny
No;

Ny,

Na;
N3;
Ny;
N5,

Dlr

D27‘

D4’l“

3Al — 24A%mt — 12A%(—8 + 5AI)t* + 144 A*mt® — 160A** — 11524545
3VA(L + 4A1) — 60A% >mt — 12452 (=19 + 14 A1)t + 96 A% >mt?

—256 A%/ — 512A413/%0

3A(4 4 5A1) — 60A%mt — 24A3(—9 4 4Al)t?

A3/2(19 4 6 Al) — 24A7/>mit + 64A7/2 — 256 A1/ 2

16A4% — 56A1t>

8A%/2 — 3249242

243

3Am 4 12A(—1 + 2ANt — 84A3mit? — 16 A3(—17 + 3AI)t3 + 96 APmt?
+640A5t5 — 512A7¢"

12A432m 4+ 124372 (=2 + TAlt — 120A7?mt? — 16A7/2 (35 + 6 Al)t3
+640A/245

21A%m + 84431t — A8 A mit? + 608 A3 — 1284545

18A5/2m + 4A%/2(11 + 6 Al)t + 320A%/%°

6A3m + 64A3t + 32453

40A7/%¢

8A* (A.1)

7 8
Dy = <Z D,,.2™ +1i Z Dm-ac"> (A.2)
n=0 n=0

= 36A(1 +4A%(1* + m?)t — 576 A%mt* + 1152A43(1 + Al)t3
—1536A5mt* 4 7680A°t° + 4096 A"t"

= 36A%%(5 +44%(1% + m?))t + 576 A7/ 2mit? + 3456 %243
—1536 A/ 2mit* + 107524 /245 + 4096 A5/ %7

= —144A%(=3 + 2AD)t 4 2304 A%mt? + 11524%(—1 + 243
+6144A%°

= —96A4°%2(—6 4 At 4+ 11524%?mt? + 1536 A% %> + 30724'3/2

—192A3(—3 + Al)t 4 2304A°¢

96A7/2(5 + 8A%t2)t

256 A%t

= 644°%t

(A.3)
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Doi = —9(1+4A%(1> + m?)) + 36 A%(=7 + 4A(1(-2 + Al) + Am?))t?
—192A%mt> + 384A*(—2 + 3AN* — 1536 A%mt® + 6656 A%° + 4096 A5

Dy = —18VA(3+4A%(1% +m?)) — 144A%/%(1 + 8AI)t> + 1920A%/ %> A*mt?
+1152A4%2(—5 + 2A1)t* + 10244°%/%¢5
Dy = —9AQT +4A(I(=2+ Al) + Am?)) — T20A%mt — 576 A*(—1 4 3AI)t?
+1536 A%mt> — 4224 A5t* + 2048 A7¢5
Ds; = 12A4%%(—21 +16Al) — 864A7/2mt — 192A7/2(—1 + 4Al)t> — 768 A1/ %
Dy = 24A%(—12 4 TAl) — 288A%mt — 672A%>
Ds; = 24A%%(—11+24l) — 576 A%%2
Dg; = —184A3 —128A5¢>
Dy = —80A™?
Dg; = —16A4% (A.4)
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