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Abstract

In this paper we employ three recent analytical approaches to investigate the
possible classes of traveling wave solutions of some members of a family of so-called
short-pulse equations (SPE). A recent, novel application of phase-plane analysis
is first employed to show the existence of breaking kink wave solutions in certain
parameter regimes. Secondly, smooth traveling waves are derived using a recent
technique to derive convergent multi-infinite series solutions for the homoclinic (het-
eroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for
its generalized version with arbitrary coefficients. These correspond to pulse (kink or
shock) solutions respectively of the original PDEs. We perform many numerical tests
in different parameter regime to pinpoint real saddle equilibrium points of the corre-
sponding traveling-wave equations, as well as ensure simultaneous convergence and
continuity of the multi-infinite series solutions for the homoclinic/heteroclinic orbits
anchored by these saddle points. Unlike the majority of unaccelerated convergent
series, high accuracy is attained with relatively few terms. And finally, variational
methods are employed to generate families of both regular and embedded solitary
wave solutions for the SPE PDE. The technique for obtaining the embedded solitons
incorporates several recent generalizations of the usual variational technique and it
is thus topical in itself. One unusual feature of the solitary waves derived here is
that we are able to obtain them in analytical form (within the assumed ansatz for
the trial functions). Thus, a direct error analysis is performed, showing the accuracy
of the resulting solitary waves. Given the importance of solitary wave solutions in
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wave dynamics and information propagation in nonlinear PDEs, as well as the fact
that not much is known about solutions of the family of generalized SPE equations
considered here, the results obtained are both new and timely.

Key words: SPE and Generalized SPE Equations, Traveling Waves, Singular
Solutions, Homoclinic and Heteroclinic Orbits, Variational Solitary Waves

1 Introduction

In the paper [25], an exact nonsingular solitary wave solution was derived
for the short-pulse (SPE) equation [26], an important recent alternative to
the very widely-studied nonlinear Schrodinger (NLS) equation for ultra-short
light pulses in optical fibers, where the pulse spectrum is not narrowly localized
around the carrier frequency. In this paper, we investigate additional solutions
of this important recent model equation by three other techniques.

Various analytical methods have been developed to construct solitary waves
of physically important nonlinear partial differential equations (NLPDEs), in-
cluding variational methods, diverse series solution techniques, the extended
tanh−function method, Hirota’s method, truncated regular and invariant
Painlevé expansions, and various others.

Three of these techniques are applied to the SPE equation in this paper.
First, novel phase-plane methods are used to consider singular solutions of
the SPE equation, in particular breaking kink or front solutions. We next em-
ploy one recently developed technique to construct convergent, multi-infinite,
series solutions for regular solitary waves of the SPE equation (or equivalently,
homoclinic orbits of its traveling-wave equation). In addition, in an alterna-
tive approach, the variational method is employed to construct regular solitary
waves of the SPE NLPDE directly, and also attempt to construct embedded
solitons of the PDE using several recent extensions of the variational approach.

The remainder of the paper is organized as follows. In Section 2, the traveling
wave ODE of the SPE equation is considered. A recently developed technique
(see [7], [24]) is employed to construct convergent series solutions for its homo-
clinic and heteroclinic orbits, corresponding to solitary wave and front (pulse)
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solutions of the original SPE NLPDE. A Lagrangian for the SPE equation is
developed in Section 3. Section 4 then considers the linear spectrum of the
SPE equation to isolate the parameter regimes where regular solitary waves
exist. A Gaussian ansatz or trial function for these solitary waves is then sub-
stituted into the Lagrangian and its Euler-Lagrange equations are solved to
derive the optimum soliton or ansatz parameters in the usual way (within the
functional Gaussian form of the ansatz).

2 Singular solutions of the SPE

In this section, we will consider regular pulse and front solutions of the SPE
(1) by calculating convergent, multi-infinite, series solutions for the possible
homoclinic orbits of its traveling wave equation (2).

Let us first consider the following short pulse equation (SPE):

uxt = u +
1

6
(u3)xx, (1)

where u = u(x, t). This was derived in [26] as a model equation describing
the propagation of ultra-short light pulses in silica optical fibres. Substituting
u(x, t) = u(x + ct) = u(z), where z = x + ct and c is the wave speed, into Eq.
(1) we obtain:

(u2 − 2c)uzz + 2u(1 + u2
z) = 0. (2)

Eq. (2) is equivalent to the following 2-dimensional system:































du

dz
= y,

dy

dz
=

2u(1 + y2)

2c − u2
,

(3)

which is the traveling wave system for (1).

The system (3) belongs to the first type (see [15], [24]) of singular traveling
wave system as in (4):

du

dz
= y,

dy

dz
= −G′(u)y2 + F (u)

G(u)
, (4)

where F and G are the following smooth nonlinear functions:

F (u) = −2u, G(u) = 2c − u2. (5)
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When c > 0 the function G(u) has two real zeros:

us,1 =
√

2c and us,2 = −
√

2c. (6)

The function F (u) admits just one zero ur = 0 and F ′(ur) = −2 < 0, therefore
the point P ≡ (ur, 0) ≡ (0, 0) is a regular equilibrium of the system (3).
Moreover, the second equation in (3) is discontinuous in the straight lines

u = us,1 =
√

2c and u = us,2 = −
√

2c. Being Y = − F (us,1)

G′(us,1)
= − F (us,2)

G′(us,2)
=

−1 < 0, there are no singular real equilibria in the singular straight lines
u = us,1 and u = us,2 (this is due to the fact that F (u) = G′(u)).

Let dz = G(u)dξ, the following system:































du

dξ
= yG(u) = y(2c − u2),

dy

dξ
= −(G′(u)y2 + F (u)) = 2u(1 + y2),

(7)

is the associated regular system of (3). The systems of equations in (3) and
(7) have the same invariant curve solutions, the main difference between Eqs.
(3) and (7) is the parametric representation of the orbit: near u = us,1 and
u = us,2, Eq. (7) uses the fast time variable ξ, while Eq. (3) uses the slow

time variable z (see [15] and [24] for details). Hence, we study the associated
regular system of Eq. (7) in order to get the phase portraits of Eq. (3). Since
the first integral of both Eqs. (3) and (7) are the same, thus both of them
have the same phase orbits, except on the straight lines u = us,1 and u = us,2.
Notice that, for the system (7), the straight lines u = us,1 and u = us,2 are
invariant straight lines. In Fig.1(a) and (b), the phase portrait of Eq. (7) are
drawn for c > 0, c = 0 and c < 0 respectively.

Let (u(z), y = u′(z)) be the parametric representation of an orbit γ of the
system (3). Observing the phase portraits when c > 0 in Fig.1(a), along the
orbit γ, as z increases or decreases, the phase point (u(z), y(z)) approaches
the straight line u = us,1 =

√
2c (or equivalently u = us,2 = −

√
2c) in the

positive direction or the negative direction and limu→us,1
|y| = ∞ (analogously

limu→us,2
|y| = ∞). Then, there is a finite value z = z̃ such that:

lim
z→z̃

u(z) = us,1 (or us,2). (8)

The profile of the wave defined by u(z) is thus a breaking wave. In particular,
via standard linear stability analysis, we obtain that the point P ≡ (0, 0) is a
saddle (the eigenvalues of the linearized system are λ1,2 = ±

√
2c), therefore

the stable and unstable manifolds of P , which approach the singular straight
lines u = us,1 =

√
2c or u = us,2 = −

√
2c give rise to a one sided breaking kink
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Fig. 1. The phase portraits of system (7). (a) c = 0.1 > 0, the singular straight
lines u = us,1 and u = us,2 are drawn in green. (b) c = 0, the singular straight line
u = us,1 ≡ us,2 = 0 is drawn in green. (c) c = −0.1 < 0.

wave solution and a one sided breaking anti-kink wave solution of the SPE
(see the appropriate Theorem in [15]). When c = 0 there is just one straight
singular line u = us,1 ≡ us,2 = 0 containing also the regular equilibrium
P ≡ (0, 0) and the dynamical behaviour of an orbit is equivalent to that one
in the case c > 0, therefore the solution of the SPE are kink wave solution.
Finally, when c < 0 the point P ≡ (0, 0) is a center (the eigenvalues of the
linearized system are λ1,2 = ±i

√
2c) and there are no singular straight lines,

therefore a closed loop arise for the traveling wave system (3) for each initial
condition.

3 Regular pulse and front solutions of the SPE: analytic solutions

for homoclinic orbits

In this section, we change gears and consider regular pulse and front solutions
of the SPE (2) by calculating convergent, multi-infinite, series solutions for
the possible homoclinic orbits of the traveling wave equation (2).
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We employ a recently developed approach [7,28,24], using the method of unde-
termined coefficients to derive convergent analytic series for homoclinic orbits
of Eq. (2), corresponding to pulse/front solutions of the SPE (1).

When c > 0 the origin is a saddle point of the SPE traveling wave system (7)
and a homoclinic orbit arises. We look for a solution of the following form:

u(z) =



























φ+(z) z > 0

0 z = 0

φ−(z) z < 0

(9)

where:

φ+(z) = x0 +
∞
∑

k=1

ake
kαz, φ−(z) = x0 +

∞
∑

k=1

bke
kβz, (10)

and z = x + ct, x0 = 0 is the equilibrium point, α < 0 and β > 0 are
undetermined constants and ak, bk, with k ≥ 1, are, at the outset, arbitrary
coefficients. Substituting the series (10) for φ+(z) we obtain the following
expressions for each term of (2):

φzz =
∞
∑

k=1

ak(kα)2ekαz, (11)

φ2φzz =
∞
∑

k=3

k−1
∑

j=2

j−1
∑

l= 1

alaj−lak−j(k − j)2α2ekαz, (12)

φφ2
z =

∞
∑

k=3

k−1
∑

j=2

j−1
∑

l= 1

alaj−lak−j(j − l)lα2ekαz. (13)

Using (11)-(13) into the Eq. (2) we obtain:

2
∞
∑

k=1

(1 − c(kα)2)ake
kαz

+
∞
∑

k= 3

k−1
∑

j= 2

j−1
∑

l= 1

((k − j)2 + 2(j − l)l)alaj−lak−jα
2ekαz = 0.

(14)

Comparing the coefficients of ekαz for each k, one has for k = 1:

2(1 − cα2)a1 = 0. (15)

Assuming a1 6= 0 (otherwise ak = 0 for all k > 1 by induction), results in the
two possible values of α:

α1 =

√

1

c
, α2 = −

√

1

c
. (16)
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We are dealing with the case when the equilibrium x0 = 0 is a saddle, i.e.
when c > 0. In this case, as our series solution (9) needs to converge for z > 0,
we pick the negative root α = α2. For k = 2 we have:

F (2α2)a2 = 0 ⇒ a2 = 0, (17)

where F (kα2) = 2(1 − c(kα2)
2).

For k = 3 we obtain:

a3 =
3α2

2a
3
1

F (3α2)
. (18)

For k > 2 one has:

ak =
k−1
∑

j= 2

j−1
∑

l=1

((k − j)2 + 2(j − l)l)alaj−lak−jα
2
2

F (kα2)
. (19)

Therefore for all k the series coefficients ak can be iteratively computed in
terms of a1:

ak = ϕka
k
1, (20)

where ϕk, k > 1 are functions which can be obtained using Eq. (17)-(19).
They depend on α2 and the constant coefficient c of the Eq. (2). Once chosen
α = α2 it is easy to see that all the series coefficients φ2k are equal to zero and
the remaining coefficients have the following property:

φ2k+1 is proportional to
(

1

c

)k

, (21)

therefore, for the convergence of the series coefficients is crucial to control the
value of c. The first part of the homoclinic orbit corresponding to z > 0 has
thus been determined in terms of a1:

φ+(z) = a1e
α2z +

∞
∑

k=2

ϕka
k
1e

kα2z. (22)

Notice that the Eq. (2) is reversible under the standard reversibility of classical
mechanical systems:

z → −z, (u, ux, uxx) → (u,−ux, uxx). (23)

Mathematically, this property would translate to solutions having odd parity
in z. Therefore the series solution for z < 0 can be easily obtained based on
the intrinsic symmetry property of the equation, i.e.:

φ−(z) = −a1e
α2z −

∞
∑

k=2

ϕka
k
1e

kα2z. (24)
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Fig. 2. The parameter c = 0.001. (a) The series solution u(z) in (9) for the homoclinic
orbit to the saddle point (0, 0) plotted as a function of x for different values of t,
showing traveling wave nature of the solution. Here a1 = −0.0193 is the only solution
of the continuity equation (25) truncated at M = 39. (b) Plot of ak in (19) versus
k shows the series coefficients are converging.

We want to construct a solution continuous at z = 0, therefore we impose:

a1 +
∞
∑

k=2

ϕka
k
1 = 0. (25)

Hence we choose a1 as the nontrivial solutions of the above polynomial equa-
tion (25). In practice the Eq. (25) is numerically solved and the corresponding
series solutions are not unique.

Let us now choose c = 0.001. Following the above given computation of the
series coefficients, we build the homoclinic orbit to the saddle point P ≡ (0, 0).
Truncating the series solution up to k = 39, the corresponding homoclinic
orbit solution is not unique as the continuity condition (25) admits more than
one solution. We choose the only value a1 = −0.0193 leading to a convergent
series coefficients ak, see Fig.2(b), and the series solution appears as in Fig.2,
where also its traveling nature is shown. We find the continuous solution for
the homoclinic orbit shown in Fig.2.

Let us consider another numerical example. We choose c = 0.0001. Again
the solution is not unique as the continuity condition admits more than one
solution. We choose a1 = −0.0030 to obtain both the convergence of the series
coefficients and the continuity at the origin, as shown in Fig.3.
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Fig. 3. The parameter c = 0.0001. The continuity condition (25) truncated at
M = 39 does not admit a unique solution. Here we choose the solution a1 = −0.0030.
(a) The series solution u(z) in (9) for the homoclinic orbit to the saddle point (0, 0)
plotted as a function of x at different values of t. (b) Plot of ak in (19) versus k

shows the series coefficients converge.

4 The SPE equation with arbitrary coefficients

Let us consider the following short pulse equation with arbitrary coefficients
β, γ :

uxt = βu + γ
1

6
(u3)xx, (26)

where u = u(x, t). Substituting u(x, t) = u(x + ct) = u(z), where z = x + ct
and c is the wave speed, into Eq. (26) we obtain the following travelling wave
equation:

(γu2 − 2c)uzz + 2u(β + γu2
z) = 0, (27)

which is equivalent to the following 2-dimensional traveling wave system:































du

dz
= y,

dy

dz
=

2u(β + γy2)

2c − γu2
.

(28)

The system (28) belongs to the first type of singular traveling wave system
(4), where F and G are the following smooth nonlinear functions:

F (u) = −2βu, G(u) = 2c − γu2. (29)
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When c, γ > 0 or c, γ < 0 the function G(u) has two real zeros:

us,1 =

√

2c

γ
and us,2 = −

√

2c

γ
. (30)

The function F (u) admits just one zero ur = 0 and F ′(ur) = −2β 6= 0,
therefore the point P ≡ (ur, 0) ≡ (0, 0) is a regular equilibrium of the system
(28). Moreover, the second equation in (28) is discontinuous in the straight

lines u = us,1 =

√

2c

γ
and u = us,2 = −

√

2c

γ
. Being Y = − F (us,1)

G′(us,1)
=

− F (us,2)

G′(us,2)
= −β

γ
< 0, we have that when β, γ > 0 or β, γ < 0 there are no

singular real equilibria in the singular straight lines u = us,1 and u = us,2,
otherwise there exists four critical points (us,1,±

√
Y ) and (us,2,±Y ). Putting

together the above conditions, we obtain that when c, γ > 0 and β < 0 or
when c, γ < 0 and β > 0 there exists four critical points (us,1,±

√
Y ) and

(us,2,±Y ) on the singular straight lines. In all the other cases there are no
real critical points.

Let dz = G(u)dξ, the associated regular system of (28) is given below:































du

dξ
= yG(u) = y(2c − γu2),

dy

dξ
= −(G′(u)y2 + F (u)) = 2u(β + γy2).

(31)

We study the associated regular system of Eq. (31) in order to get the phase
portraits of Eq. (28), as both of the systems have the same phase orbits, except
on the straight lines u = us,1 and u = us,2 (see Section 2 for details). Via linear
stability analysis it is straightforward to obtain that the regular equilibrium
P ≡ (0, 0) is a saddle when β, c > 0 or β, c > 0, otherwise it is a center. The
singular points (us,1,±

√
Y ) and (us,2,±Y ) when exist (i.e. for c, γ > 0 and

β < 0 or when c, γ < 0 and β > 0) they are saddle.

In Fig.4, the phase portrait of Eq. (31) are drawn for the main dynamical
behaviour.

When the system parameters are chosen as in Fig.4(a), the profile of the wave
defined by u(z) is a breaking wave. In particular, the stable and unstable
manifolds of P , being a saddle, approach the singular straight lines u = us,1 =√

2c or u = us,2 = −
√

2c and give rise to a one sided breaking kink wave
solution and a one sided breaking anti-kink wave solution of the SPE with
arbitrary coefficients. When the parameters are as in Fig.4(d), the point P ≡
(0, 0) is a center and there are no singular straight lines, therefore a closed
loop arise for the traveling wave system (28) for each initial condition.
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Fig. 4. The phase portraits of system (31). (a) β, c, γ > 0, there are no critical
points on the singular straight lines (drawn in green) and the regular equilibrium is
a saddle. The phase-portrait is the same as in (a) with β, c, γ < 0. (b) β, c > 0 and
γ < 0, there are no singular straight lines and the regular equilibrium is a saddle.
The phase-portrait is the same as in (b) with β, c < 0 and γ > 0. (c) β, c > 0
and γ = 0, there are no singular straight lines and the regular equilibrium is a
saddle. The phase-portrait is the same as in (c) with β, c < 0. (d) β, γ > 0 and
c < 0, there are no singular straight lines and the regular equilibrium is a center.
The phase-portrait is the same as in (d) with β, γ < 0 and c > 0. (e) β > 0 and
c, γ < 0, there are four critical points on the two singular straight lines and the
regular equilibrium is a center. The phase-portrait is the same as in (e) with β < 0
and c, γ > 0. (f) β > 0, c < 0 and γ = 0.
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Finally, for the parameters as in Fig.4(e) periodic cusp wave solutions (both
of peak and valley type) arise (see also [32]).

5 Regular pulse and front solutions of the SPE with arbitrary co-

efficients: analytic solutions for homoclinic orbits

In this section, we use the same approach as in Section 3 to compute conver-
gent, multi-infinite series solutions for the possible homoclinic orbits of the
traveling wave equation (27).

When β, c > 0 or β, c > 0 the origin is a saddle point of the SPE traveling
wave system (31) and a homoclinic orbit arises.For this choice of the system
parameters, we look for a solution of the Eq. (27) with the same form as in
(9). Substituting the series (10) for φ+(z) in (27), we obtain the following
equation:

2
∞
∑

k=1

(β − c(kα)2)ake
kαz

+ γ
∞
∑

k= 3

k−1
∑

j=2

j−1
∑

l=1

((k − j)2 + 2(j − l)l)alaj−lak−jα
2ekαz = 0,

(32)

and comparing the coefficients of ekαz for each k, we obtain for k = 1:

2(β − cα2)a1 = 0. (33)

Assuming a1 6= 0 (otherwise ak = 0 for all k > 1 by induction), results in the
two possible values of α:

α1 =

√

β

c
, α2 = −

√

β

c
. (34)

As we are dealing with the case when the equilibrium x0 = 0 is a saddle (i.e.
β, c > 0 or β, c > 0), the values in (34) are real and opposite. The series
solution (9) has to converge, therefore we pick the negative root α = α2 for
z > 0.

For k = 2 we obtain:

F (2α2)a2 = 0 ⇒ a2 = 0, (35)

where F (kα2) = 2(β − c(kα2)
2). For k > 2 one has:

ak = γ
k−1
∑

j=2

j−1
∑

l= 1

((k − j)2 + 2(j − l)l)alaj−lak−jα
2
2

F (kα2)
, (36)
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Fig. 5. The parameters c = 0.1, β = 1 and γ = 200. (a) The series solution u(z) in
(9) for the homoclinic orbit to the saddle point (0, 0) of the Eq.(27) plotted as a
function of x for different values of t, showing traveling wave nature of the solution.
Here a1 = 0.0104 is the only solution of the continuity equation (25) truncated at
M = 39. (b) Plot of ak in (36) versus k shows the series coefficients are converging.

therefore, using Eq. (35)-(36), the series coefficients ak, ∀k > 1 can be itera-
tively computed in terms of a1, and they can be written in the same form given
in (20). Once chosen α = α2 it is easy to see that all the series coefficients φ2k

are equal to zero and the remaining coefficients have the following property:

φ2k+1 is proportional to
(

γ

c

)k

, (37)

therefore, for the convergence of the series coefficients is crucial to control the

quotient
γ

c
. The first part of the homoclinic orbit corresponding to z > 0 has

thus been determined as in (22), where the coefficients ak are given in (36)
and the second part for z < 0 is rapidly obtained as in (24) thanks to the
reversibility property of the Eq.(27). Finally, the value of a1 can be computed
as the solution of the continuity equation (25).

Let us choose c = 0.1, β = 1 and γ = 200. Following the above given com-
putation of the series coefficients, we build the homoclinic orbit to the saddle
point P ≡ (0, 0). Truncating the series solution up to k = 39, the continu-
ity condition (25) admits more than one solution; we choose the only value
a1 = 0.0104 leading to a convergent series coefficients ak, see Fig.5(b), and the
series solution appears as in Fig.5, where also its traveling nature is shown.
In the second numerical example, we choose c = 0.01, β = 0.003 and γ = 4.
Again the solution is not unique as the continuity condition admits more than
one solution. We choose a1 = −0.0312 to obtain both the convergence of the
series coefficients and the continuity at the origin, as shown in Fig.6.
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Fig. 6. The parameters c = 0.01, β = 0.003 and γ = 4. The continuity equation (25)
truncated at M = 39 does not admit a unique solution. Here we choose the solution
a1 = −0.0312. (a) The series solution u(z) in (9) for the homoclinic orbit to the
saddle point (0, 0) of the Eq.(27) plotted as a function of x for different values of
t = 0. (b) Plot of ak in (36) versus k shows the series coefficients converge.

6 Lagrangian via Jacobi’s Last Multiplier

In this section, we derive a Lagrangian for the traveling wave equation (2) of
the SPE equation. While this may be done by simply matching the terms in
this equation to those in the Euler-Lagrange equation, we use an alternative
approach here using the technique of Jacobi’s Last Multiplier. In the next
section, this Lagrangian will be employed to construct solitary wave solutions
of the SPE equation, having amplitude and width parameters optimized to
satisfy the corresponding Euler-Lagrange equations.

Jacobi [12] first described his method for the “Last Multiplier” (which we shall
refer to as the Jacobi Last Multiplier, or JLM for short) in Konigsberg over
1842− 1843. It essentially yields an extra first integral for dynamical systems
by locally reducing an n-dimensional system to a two-dimensional vector field
on the intersection of the n − 2 level sets formed by the first integrals. After
the work of Jacobi, the JLM received a fair amount of attention, including
in a classic paper by Sophus Lie [16] placing it within his general framework
of infinitesimal transformations. In 1874 Lie [16] showed that one could use
point symmetries to determine last multipliers. A clear formulation in terms
of solutions or first integrals and symmetries is given by L.Bianchi [30].

Subsequently it was used for computing first integrals of some ordinary differ-
ential equations (ODEs). The relation between the Jacobi multiplier denoted
by M , and the Lagrangian L for any second-order ODE was derived by Rao
[17], following some investigations in the early twentieth century [31]. After

14



  

Rao’s work, the JLM does not appear to have been extensively employed in
work on dynamical systems till it was recently used by Leach and Nucci to
derive Lagrangians for a variety of ODE systems [18,22,23]. Recently more
geometric formulation of JLM has been studied in [6].

The study of isochronous behavior, i.e. periodic behavior with a single period,
in dynamical systems has also been a subject of great interest over the past
decade [1,2]. One important reason for this has been the surprising fact that
many, if not most, systems may be converted to nearby isochronous systems by
a process of so-called ω-modification. There are also recent theoretical results
[3] proving that, up to a translation or the addition of a constant, planar
polynomial systems exhibiting isochronicity are described by either the linear
simple harmonic oscillator potential or the isotonic potential.

In this section, we first use the JLM to derive a Lagrangian for the traveling-
wave equation of the SPE equation. And then we also investigate possible
isochronous behavior in this traveling-wave equation (corresponding to singly-
periodic wavetrains of the SPE PDE), we therefore also attempt to map the
potential term to either the simple harmonic oscillator (SHO) or the isotonic
potential for specific values of the coefficient parameters of the SPE equation.

6.1 Derivation of the Lagrangian via the JLM

Given a m-dimensional system of first order ODEs y
′

i = fi(x, yi), i = 1, . . . ,m,
the Jacobi last multiplier, denoted by M(x, yi), is defined as an integrating
factor of the system satisfing the following equation:

d(log M)

dx
+

m
∑

i=1

∂fi(x, yi)

∂yi

= 0 (38)

Since a second-order ODE y
′′

= f(x, y, y
′

) is equivalent to a 2-dimensional
system of first order ODEs, the corresponding Jacobi multiplier M(x, y, y

′

)
satisfies the following equation:

d(log M)

dx
+

∂f(x, y, y
′

)

∂y′
= 0, (39)

see for details [20,21,23,19,27].

Let us rewrite the Euler-Lagrange equation:

d

dx

(

∂L

∂y′

)

=
∂L

∂y
, (40)
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by inserting y
′′

= f(x, y, y
′

) as follows:

∂2L

∂x∂y′
+ y

′ ∂2L

∂y∂y′
+ f(x, y, y

′

)
∂2L

∂y′2
=

∂L

∂y
. (41)

Assuming
∂2L

∂y′2
6= 0 and differentiating equation (41) with respect to y

′

, the

following equation is obtained:

d

dx
log

(

∂2L

∂y′2

)

+
∂f

∂y′
= 0. (42)

Comparing the equation (42) with (39), we find the equation which connects
the JLM to the Lagrangian L [17,31,20]:

M =
∂2L

∂y′2
. (43)

Therefore, the appropriate Lagrangian for the system can be determined start-
ing from the JLM.

6.2 Search for isochronous behavior via the JLM

Isochronous systems, whose motions are periodic with a single period in ex-
tended regions of phase-space (often the entire phase-space) have attracted
significant interest in recent years, especially following the work of Calogero
and his collaborators (see [1,2] and references therein), which revealed the
near-ubiquity of such dynamics “close” to numerous classes of dynamical sys-
tems. In addition, in [3] it is proved that, up to a possible translation and the
addition of a constant, planar polynomial systems exhibiting isochronicity are

described by either the linear SHO potential V (x) =
ω2x2

2
, or the isotonic po-

tential V (x) =
ω2x2

8
+

c2

x2
. These are rational potential functions, and systems

which may be mapped to them exhibit oscillatory solutions with the same

period T =
2π

ω
. Irrational potentials, such as some with discontinuous second

derivatives, may also be isochronous.

In [8,11] Chouikha and Hill et al. studied conditions under which the so-called
Cherkas system [4] with a center at the origin as well as a five-parameter
of reversible cubic systems may exhibit isochronicity. However, the study of
the isochronicity conditions is non-trivial, and the technique required consid-
erable computational effort. The same problem was re-examined in [5,9] us-
ing the JLM to derive the conditions for isochronous solution behavior much
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more directly and with far less computational effort (see [10] for complete re-
view). Here we shall follow this latter approach to examine (2) for possible
isochronous behavior.

Once derived a Lagrangian via the use of the JLM, the next step is to attempt
a transformation of variables which might map the Hamiltonian to that of the
linear SHO or the isotonic potential. As discussed above, such a mapping
would prove isochronous behavior of the original dynamical system [3].

6.3 Lagrangian for the SPE traveling-wave equation

In this subsection, we consider (2) for the traveling waves of the SPE equation.
To compute the JLM, we use the equation (39) which, for the system (2),
becomes:

d(log M)

dz
− 4u

u2 − 2c
u

′

= 0. (44)

The solution of the equation (44) is given by:

M(u) = (u2 − 2c)2. (45)

Using the equation (43), we find the appropriate Lagrangian for (2) to be:

L(u, u
′

) =
1

2
M(u)u

′2 − V (u), (46)

where the potential energy V (u) satisfies the following equation:

V
′

(u) = 2u(u2 − 2c). (47)

Integrating, we obtain V (u) =
u4

2
− 2cu2.

Applying a Legendre transformation to the Lagrangian L in (46), one can find
the corresponding Hamiltonian to be:

H =
1

2

(

p√
M

)2

+ V (u), (48)

where the conjugate momentum p =
∂L

∂u′
= M(u)u

′

.

Next, let us search for isochronous behavior via the use of the JLM. If such
behavior were found, it would correspond to period traveling wavetrains in
the SPE equation.
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Define the canonical variables:

P =
p√
M

and Q = Q(u) (49)

to be some function of u such that the Poisson bracket [P, Q] = [p, q] is

invariant. This implies that Q
′

(u) =
√

M(u). Assuming that there exists a

linearizing transformation such that V (u) → Q(u)2/2, implies that V ′(u) =

Q(u)Q′(u) =
√

M(u)Q(u), so that:

Q(u) =
V ′(u)
√

M(u)
= 2u. (50)

Integrating Q
′

(u) =
√

M(u), we obtain the following equation:

Q(u) =
u3

3
− 2cu. (51)

Since we cannot obtain the same value for Q from Eqs.(50) and (51), it cannot
be a canonical variable. Thus, the potential cannot be directly mapped to a
linear harmonic oscillator. Thus, at least within the framework of this method,
we do not find any parameter sets for the paramter c for which the SPE
traveling-wave equation has isochronous solutions corresponding to singly-
periodic traveling wavetrains of the SPE NLPDE.

Hence, we turn next to the construction of solitary waves of the SPE equation
using a variational approach.

7 Variational Formulation

7.1 The variational approximation for regular solitons

The procedure for constructing regular solitary waves with exponentially de-
caying tails is well-known. It is widely employed in many areas of Applied
Mathematics and goes by the name of the Rayleigh-Ritz method. In this sec-
tion, we shall employ it to construct regular solitary waves of (2).

The localized regular solitary wave solutions will be found by assuming a
Gaussian trial function (52), and substitutiting this into the Lagrangian (46):

φ = A exp

(

−z2

ρ2

)

. (52)
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Note that it is standard to use such Gaussian ansatzën for analytic tractabil-
ity. This is true even for simpler nonlinear PDEs where exact solutions may
be known, and have the usual sech or sech2 functional forms. The exponen-
tial trial function typically captures these more exact solitary wave forms
extremely well in the core or central region of the soliton, with the two often
being indistinguishable when plotted together. However, the accuracy is typi-
cally somewhat worse in the tails, sometimes with errors of upto a few percent
there.

Next, substituting the trial function into the Lagrangian and integrating over
all space yields the following “averaged Lagrangian” or action:

A2
√

π

36ρ
(−9A2ρ2 + 36

√
2(c2 + cρ2) +

√
6A4 − 18cA2). (53)

The next step is to optimize the trial functions by varying the action with
respect to the trial function parameters, viz. the core amplitude A, and the
core width ρ. This determines the optimal parameters for the trial function
or solitary wave solution, but within the particular functional form chosen for
the trial function ansatz, in this case a Gaussian. The resulting variational
Euler-Lagrange equations, by varying A and ρ respectively, are the system of
algebraic equations:

ρ2(3
√

2a1 + A(2
√

3a2 + 3Aa3)) = 3
√

2(1 + ρ2), (54)

ρ2(18
√

2a1 + A(8
√

3a2 + 9Aa3)) = 18
√

2(−1 + ρ2). (55)

Given their relative simplicity, and assuming a1 = 1/2, a3 = 1, a nontrivial
solution to the equations (54) is the following:

A =
4(10 − ρ2)a2

3
√

3(ρ2 − 6)
, (56)

ρ2 =
80a2

2 + 2
√

2(81 − 4
√

81
√

2a2
2 + 50a4

2)

27
√

2 + 16a2
2

. (57)

The optimized variational soliton for the regular solitary waves of the traveling-
wave equation (2) is given by the trial function (52) with A and ρ respectively
given in (56) and (57). Figure 7 shows the resulting regular solitary wave solu-
tion for various values of the parameter c. Note that the tail analysis revealed
the need for a1 < 1 in regimes with regular solitary waves.

Figure 8 shows a direct analysis of the accuracy of the variational regular
solitary waves obtained above. In this instance, we are able to do a direct
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Fig. 7. The regular soliton plotted for different values of c.

Fig. 8. Accuracy analysis: the error is small for small z, but grows with z and c.

accuracy analysis since our variational solution for the regular solitary waves
given by (52), (56) and (57) is, unlike for most variational solutions, an ana-
lytical one. Inserting this variational solution (52) (with (56) and (57)) into
the traveling-wave ODE (2), the deviation of the left-hand side of (2) from
zero gives a direct measure of the goodness of the variational solution.

Figure 8 shows this left-hand side for a1 = 1/2, a3 = 1. For all values of the
wave-speed c, the error is small for small z. However, as expected the error
increases in the tails of the soliton, i.e., for larger values of z, and grows as c
increases in magnitude.
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7.2 The variational approximation for embedded solitons

In the recent and novel variational approach to embedded solitary waves, the
tail of a delocalized soliton is modeled by:

φtail = α cos(κ(c)z). (58)

Our embedded solitary wave will be embedded in a sea of such delocalized
solitons. The cosine functional form ensures an even solution, and the arbitrary
function κ(c) will, as shown below, help to ensure the integrability of the
action.

Our ansatz for the embedded soliton [13,14] uses a second order exponential
core model plus the above tail model (58):

φ = A exp

(

−z2

ρ2

)

+ φtail. (59)

Plugging this ansatz into the Lagrangian (46) and reducing the trigonomet-
ric powers to double and triple angles yields an equation with trigonometric
functions of the double and triple angles, as well as terms linear in z. The for-
mer would make spatial integration or averaging of the Lagrangian divergent.
However, it is possibly to rigorously establish, following a procedure analogous
to proofs of Whitham’s averaged Lagrangian technique [29], that such terms
may be averaged out, so we shall set them to zero a priori.

The terms linear in z would also cause the Lagrangian to be non-integrable.
To suppress these, we therefore set:

κ(c) = ±
√
−32c + 6α2a3

(α4 + 32c2 − 8α2c)
, (60)

which makes linear terms zero. Note that this step, and the preceding step of
averaging out trigonometric functions of the higher angles are recent ones for
the variational approximation of embedded solitary waves. They are not part
of the traditional Rayleigh-Ritz method used for the construction of regular
solitary waves.

Next, the rest of the equation can be integrated to give the following action:
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1

36ρ

((((√
3A4 27α4

4

(

1

2
+ κ2ρ2

)

− 18
((

ρ2

(

cκ2 +
3

2

)

+ c
)

α2 − 2c2

−2cρ2
))√

2 − 18

((

−α2

4
(κ2ρ2 + 3) + c +

ρ2

2

)

A2

)

Ae
533

60
κ2ρ2

(61)

+
108

125

((

125

8
ρ2α4κ2 − 250

3

(

3

4
+ cκ2

)

ρ2α2 +
125

16
A3(2 + κ2ρ2)α

+
500

3
cρ2(cκ2 + 1)

)

e
259

30
κ2ρ2 − 125

3

(

−α2

8
(1 + 3κ2ρ2) +

(

3

4
+ cκ2

)

ρ2

+
c

2

)√
2Aαe

503

60
κ2ρ2 − 1000

81

(

−3α2

8

(

3 +
5

2
κ2ρ2

)

+
(

cκ2 +
9

4

)

ρ2

+3c) A2
√

3e
44

5
κ2ρ2 − 250

3

(

− 7

32
α2κ2 +

1

4
+ cκ2

)

ρ2α2e
199

30
κ2ρ2

+
125

18

√
3
(

2

3
+ κ2ρ2

)

A2α2e
122

15
κ2ρ2

+
125

16

√
2
(

1

6
+ κ2ρ2

)

Aα3e
413

60
κ2ρ2

+
√

5
(

κ2ρ2 +
20

3

)

A4e
53

6
κ2ρ2

+
125

16
α4ρ2κ2e

79

30
κ2ρ2

)

α
)√

πAe−
533

60
κ2ρ2

)

As for the regular solitary waves, the action is now varied with respect to the
core amplitude A, the core width ρ, and the small amplitude α of the oscillating
tail. For strictly embedded solitary waves, which occur on isolated curves in
the parameter space where a continuum or “sea” of delocalized solitary waves
exist, the amplitude of the tail is strictly zero. Once again, this is an extra
feature not encountered in the standard variational procedure. Hence, we also
need to set α = 0 in these three variational equations to recover such embedded
solitary waves. Implementing this, we have:

ρ2
(

12
√

2c − 6A2
)

+ 12
√

2c2 − 12cA2 +
√

6A4 = 0, (62)

ρ2
(

−36
√

2c + 9A2
)

+ 36
√

2c2 − 18cA2 +
√

6A4 = 0, (63)

−1000
√

3A2

81

(

5ρ2

4
+ 3c

)

exp

(

ρ2

30c

)

+
√

5

(

−ρ2

c
+

20

3

)

A4 = 0. (64)

Subtracting the first two equations (62), (63), one may obtain an expression
for A in terms of ρ. Solving the two equations obtained by substituting this
expression for A into the equation (62) and the equation (64) yields the so-
lutions c = 0, ρ2 = 0.2556c. Thus, no non-trivial embedded soliton solutions
result in this case, i.e. for the SPE equation.

One may also see this from a linearized or tail analysis of the traveling wave
equation (2) which does not support oscillatory solutions.
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8 Conclusions

Three recent analytical approaches have been applied in this paper to treat the
possible classes of traveling wave solutions of a family of so-called short-pulse
equations (SPE).

A recent, novel application of phase-plane analysis is first employed to show
the existence of breaking kink wave solutions in certain parameter regimes.

Smooth traveling waves are next considered using a recent technique to de-
rive convergent multi-infinite series solutions for the homoclinic (heteroclinic)
orbits of the traveling-wave equations for the SPE equation, as well as for
its generalized version with arbitrary coefficients. These correspond to pulse
(kink or shock) solutions respectively of the original PDEs. Unlike the major-
ity of unaccelerated convergent series, high accuracy is attained with relatively
few terms. We also show the traveling wave nature of these pulse and front
solutions.

Finally, variational methods are employed to treat families of both regular
and embedded solitary wave solutions for the SPE PDE. The technique for
obtaining the embedded solitons incorporates several recent generalizations
of the usual variational technique and is thus topical in itself. One unusual
feature of the solitary waves derived here is that we are able to obtain them
in analytical form (within the assumed ansatz for the trial functions). Thus,
a direct error analysis is performed, showing the accuracy of the resulting
solitary waves.

Given the importance of wave solutions in dynamics and information propa-
gation, and the fact that quite little is known about solutions of the family of
generalized SPE equations considered here, the results obtained are both new
and topical.
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