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Abstract

It is well-known that the Camassa-Holm (CH) equation admits both of the
peaked and cusped solitary waves in shallow water. However, it was an open
question whether or not the exact wave equations can admit them in finite water
depth. Besides, it was traditionally believed that cusped solitary waves, whose
1st-derivative tends to infinity at crest, are essentially different from peaked
solitary ones with finite 1st-derivative. Currently, based on the symmetry and
the exact water wave equations, Liao [1] proposed a unified wave model (UWM)
for progressive gravity waves in finite water depth. The UWM admits not only
all traditional smooth progressive waves but also the peaked solitary waves in
finite water depth: in other words, the peaked solitary progressive waves are
consistent with the traditional smooth ones. In this paper, in the frame of
the linearized UWM, we further give, for the first time, the cusped solitary
waves in finite water depth, and besides reveal a close relationship between the
cusped and peaked solitary waves: a cusped solitary wave is consist of an infinite
number of peaked solitary ones with the same phase speed, so that it can be
regarded as a special peaked solitary wave. This also well explains why and how
a cuspon has an infinite 1st-derivative at crest. It is found that, like peaked
solitary waves, the vertical velocity of a cusped solitary wave in finite water
depth is also discontinuous at crest (z = 0), and especially its phase speed has
nothing to do with wave height, too. In addition, it is unnecessary to consider
whether the peaked /cusped solitary waves given by the UWM are weak solution
or not, since the governing equation is not necessary to be satisfied at crest. All
of these would deepen and enrich our understandings about the cusped solitary
waves.
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1 Introduction

The smooth solitary surface wave was first reported by John Scott Russell [2] in
1844. Since then, various types of solitary waves have been found. The mainstream
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models of shallow water waves, such as the Boussinesq equation [3], the KdV equa-
tion [4], the BBM equation [5] and so on, admit dispersive smooth periodic/solitary
progressive waves with permanent form: the wave elevation is infinitely differentiable
everywhere. Especially, the phase speed of the smooth waves is highly dependent upon
wave height: the larger the wave height of a smooth progressive wave, the faster it
propagates. Nowadays, the smooth amplitude-dispersive periodic/solitary waves are
the mainstream of researches in water waves.

In 1993, Camassa and Holm [6] proposed the celebrated Camassa-Holm (CH)
equation for shallow water waves, and first reported the so-called peaked solitary
wave, called peakon, which has a peaked crest with a discontinuous (but finite) 1st-
order derivative at crest. This is a breakthrough in water wave theories, since it
opens a new field of research in the past 20 years. Physically, different from the KdV
equation and Boussinesq equation, the CH equation can model phenomena of not only
soliton interaction but also wave breaking [7]. Mathematically, the CH equation is
integrable and bi-Hamiltonian, therefore possesses an infinite number of conservation
laws in involution [6]. Besides, it is associated with the geodesic flow on the infinite
dimensional Hilbert manifold of diffeomorphisms of line [7]. Thus, the CH equation
has lots of intriguing physical and mathematical properties. It is even believed that
the CH equation “has the potential to become the new master equation for shallow
water wave theory” [§]. In addition, Kraenkel and Zenchuk [9] reported the cusped
solitary waves of the CH equation, called cuspon. The so-called cuspon is a kind of
solitary wave with the 1st derivative going to infinity at crest. Note that, unlike a
peakon that has a finite 1st derivative, a cuspon has an infinite 1st derivative at crest.
Thus, it was traditionally believed that peakons and cuspons are completely different
two kinds of solitary waves.

However, the CH equation is a simplified model of water waves in shallow water.
It was an open question whether or not the exact wave equations admit the peaked
and cusped solitary waves in finite water depth. For example, the velocity distribution
of peaked/cusped solitary waves in the vertical direction was unknown, since it can
not be determined by a wave model in shallow water (such as the CH equation).
Currently, based on the symmetry and the exact wave equations, Liao proposed a
unified wave model (UWM) for progressive gravity waves in finite water depth with
permanent form [I]. It was found that the UWM admits not only all traditional
smooth periodic/solitary waves but also the peaked solitary waves in finite water
depth, even including the famous peaked solitary waves of the CH equation as its
special case. Therefore, the UWM unifies both of the smooth and peaked solitary
waves in finite water depth, for the first time. In other words, the progressive peaked
solitary waves in finite water depth are consistent with the traditional smooth waves,
and thus are as acceptable and reasonable as the smooth ones.

In this article, using the linearized UWM, we give an closed-form expression of
cusped solitary waves in finite water depth, and illustrate that a cusped solitary wave
is consist of an infinite number of peaked solitary ones. This reveals, for the first time
to the best of my knowledge, a simple but elegant relationship between the peaked
and cusped solitary waves in finite water depth.



2 Cusped solitary waves in finite water depth

Let us first describe the UWM briefly. Consider a progressive gravity wave propagat-
ing on a horizontal bottom in a finite water depth D, with a constant phase speed ¢ and
a permanent form. For simplicity, the problem is solved in the frame moving with the
phase speed c. Let x, z denote the horizontal and vertical dimensionless co-ordinates
(using the water depth D as the characteristic length), with x = 0 corresponding to
the wave crest, z = —1 to the bottom, and the z axis upward, respectively. Assume
that the wave elevation n(z) has a symmetry about the crest, the fluid in the interval
x > 0 is inviscid and incompressible, the flow in x > 0 is irrotational, and surface
tension is neglected. Here, it should be emphasized that, different from all traditional
wave models, the flow at x = 0 is not absolutely necessary to be irrotational. Let
¢(z, z) denote the velocity potential. All of them are dimensionless using D and /gD
as the characteristic scales of length and velocity, where ¢ is the acceleration due to
gravity. In the frame of the UWM, the velocity potential ¢(z, z) and the wave eleva-
tion n(x) are first determined by the exact wave equations (i.e. the Laplace equation
V2¢ = 0, the two nonlinear boundary conditions on the unknown free surface 7, the
bed condition and so on) only in the interval x € (0, +00), and then extended to the
whole interval (—oo, +00) by means of the symmetry

U(—x) = n(x>7u(_xv Z) = u(:c, Z)? U(—SL’, Z) = —U(SL’, Z)7

which enforces the additional restriction condition v(0, z) = 0. Note that, in the frame
of the UWM, the flow at x = 0 is not necessarily irrotational, so that the UWM is
more general: this is the reason why the UWM can admit both of the smooth and
peaked solitary waves.

In the interval (0,+o00), the governing equation V3¢(z,z) = 0 with the bed
condition ¢,(z, —1) = 0 has two kinds of general solutions [10], where the subscript
denotes the differentiation with respect to z. One is

cosh[nk(1 + z)] sin(nkz),
corresponding to the smooth periodic waves with the dispersive relation

h
02— tanh(k)

<1 (1)

where o« = ¢/+/gD is the dimensionless phase speed, k is wave number and n is an
integer, respectively. The other is

cos[nk(z + 1)] exp(—nkx),

corresponding to the peaked solitary waves in finite water depth [I], with the relation

02— tan(k) >, 2)
k
where k has nothing to do with wave number. Given a < 1 for the smooth periodic

waves, the transcendental equation (Il) has a wunique solution, as mentioned in the




textbook [10]. However, given o > 1 for the peaked solitary waves, the transcendental
equation (2) has an infinite number of solutions:

a A nﬂgkngnﬁ+g,n20, (3)

corresponding to an infinite number of peaked solitary waves [1]

n(z) = An exp(—ky |2]) (4)

in the frame of the linear UWM, where A, denotes its wave height. For example,
when o? = 2v/3/7, the transcendental equation (2)) has an infinite number of solutions
ko = w/6, ky = 4.51413, ko = 7.73730, k3 = 10.91266, ks = 14.07281, k5 = 17.22616,
ke = 20.37587, k; = 23.52341, kg = 26.66955, kg = 29.81472, k1o = 32.95921, and the
asymptotic expression

kn~(n+05)r, n>10, (5)

with less than 0.08% error. In general, k, ~ (n + 0.5)7 is a rather accurate approxi-
mation of k,, for large enough integer n.

Obviously, the peaked solitary wave () is not smooth at crest, i.e. its first deriva-
tive is discontinuous. Note that the well-known peaked solitary wave n = ¢ exp(—|z|)
of the CH equation is only a special case of (@) when A, = ¢ and k, = 1. However,
unlike 7 = ¢ exp(—|z|) that is a weak solution of the CH equation, it is unnecessary
to consider whether or not the peaked solitary wave () is a kind of weak solution,
because the CH equation is defined in the whole domain —oco < x < 400 but the
governing equation of the UWM is defined only in 0 < x < 4o00. Physically, unlike
the CH equation and the fully nonlinear wave equations, waves in the frame of the
UWM are not necessary to be irrotational at x = 0, therefore the governing equation
holds only in the domain 0 < x < 400, since the solution in the interval —co < x <0
is gained by means of the symmetry. Mathematically, * = 0 is a boundary of the
governing equation, and it is well-known that solutions of differential equations can
be non-smooth at boundary, like a beam with discontinuous cross sections acted by a
constant bending moment. Therefore, in the frame of the UWM, it is unnecessary to
consider whether or not the peaked solitary waves ({d]) are weak solutions at all. This
is the reason why, unlike the well-known peaked solitary wave n = ¢ exp(—|z|) of the
CH equation whose phase speed is always equal to its wave height, the phase speed of
the peaked solitary waves () given by the UWM has nothing to do with wave height!
This is the most attractive novelty of the UWM.

The above peaked solitary waves in finite water depth have some unusual char-
acteristics, as revealed by Liao [I]. First, it has a peaked crest with a discontinuous
vertical velocity v at crest. Besides, unlike the smooth waves whose horizontal velocity
u decays exponentially from free surface to bottom, the horizontal velocity u of the
peaked solitary waves at bottom is always larger than that on free surface. Especially,
different from the smooth waves whose phase speed depends upon wave height, the
phase speed of the peaked solitary waves in finite water depth has nothing to do with
wave height, i.e. it is non-dispersive.
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Figure 1: Cusped solitary waves in finite water depth defined by (@) when H,, = 0.1
and ko = 7/6 (corresponding to a = 12%/1/,/7). Solid line: # = 1.9; Dashed line:
£ =1.5.
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Figure 2: Peaked solitary waves in finite water depth defined by (6) when H, = 0.1
and ko = 7/6 (corresponding to a = 12'/4/\/7). Solid line: 8 = 10; Dashed line:
£ =2.5.



Thus, in the frame of the linear UWM [I], given a dimensionless phase speed
a > 1, there exist an infinite number of peaked solitary waves A, exp(—k,|z|) with
the same phase speed « but different wave amplitudes A,,. Thus, we may have such
peaked solitary waves

n(x) =D Ay exp(—kala]),

where A, is a constant, which can be chosen with great freedom, as long as the above
infinite series is convergent in the whole interval (—oo, +00). As a special case of it,
let us consider such a one-parameter family of wave elevations

H, <X 1
n(z) = R0 ; —5 exp(—knalz]), 5> 1, (6)

where H,, denotes wave height, § > 1 is a constant, () is the Riemann zeta function,
and k, is determined by (2)) for the given o > 1, respectively. Since 8 > 1, we have

:3 n~# = ((B) so that the above infinite series converges to the wave height H,, at
x = 0, and besides is convergent in the whole interval (—oo, +00). However, its 1st

derivative at x = 0, i.e.

, Hy Xk
710 =053, (7
is convergent to a finite value when [ > 2, but tends to infinity when 1 < g < 2,
because k, 1 ~ (n — 0.5)7 for large enough integer n and the series >_1/n"~1 is
convergent when # > 2 but tends to infinity when 0 < 8 < 2. So, the infinite series
([@) defines a cusped solitary wave in finite water depth when 1 < 5 < 2 and a peaked
solitary wave when 3 > 2. Therefore, in essence, a cusped solitary wave in finite water
depth is consist of an infinite number of peaked solitary waves (when 1 < 8 < 2) with
the same phase speed! To the best of the author’s knowledge, this reveals, for the first
time, a simple but elegant relationship between the peaked and cusped solitary waves
in finite water depth! In addition, the infinite series (@) illustrates the consistency of
the peaked and cusped solitary waves, and besides explains why and how a cuspon
has an infinite 1st-derivative at crest. Since the phase speed of peaked solitary waves
(@) in finite water depth has nothing to do with the wave height, it is straight forward
that the phase speed of a cusped solitary wave in finite water depth also has nothing
to do with the wave height, too.

Note that, according to the definition of the wave elevation (), given a dimen-
sionless phase velocity @ > 1 and an arbitrary wave height H,,, there exist an infinite
number of cusped solitary waves, dependent upon 5 € (1,2]. For example, the two
cusped solitary waves in finite water depth defined by the infinite series ([@l) in the case
of o® = 2/3/7, H,, = 1/10 when 3 = 1.5 and 3 = 1.9 are as shown in Fig.[Il It should
be emphasized that the same expression (@) can define an infinite number of peaked
solitary waves in finite water depth, too, depending on § € (2, 4+00). For example, the
two peaked solitary waves in finite water depth in the case of a? = 2v/3 /7, H,, = 1/10
when 5 =5/2 and § = 10 are as shown in Fig. 2l This well illustrates the consistency
of the peaked and cusped solitary waves in finite water depth.



Theoretically speaking, given an arbitrary wave height H,, and a dimensionless
phase speed a > 1, there are many different types of peaked/cusped solitary waves
in finite water depth. For example, a more generalized, two-parameter family of
peaked /cusped solitary waves in finite water depth reads

H, <X 1
n(r) = 0. n:(%_wm exp(—ky|z]), (8)

where § > 1 and 7 # 0 are constants to be chosen with great freedom, ((3,7) is a
generalized Riemann zeta function, and k,, is determined by (2]) for the given a > 1,
respectively. Since k, ~ (n + 0.5)7 for large enough integer n, the above infinite
series defines a cusped solitary wave when 1 < 8 < 2 and a peaked ones when [ > 2,
respectively. This illustrates once again the consistency of the peaked and cusped
solitary waves in finite water depth.

According to the linearized UWM [1], the velocity potential ¢ (defined only in
the interval x > 0) corresponding to the peaked/cusped solitary wave elevation (@)
reads

¢r =

_all, <X coslkn_1(z + 1)] exp(—k, 1)
CEP SR o

which gives, using the symmetry, the corresponding horizontal velocity

n=1

y = H, i’i ky, coslkn(z 4+ 1)] exp(—kn|x|)

- 10
(B) 2 (n+ 17 sn(hy) (10)

in the whole interval z € (—oo, +00), the vertical velocity

+oo .
n a H, ky sinfk, (z 4+ 1)] exp(—knpx)
vto= : 11
B 2 (£ 1) sin(k) ()
in the interval z € (0, +00), and the vertical velocity

- = _© H, i’i ky sink,(z + 1)] exp(knx) (12)

¢(B)

in the interval (—oo,0), respectively. Obviously, it holds

(n+1)% sin(k,)

n=0

limov™ = — limv™
x—0 x—0

for the cusped (1 < § < 2) and peaked (5 > 2) solitary waves, although we always
have v = 0 at z = 0. Thus, like a peakon in finite water depth, a cuspon in finite
water depth has the velocity discontinuity at = = 0, too.

Especially, at z = 0 and as x — 0, the corresponding vertical velocity reads

. o Hy x> kn
fy (0.0 = 055 2 G 1P

n=0



which is finite when 8 > 2 but tends to infinity when 1 < § < 2, since k,, = (n+0.5)7
for large enough integer n. Thus, unlike a peaked solitary wave in finite water depth
whose v is always finite, the vertical velocity of the cusped solitary waves in finite
water depth tends to infinity at 2 = 0 as * — 0. Mathematically, this is acceptable,
since it is traditionally believed that a cuspon has a higher singularity than a peakon.
Such kind of singularity leads to a more strong vortex sheet at x = 0 near z = 0.
Physically, in reality such kind of singularity and discontinuity, “if it could ever be
originated, would be immediately abolished by viscosity”, as mentioned by Lamb [11].

3 Concluding remarks

In summary, in the frame of the linearized UWM [I], we give, for the first time, the
cusped solitary waves in finite water depth, and reveal that a cuspon is consist of
an infinite number of peaked solitary waves with the same phase speed. This kind
of consistency also well explains why and how the 1st-derivative of a cusped solitary
wave tends to infinity at crest. It is found that, like a peakon, the vertical velocity of
a cuspon is also discontinuous at x = 0, and besides, its phase speed also has nothing
to do with wave height, too. All of these would deepen and enrich our understandings
about the peaked and cusped solitary waves.

It should be emphasized that, in the frame of the UWM, the governing equation
is defined only in the domain 0 < x < +o00, since the solution at —oo < x < 0 is
given by means of the symmetry. This is quite different from other wave equations
such as the CH equation and the fully nonlinear wave equations, which are defined
in the whole domain —oo < = < +o00. Physically, it means that the flow at crest
is mot absolutely necessary to be irrotational. Thus, mathematically, we need not
consider whether the peaked/cusped solitary waves are weak solutions or not. This
is the reason why, unlike the well-known peaked solitary wave n = ¢ exp(—|z|) of
the CH equation, whose phase speed is always equal to wave height, the phase speed
of the peaked/cusped solitary waves (4] given by the UWM has nothing to do with
wave height! This is the most attractive novelty of the UWM, which provides us a
simple but elegant relationship between peaked and cusped solitary waves in finite
water depth.
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