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HOPF BIFURCATION OF
A GENERALIZED MOON-RAND SYSTEM

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. We study the Hopf bifurcation from the equilibrium point at the
origin of a generalized Moon-Rand system. We prove that the Hopf bifurcation
can produce 8 limit cycles. The main tool for proving these results is the averaging
theory of fourth order. The computations are not difficult, but very big and have
been done with the help of Mathematica and Mapple.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The Moon-Rand systems were developed to model the control of flexible space
structures (see [8, 2, 6]). They were introduced by Moon and Rand. It is a differential
equation in R? of the form

U=,
V= —U — uw,

(1) . i, 2—i
W= —Aw + Z cGu'veT,

it+j=2
where ¢; are real parameters. In [6] Mahdi, Romanovski and Shafer studied the Hopf
bifurcation of the equilibrium point localized at the origin of system (1) using the
reduction to the center manifold and studying on this surface the Hopf bifurcation.
They found that 2 limit cycles can bifurcate from the origin of system (1)-

In this paper we study the Hopf bifurcation of the equilibrium point localized at
the origin of the generalized Moon-Rand systems

U=,
V= —Uu — uw,

(2) . i G, 2—i—j i, 5. 3—i—j
W= —Aw + E biju'v’w 7+ E cijuv’w 7

it+j=2 i+j=3
where b;; and c¢;; are real parameters. Our study of this Hopf bifurcation uses a
complete different approach than the one given by Mahdi, Romanovski and Shafer
[6]. Namely, we use here the averaging theory of fourth order, and we find that 8
limit cycles can bifurcate from the origin of system (2).

In the qualitative theory of differential equations the study of the limit cycles is
one of the main topics. We recall that in bifurcation theory, a Poincaré-Andronov-
Hopf bifurcation or simply a Hopf bifurcation of a differential system is a local
bifurcation in which the equilibrium point of the differential system loses stability
when a pair of complex conjugate eigenvalues of the linearization of the system
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around the equilibrium point cross the imaginary axis of the complex plane. Under
appropriate assumptions on the differential system, small amplitude limit cycles
bifurcate from the equilibrium point. We recall that a limit cycle is a periodic orbit
isolated in the set of all the periodic orbits of the system.

In order to study the Hopf bifurcation at the origin of system (2) we choose the
parameters of this system as follows.

U=,
U= —u — uw,
n n n n
W= —w g SOVES u? g elbogj + uv E e?bi1j + uw E e?bio;
§=0 §=0 §=0 =0

n n n n
+ v? Z E]b()zj + vw Z e’;‘Jb()lj + w? Z Ejbogj + u? Z €J630j
Jj=0 J=0 Jj=0 J=0
n n n n
+u?v Z 5]021]‘ + v’w Z 8‘7620j + uv? Z €]Clgj + uvw Z ajcuj
Jj=0 Jj=0 Jj=0 Jj=0
n n n n
2 Jeoin. 3 J e 2 Jeo . 2 Jens
+ uw ZE c105 +v Zs co3j +v sz cp2; + vw Ze Co1j
J=0 Jj=0 Jj=0 Jj=0

n
+w3 E E]C(]oj,
Jj=0

where ¢ is a small parameter and n > 4. We recall that the linear part of this system
at the equilibrium point located at the origin has eigenvalues +¢ and — Z?:o elN;.
Our main result is the following.

Theorem 1. System (3) using averaging theory of fourth order can have 8 limit
cycles bifurcating from the origin.

The proof of Theorem 1 is given in section 2. It uses Theorem 2 of the appendix.

The method here followed, based in the averaging theory of fourth order, can be
applied to many other differential systems.

There are many results on the Hopf bifurcation, probably the more classical one
can be found in the book of Marsden and McCracken [7], see also [1]. But for
studying the Hopf bifurcation here we shall use the averaging theory of fourth order
which is rarely used in this context. We summarize the results that we need from
the averaging theory in Appendix 1.

2. PROOF OF THEOREM 1

To study the Hopf bifurcation at the origin (i.e. to study the small amplitude limit
cycles bifurcating from the equilibrium point at the origin) we introduce cylindrical
coordinates (r,0, z) defined through u = rcosf, v = rsinf and w = z. Note that

€ (0,00), 0 € £ = R/(27R) and z € R. In order to study the small amplitude limit
cycles around the origin of coordinates we do the rescaling (r,0,z) = (¢R,60,cZ).
Now the system is written as (R, Z') = (dR/df,dZ/df) and, after taking \g = 0
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(otherwise the system is not written in the appropriate normal form of averaging,
see equation (8)) we obtain system (3) in the normal form of averaging, i.e.

R = eFy1 + €2F21 + €3F31 + €4F41 + 0(55),

4
( ) 7 = eFio + €2F22 + €3F32 + €4F42 + 0(65),
where Fi; = Fj;(0,R, Z) fori=1,...,4 and j = 1,2 are given in Appendix 3 (due to
their length) and O(£°) denotes terms of order greater than or equal to 5 in e. Using
the notation of Appendix 1, we have that x = (R, Z), t =60, T = 2, Fj = (Fj1, Fj2)
for j =1,...,4 and ’R = O(&%).

We note that the periodic solutions (R(6), Z(0)) of system (4) that we shall obtain
using the averaging theory of fourth order, going back through the change of vari-

ables tends to the origin of system (3) when ¢ tends to zero, because (r(0), z(6)) =
(eR(6),=2(0)).

Now we compute the function fi(z) = fi(R,Z) = (f11(R, Z), f12(R, Z)) and we
obtain that f1 = fi(R, Z) is equal to

fi= (07 —((bo20 + bQoo)R2 + 2b000Z2 - 2)\12)).

Note that fi; is identically zero and thus the averaged function of first order provides
no limit cycles. We need to make f; identically zero. For that, we take

baoo = —bo20, booo =0, A1 =0.

With this choice of the parameters we can compute the averaged function of second
order, for more details see Theorem 2 in Appendix 1.

The averaged function of second order fa(z) = fo(R, Z) = (fa1(R, Z), fa2(R, Z))
has the two components

1
fo= 7T<4502033, 2>\2Z—(5021+5201)RQ—25001Z2—(5020+Co20+0200)R2Z—2000023)-

In order to look for small amplitude limit cycles bifurcating from the origin, after all
the changes of coordinates that we did and according to Theorem 2, we must find
the zeros (R, Zp) of the system fa(R,Z) = 0 such that the Jacobian

det (DRf21 sz21>

0.
DpRrfas Dzfar 7

(R,Z)=(Ro,Zo)

Note that the unique solution of fo; = 0 is R = Ry = 0 and for this value of R the
Jacobian is zero. Therefore, the averaged function of second order does not provide
any small amplitude limit cycle and consequently we must choose the parameters to
make foo identically zero. Doing that we get

bo2o = 0, b201 = —bo21, €020 = —Cc200, boo1 =0, cooo =0, A2=0.

Now we compute the averaged function of third order, for more details see again
Appendix 1.
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The averaged function of third order f3(x) = f3(R,Z) = (f31(R, Z), f32(R, Z))

has the two components
T
fa1= Z(bomR?’ — (borobioo + c200)R*Z),

™
f32 = ) (4(bo22 + bao2) R? + (—bo1ob1oobi1o + 3b1oocoso — botoci2o + b1oc200

+ brooca10 — 3borocson) R* + 4(bo1 + coz1 + c201) R2Z + 8bgo2 Z*
— 4(bo10b100 + broocoro — botocioo + c200)R*Z? + 8com Z° — 8X3Z).

According to Theorem 2 we must find the zeros (Ry, Zp) of the system f3(R,Z) =0
such that Ry > 0 satisfying that

(5) det <DRf31 DZf31> 20,

DRrfs2 Dzf32 (R,Z)=(Ro,%0)

It is easy to see that f3 = 0 has at most two solutions satisfying (5) by choosing
conveniently the values of the parameters of system (3). More precisely, note that
f31 = 0 has a unique solution Z = Zy = bga1/(bo10b100 + €200). Substituting this
value of Z in f3p we get a polynomial of second order in the variable R?. Then
setting f3o = 0 we get that at most two positive values of R = Ry are obtained such
that the Jacobian is nonzero. Moreover, playing with the coefficients it follows easily
that the upper bound can be reached. Since we are obtaining an upper bound on
the number of limit cycles equal to the one in [6] we will continue with the averaging
process. Hence, we choose the values of the parameters such that f3 = 0. We have

bo21 = 0, c200 = —bo10b100, b202 = —bo22, co21 = —c201, boo2 = 0, coo1 = 0, A3 =0,
and three possible solutions:

S1 = {boio = 0,b100 = 0},

Sy = {c100 = 0, c120 = —3c300, b1oo = 0},
_ _ bo1oc100 _ 2bo10b100b110 + bo1oc120 — biooc210 + 3bo10C300
S3 = {co10 = , €030 = .
b100 3blOO

We will study separately each one of the possible solutions.

Case 1: Solution Sp. In this case the averaged function of fourth order (see again
Theorem 2 in Appendix 1) yields fi(x) = fa(R,Z) = (fu1(R, Z), fa2(R, Z)) of the

form
T 53
fa = ZR (bo22 — c2012),

T
faz = 7 (4(boa2s + baoz) R? + (3bro1cozo — bor1ci2o + biocao1 + bioicaio — 3bor1csoo) R?

+ 4(bo2a + co22 + c202) R2Z + 2(3co30¢100 — 010€120 + C100¢210 — 3c010¢300) R Z
+ 8bo03 2> — 4(bio1co10 — bor1c100 + c201) R*Z* + 8coo2 Z° — 8M\4Z).

According to Theorem 2 we must find the zeros (Rg, Zy) of the system f; = 0 such
that the Jacobian

Drfsn Dzfn
(©) det (DRf42 sz42>

£0.

(R,Z)=(Ro,20)
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Proceeding as we did for the averaged function of third order, it is easy to see
that f4 = 0 has at most two solutions satisfying (6). Moreover, playing with the
coefficients it follows easily that the upper bound can be reached.

Case 2: Solution S3. In this case the averaged solution of fourth order is

T
Ju = ﬂRS(Gbom + boroczoo R — 6(botobior + c201)Z),

™
fa2 = —1(4(5023 + baoz) R? + (3b1o1c0s0 + bi1oc201 + bio1c210 — boro(bro1bi10

+ c121 + 3cs01)) R + 4(boaz + co2a + c202) R2Z + borocsoo R Z + 8boos 22
+ (4bo1o(—b1o1 + c101) — 4(bro1coro + c201))R*Z* + 8cop2 Z° — 8\ Z).

We must find the zeros (Ry, Zp) of the system fs = 0 such that the Jacobian (6)
is nonzero. We will see that fy = 0 has at most three solutions satisfying (6) and
that this upper bound is reached choosing adequately the values of the parameters
of system (2). Indeed, fs1 = 0 has a unique solution Z = Zy(R) = (6bo22 +
boroczooR2)/(6(bo1ob1o1 + c201)). Then substituting this value of Z into fi2 we get
a polynomial g = g(R?) of degree three in the variable R2. Thus, making fi2 = 0
and since we are looking for Ry > 0 we get that fiso = 0 has at most three positive
solutions R = Ry ;, ¢ = 1,2,3. To see that this upper bound is reached we must show
that we can choose the parameters in our system (3) such that the coefficients of
the polynomial g are independent, and this is the case looking at these coefficients.
So the maximum of three limit cycles can be reached.

Case 3: Solution S3. In this case the averaged solution of fourth order is given by

fa1 = —%RS ((—18bgaz + (brooca10 + boro(4bioobrio + 5erzo + 12¢300)) R
+ 18(bo11b100 + botobro1 + c201)Z + 18bo10(—2b100 + 3c100) Z2)),
i
Ja2 = biog (= 24b100(bo23 + bao3) R* + 6(bo11b300b110 — bo10b100b101b110

+ 2bo10b3gob111 — 3b3g0cos1 + bor1bioociz20 — botobiorcizo + borobioocian

— bioobi10c201 — bTngc211 + 3bo11b100cs00 — 3botobiorcsoo + 3botobioocsor) R*

— 24b100(boaz + co22 + c202) R*Z + 2b100(7bo10b100b110 + 8boroc120 + b1ooc210

+ 21bo10c300) R Z — 48boosbioo Z* + 24(bo11b300 + botobroobior + biggcort

— bo11b10oc100 + botobio1c100 — botobroocior + bioocao1) R*Z* + 24b3,0bTo0 R Z°

— 48b100c002Z> — 3bo10b100(7b100 — 12¢100) R2Z? + 48b19o \a Z).
According to Theorem 2 we must find the zeros (R, Zp) of the system f; = 0 such
that the Jacobian in (6) be nonzero. We will see that f4 = 0 can have 8 limit cycles

by choosing in a convenient way the values of the parameters of system (3). Indeed,
solving f41 = 0in R = Ry = Ro(Z) we get

_ (2bo10b100 — 3bo10¢100) Z% — (bo11b100 + borobior + €201)Z + bozo
Ry = £3V2 .
4bo10b100b110 + Sbo10c120 + broocaio + 12bo1oc300
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Since Ry > 0 we will restrict to the above positive Rg. Substituting this value of Rg
into f4o we get the function

8
(7) fio(Z) = ifi(Z)
i=0

where

fo(2) = 1,

hz)= 2,

f(2) = 22,

f(Z2)= 7%

f(2)= 2%

fs(Z2)= Z°,

f6(Z) = Z%\/(2bo10b100 — 3bo10c100)Z> — (bo11b100 + borobior + c201)Z + bosz,
f2(Z) = Z3\/(2bo10b10o — 3bo10c100) Z2 — (bor1b10o + borobior + c201)Z + boaz,
fs(Z) = Z*\/(2bo10b10o — 3bo10c100)Z> — (bo11b100 + borobior + c201)Z + bosz,

and the «; for ¢ = 0,1,...,8 are functions in the coeflicients byo3, bo10, bo11, bo22,
bo23, b1oo, b1o1, b110, D111, b203, Coo2, Co115 Co22, €031, €100, €101, C1205 C121, €201, €202
€210, C211, €300, 301 and A4. We do not provide the explicit expressions of these
functions because we shall need several pages for showing them. Their expressions
are easy to compute with the help of an algebraic manipulator as Mathematica or
Mapple.

We claim that the functions «; for ¢ = 0,1,...,8 are linearly independent. Now
we shall prove the claim. The coefficient A4, bggs and cog3 only appears in the
functions a1, as and as respectively. So these functions are independent of the
other six functions. Once we have removed the functions a, as and a3 from the set
of nine functions, we see that the coefficient bye3 only appears in the function «y,
hence the function «g is independent of the five remaining functions. We remove
the function g from the set of the six functions, and it remains only the functions
a; for i = 4,5,6,7,8 for showing that they are independent. Now the coefficient
c3o1 only appears in the function ay. Therefore we reduce the set to the functions
«; for i = 5,6,7,8. The coefficient byes only appears in the function ag, and we
reduce the set to the functions «; for ¢ = 5,7,8. The coefficient by1; only appears in
the function a7, and we reduce the set to the functions «; for i = 5,8. Finally, the
gradients of the functions a5 and ag which only depend on the coefficients bg1g, b1go,
€100, D110, €120, c210 and c3gp, form a 2 x 7 matrix of rank 2, so they are independent.
Hence the claim is proved.

The quadratic polynomial

(2bo10b100 — 3b010¢100) Z% — (bo11b100 + bo10b101 + €201)Z + o2z

in Z is always positive if byao > 0 and

4bo10bo22 (3100 — 2b100) + (bo11b100 + botobio1 + c201)? > 0.
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Since we always can choose the coefficients b;;, and c;j, satisfying these two previous
conditions, the square root

v/ (2b010b100 — 3bo10¢100)Z2 — (bo11b100 + bo10b1o1 + c201)Z + boza,

will be always real for all values of Z € R. Moreover, note that additionally we can
choose the coefficients b;j;, and ¢;; in order that the expression

4bo10b100b110 + Sbo1oci20 + brooca1o + 12bo10c300

be positive, so the function Ry(Z) is real for all Z € R. In what follows we shall
work only with coefficients b;;, and c¢;j;, for which the mentioned square root and the
function Ry(Z) are real. In particular, the functions fg, f7 and fg are well defined
in R.

It is easy to check that the functions f; for ¢ =, 1,..., 8 are linearly independent in
R, and since the coefficients o; for © = 0,1,...,8 are also independent, the function
fa2(Z) given in (7) satisfies the assumptions of Proposition 3 so there exists r; € Z
fori=1,...,8 and o for j =0,1,...,8 such that fio(r;) = 0. Therefore we have
eight zeros of the function f42(Z). Looking at the proof of Proposition 3 in [4] it
follows that these solutions r; are simple solutions of fy2(Z). For each Zy = r;
we have that Ry(r;) is a positive solution of f41(Z). So (R,Z) = (Ro(r:)),r:) is a
solution of f4(R,Z) = 0. It is easy to check that the Jacobian (6) is not zero. Hence
by Theorem 2 the differential system (4) has eight periodic solutions.

APPENDIX 1: AVERAGING THEORY OF FOURTH ORDER

We briefly recall the basic elements of the averaging theory of fourth order to
establish the existence of periodic orbits. Roughly speaking, the method gives a
quantitative relation between the solutions of a nonautonomous periodic system and
the solutions of its averaged system, which is autonomous. The following theorem
provides a fourth-order approximation for periodic solutions of the original system.

We consider the initial value problem
(8) &= eFy(t,x) + 2 Fy(t, ) + 3 F3(t, ) + e* Fy(t, ) + e’ R(t, z, €),

where Fj: R x Q — R™ are such that for each t € R, Fj;(t,-) € CtJforj=1,...,4
and 07 F} is locally Lipschitz in the second variable for j = 1,...,4. Moreover
R: RxQx (—ep,e0) = R™ is continuous and locally Lipschitz in the second variable.
We assume that Fi, Fb, F3, Fy, R are periodic of period T in the variable ¢ and we
set

yi(t,z) = /Ot Fi(s,x)ds,
yQ(ta l’) = 2/0 (F2(3,$) + (DxF1<S, x’))yl(&,r)) ds,

ys(t,z) = 3/0 (2F3(s,x) + 2(DyFa(s,x))y1(s, x) + (D Fi(s,x))y2(s, )

+ (Dngl(svx))(y1(87$)7y1(87m))) ds
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and

~

kﬁ
—
—
8
~—
|

Fy (t7 .’L’) dta

(t,z) dt + (DyFy(t, )y (¢, 2)) dt,

N

||
o\o\%o\

(F
(Fat.) + (DaFatt, )y (t.) + 5 (D2 Fi (1, 2)) (1 2), 30 1,2)
;mﬂwwmwwwu

T
(Fult,2) + (DaFs(t, ) t,2) + 5(DeFolt, 0)is(t, )

+

=

—
8

N—
I

0

+

(Dng2(t7x))(yl(t>x)vy1(t7x)) + %(DIFl(tvx))yii(t?x)
(D2, Fi(t, ) (y1(t, @), y2(t, x))

(D:va::vFl(t x))(yl(t’x)’yl(tal'),yl(t,ﬁﬂ))) dt.

+
CT:\H[\’)M—‘[\’)M—‘

We denote by dg(h,V,a) the Brouwer degree of h at some neighborhood V of a (see
[5] for the definition). In order to see that dp(h,V,a) # 0 it is sufficient to check
that the Jacobian of D,h(z) at z = a is not zero, see again [5] for more details.

Theorem 2. Assume that fi(x) =0 fori=1,2,3 and that fy(x) Z0. If fy(a) =0
for some a € Q and there exists a neighborhood V- C Q of a such that fi(x) # 0
for all x € V\ {a}, and that dg(fi(x),V,a) # 0, then for || > 0 sufficiently small,
there exist a T-periodic solution x(t,c) of (8) such that x(0,e) — a when € — 0.

For a proof of Theorem 2 see Theorem A of [3].

APPENDIX 2: AUXILIARY RESULT

Now we introduce an auxiliary result (for a proof see, for instance, Proposition 1
of [4]). To state it we recall that given A a set and fo, f1,..., fn: A = R, we say

that fo, f1,..., fn are linearly independent functions if and only if for all a € A, it
holds

n
Zazfz(r):() >aqy=a; = - =a, =0.

Proposition 3. If fo, f1,...,fn: A = R are linearly independent then there exist
Tly... T € A and ap, a1, ..., 0ap € R such that for every i € {1,...,n},

> afu(r) =0
k=0
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APPENDIX 3: THE FUNCTIONS Fj;

Here we provide the functions F; = Fj;(6, R, Z) which in the system (4):

11 = RZsinfcosb,
RQ
F12 = ?(COS(QG)Z)OQO — b020 — b200 — b200 COS(20) — b110 SIH(QG))

+Z(—b100 cos 6 — bg1g sin 9)R — b00022 + M Z,

Fyy = —RZ?sinfcos®4,
R3
Foy = T(_Cuo cos 6 — 3cs00 cos 0 + 120 cos(36) — c300 cos(360) — 3cp3p sin 6

1
—C210 sin 6 + €030 sin(30) — C210 sin(39)) + R2 (§(b021 COS(29) — b021

. Z
*bgol — bQOl COS(29) — b111 SID(29)) + g(*bogo COS(49) -+ b020 + 3b200
—40020 — 46200 + 4b200 COS(Q@) + 40020 COS(Q@) - 46200 COS(20)
+bago COS(49) + 2b110 Sin(20) —4ec110 sin(2¢9) + b110 sm(49)))

1
+R(1(3b100 cos O — 4cyo0 cos 0 + bipg cos(30) + boigsind — 4cpip sin
1
+bo10 sin(30))22 + (—1)101 cos f — bg11 sin 0)2) + XoZ + §Z3<b000 COS(29)

1
+booo — 2co00) + 522(—26001 — A1 — Apcos(20)),

F31 = RZ3sinfcos® 6,
1

F3o = 3 <(—4 COS(29)bOOO — COS(49)1)000 — 3booo + 4cooo + 4cooo COS(29))Z4
+(4 COS(29)b001 + 4bgo1 — 8coo1 + 3A1 + 4\ COS<29) + M COS<49))Z3

1
—4(2bgo2 + A2 + A2 c0s(20))Z% + 837 + R(§(—10b100 cos 6 + 12¢1gg cos 0

—5b100 COS(39) + 4cig0 COS(39) — b1oo COS(50) — 2bg109 sin 8 + 4cg1osin 6
—3bo10 Sin(39) + 4cp10 Sin(39) — bo1o sin(50))Z3 + 2(3b101 cos b — 4c101 cos O
+b101 COS(30) + bg118in @ — 4cpq1 sin 6 + bo11 Sin(39))22 — 8(b102 cosf

1
+bp12 sin H)Z) + R3 (52(26120 cos 6 + 10c¢300 cos § — c120 cos(36)
+5c300 COS(S@) — €190 COS(59) + 300 COS(59) + 2cp30 sin 6 + 2¢919 sin #
“+Co30 sin(30) + 36210 sin(30) — C030 sin(59) + 210 sin(50)) — 2(6121 cos 0
+3c301 cos 0 — c121 cos(30) + c301 cos(360) + 3cp31 sin 0 + ca11 sin
1
—Cp31 sin(36) + C211 sin(39))> + R? <1(—b020 COS(29) + 2bg2o COS(49)

+bp2o cos(60) — 2bgag — 10bagg + 4cozo + 12¢200 — 15bogg cos(26)

+16¢200 cos(26) — 6bagg cos(46) — 4egag cos(40) + 4eagg cos(46)

—bapo cos(660) — 5by1p sin(20) + 8cy110sin(26) — 4by10sin(46) + 4cq10 sin(40)
—b110 Sin(ﬁ@))Z2 + (— COS(49)()021 + bgo1 + 3bag1 — 4ego1 — 4egot



10

Fy

Fyo

J. LLIBRE AND C. VALLS

+4bog1 c08(20) + 4cgar cos(20) — deapr cos(20) + bapr cos(40) + 2b111 sin(26)
—46111 Sin(29) + 6111 Sin(49))Z + 4b022 (COS(QQ) — b022 — b202 — b202 COS(2¢9)

b sin(29))>> ,

—RZ*sinfcos” 6,
1
33(15 COS(QQ)bOOQ + 6bgoo COS(49) ~+ booo COS(69) + 10bgog — 12¢q00

1
—16¢000 cos(26) — 4cgop cos(46)) Z° + 3*2(—161)001 cos(260) — 4bgo1 cos(40)
—12bgo1 + 16¢01 — 101 + 16cpp1 cos(260) — 15X cos(26) — 61 cos(46)
1
—\p cos(66))Z* + §(4 cos(20)bgo2 + 4boo2 — 8cooz + 3A2 + 42 cos(260)

1
+ A9 COS(49))ZS + %(—2()003 — A3 — A3 COS(29))Z2 + M Z + R(Gz(?f)bloo cos 6
—40c¢100 cos 0 + 21b19p cos(30) — 20c100 cos(36) + Tbigp cos(50)
—4ei100 cos(50) + bioo cos(70) + Sbo1o sin @ — 8cpi sin 6 + 9bg1p sin(36)
—12¢p10 sin(39) + 5bo10 sin(59) —4co10 sin(59) + bo10 Sin(79))Z4

1
—1—1—6(—1017101 cos 0 + 12¢101 cos 0 — 5bio1 cos(360) + 4cio1 cos(36)

—bio1 COS(59) — 2bg11 sin 0 + 4cp11 sin @ — 3bg11 sin(39) + 4co11 sin(30)
1
—bo11 sin(50)) Z3 + 1(36102 cos 0 — 4cyo2 cos 0 + bipg cos(30) + boio sin

—4cgrosin 6 + by sin(39))Z2 + (—b103 cos 0 — bp13 sin 9)Z>
1

3(
1 (g

+3c120 cos(50) — Tesoo cos(58) + 120 cos(70) — e300 cos(70) — 3cpzp sin 0

—56210 sinf — 36030 sin(39) - 96210 sin(39) + Co30 sin(50) — 56210 sin(50)

(—5c120 cos @ — 35¢300 cos 6 + c120 cos(36) — 21e300 cos(36)

+co30 sin(76) — c2108in(70)) 2% + %(20121 cos 0 + 10c301 cos O — c191 cos(30)
+5¢301 €08(360) — c121 cos(50) + c301 cos(50) + 2¢p31 sin O + 2c917 sin 6

+co31 sin(30) + 3ca11 sin(30) — cos1 sin(50) + ca11 sin(50)) Z + %(—6122 cos 6
—3c302 €08 0 + ¢129 cos(30) — ¢392 cos(30) — 3cpze sin(f) — co12sin 6

1
+co32 sin(30) — ca12 sin(39))) + R? (m(élbogo cos(20) — 4bgag cos(40)

—4bgap cos(60) — b cos(860) + 5by2o + 35bago — 8co20 — 40c200
+56bag cos(26) — 4cpag cos(260) — 60ca0g cos(26) + 28bagg cos(40)
+8cp20 cos(460) — 24cag0 cos(46) + 8bagp cos(66) + 4egap cos(66)
—4e900 cos(60) + bapo cos(80) + 14b110 sin(260) — 20¢110 sin(26)
+14b11¢ sin(46) — 16¢110 sin(46) + 6b110 sin(660) — 4cq19 sin(66)

1
+b110 sin(80))Z3 + @(—5021 COS(29) + 2bg21 COS(49) + bp21 COS(69) — 2bg21

—10b201 + 4co21 + 12¢901 — 15b201 COS(29) + 16¢901 COS(QG) — 6b9p1 COS(49)
—4coo1 COS(49) + 4eoor COS(49) — boo1 COS(GH) —5b111 sin(29)
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+8c111 sin(20) —4b111 sin(46) + 4ci11 sin(40) —bi11 sin(6(9))Z2

1
+§(_ COS(49)5022 + bgog + 3baga — 4cgoa — 4egpa + 4boga COS(QQ)
+4cpag cos(20) — degpe cos(20) + bagz cos(46) + 2b112 sin(260) — 4eqq2 sin(20)

) 1 .
+b112 Sln(49))Z + 5((308(20)()023 — boag — bops — bao3 COS(29) — b113 Sln(20))) .
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