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Abstract

For the first time in mathematical finance field, we propose the local weak form meshless methods for
option pricing; especially in this paper we select and analysis two schemes of them named local boundary
integral equation method (LBIE) based on moving least squares approximation (MLS) and local radial point
interpolation (LRPI) based on Wu’s compactly supported radial basis functions (WCS-RBFs). LBIE and
LRPI schemes are the truly meshless methods, because, a traditional non-overlapping, continuous mesh
is not required, either for the construction of the shape functions, or for the integration of the local sub-
domains. In this work, the American option which is a free boundary problem, is reduced to a problem
with fixed boundary using a Richardson extrapolation technique. Then the θ-weighted scheme is employed
for the time derivative. Stability analysis of the methods is analyzed and performed by the matrix method.
In fact, based on an analysis carried out in the present paper, the methods are unconditionally stable for
implicit Euler (θ = 0) and Crank-Nicolson (θ = 0.5) schemes. It should be noted that LBIE and LRPI
schemes lead to banded and sparse system matrices. Therefore, we use a powerful iterative algorithm named
the Bi-conjugate gradient stabilized method (BCGSTAB) to get rid of this system. Numerical experiments
are presented showing that the LBIE and LRPI approaches are extremely accurate and fast.

Keywords: Option Pricing; American option; Meshless weak form; LBIE; MLS; LRPI; Richardson
Extrapolation; BCGSTAB; Stability analysis.
AMS subject classification: 91G80; 91G60; 35R35.

1. Introduction

Over the last thirty years, financial derivatives have raised increasing popularity in the markets. In
particular, large volumes of options are traded everyday all over the world and it is therefore of great
importance to give a correct valuation of these instruments.

Options are contracts that give to the holder the right to buy (call) or to sell (put) an asset (underlying)
at a previously agreed price (strike price) on or before a given expiration date (maturity). The majority of
options can be grouped in two categories: European options, which can be exercised only at maturity, and
American options, which can be exercised not only at maturity but also at any time prior to maturity.

Options are priced using mathematical models that are often challenging to solve. In particular, the
famous Black-Scholes model [1] yields explicit pricing formulae for some kinds of European options, including
vanilla call and put, but the modeling of American options is quite complicated. Hence, an analytical solution
is impossible. Therefore, to solve this problem, we need to have a powerful computational method. To this
aim, the most common approaches are the finite difference/finite element/finite volume methods/fast Fourier
transform (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) and the binomial/triniomial
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trees (see, e.g., [20, 21, 22, 23]), nevertheless some authors have also proposed the use of meshless algorithms
based on radial basis functions [24, 25, 26, 27, 28, 29] and on quasi radial basis functions [30].

Recently, a great attention has been paid to the development of various meshless formulations for solution
of boundary value problems in many branches of science and engineering. Meshless methods are becoming
viable alternatives to either finite element method (FEM) and boundary element method (BEM). Compared
to the FEM and the BEM, the key feature of this kind of method is the absence of an explicit mesh, and
the approximate solutions are constructed entirely based on a group of scattered nodes. Meshless methods
have been found to possess special advantages on problems to that the conventional mesh-based methods
are difficult to be applied. These generally include problems with complicated boundary, moving boundary
and so on [31, 32, 33, 34, 35, 36, 37]. A lot of meshless methods are based on a weak-form formulation on
global domain or a set of local sub-domains.

In the global formulation background cells are needed for the integration of the weak form. Strictly
speaking, these meshless methods are not truly meshless methods. It must be realized that integration is
completed only those background cells with a nonzero shape function.

In the financial literature global meshless method (or Kansa method) has been proposed for pricing
options under various models such as the Black-Scholes model, stochastic volatility models and Merton
models with jumps. In particular, in the case of Black-Scholes model, we mention two papers by Hon and
his co-author [30, 26] where the global RBFs and quasi-radial basis functions are developed. Moreover, as
regards the cases of stochastic volatility models and BlackScholes model on two underlying assets, new global
meshless method is presented in Ballestra and Pacelli [25]. The techniques presented in [25] is combined
of the Gaussian radial basis functions with a suitable operator splitting scheme. Also a numerical method
has recently been presented by Saib et al. [38]. In particular, in this latter work, a differential quadrature
radial basis functions is used to reduce the American option pricing problem under Merton’s jump-diffusion
model to a system of ordinary differential equations. The interested reader can also see [39, 40].

In methods based on local weak-form formulation no cells are needed and therefore they are often known
as truly meshless methods. By using a simple form for the geometry of the sub-domains, one can use a
numerical integration method, easily. Recently, two family of meshless methods, on the basis of the local
weak form for arbitrary partial differential equations with moving least-square (MLS) and radial basis
functions (RBFs) approximation have been developed [41, 42, 43, 44, 45]. Local boundary integral equation
method (LBIE) with moving least squares approximation and local radial point interpolations (LRPI) with
radial basis functions have been developed by Zhu et al. [46] and Liu et al. [47, 48], respectively. Both
methods (LBIE and LRPI) are meshless, as no domain/boundary traditional non-overlapping meshes are
required in these two approaches. Particularly, the LRPI meshless method reduces the problem dimension
by one, has shape functions with delta function properties, and expresses the derivatives of shape functions
explicitly and readily. Thus it allows one to easily impose essential boundary and initial (or final) conditions.
Though the LBIE method is an efficient meshless method, it is difficult to enforce the essential boundary
conditions for that the shape function constructed by the moving least-squares (MLS) approximation lacks
the delta function property. Some special techniques have to be used to overcome the problem, for example,
the Lagrange multiplier method and the penalty method [49]. In this paper, meshless collocation method
is applied to the nodes on the boundaries. The papers of Zhu et al. [46, 50, 51] in linear and non-linear
acoustic and potential problems, and for heat conduction problems, the works of Sladek brothers [52, 53]
by meshless LBIE are useful for researchers. This method has now been successfully extended to a wide
rang of problems in engineering. For some examples of these problems, see [54, 55, 56] and other references
therein. The interested reader of meshless methods can also see [57, 58].

The objective of this paper is to extend the LRPI based on Wu’s compactly supported radial basis
functions (WCS-RBFs) with C4 smoothness [59] and LBIE method based on moving least squares with
cubic spline weight function to evaluate European and American options. To the best of our knowledge, the
local weak form of meshless method has not yet been used in mathematical finance. Therefore, it appears
to be interesting to extend such a numerical technique also to option valuation, which is done in the present
manuscript. In particular, we develop a local weak form meshless algorithm for pricing both European and
American options under the Black-Scholes model.

In addition, in this paper the infinite space domain is truncated to [0, Smax] with a sufficiently large
Smax to avoid an unacceptably large truncation error. The options’ payoffs considered in this paper are
non-smooth functions, in particular their derivatives are discontinuous at the strike price. Therefore, to
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reduce as much as possible the losses of accuracy the points of the trial functions are concentrated in a
spatial region close to the strike prices. So, we employ the change of variables proposed by Clarke and
Parrott [60].

As far as the time discretization is concerned, we use the θ-weighted scheme. Stability analysis of
the method is analyzed and performed by the matrix method in the present paper. Furthermore, in this
paper we will see that the time semi-discretization is unconditionally stable for implicit Euler (θ = 0) and
Crank-Nicolson (θ = 0.5) schemes.

Finally, in order to solve the free boundary problem that arises in the case of American options is com-
puted by Richardson extrapolation of the price of Bermudan option. In essence the Richardson extrapolation
reduces the free boundary problem and linear complementarity problem to a fixed boundary problem which
is much simpler to solve.

The paper is organized as follows: In Section 2 a detailed description of the Black-Scholes model for
European and American options is provided. Section 3 is devoted to presenting the LBIE and LRPI
approaches and the application of such a numerical technique to the option pricing problems considered is
shown in this section. The numerical results obtained are presented and discussed in Section 4 and finally,
in Section 5, some conclusions are drawn.

2. The Black-Scholes model for European and American options

For the sake of simplicity, from now we restrict our attention to options of put type. However the reader
will note that the numerical method presented in this paper can be used with little modifications also to
price call options.

Let us consider a put option with maturity T and strike price E on an underlying asset s that follows
(under the risk-neutral measure) the stochastic differential equation [61]:

ds = r s dt+ σ s dW, (2.1)

where r and σ are the interest rate and the volatility, respectively. Moreover let V (s, t) denote the option
price, and let us define the Black-Scholes operator [61]:

LV (s, t) = −
∂

∂t
V (s, t)−

σ2

2
s2

∂2

∂s2
V (s, t)− rs

∂

∂s
V (s, t) + rV (s, t). (2.2)

2.1. European option

The option price V (s, t) satisfies, for s ∈ (0,+∞) and t ∈ [0, T ), the following partial differential problem
[61, 30, 26]:

LV (s, t) = 0, (2.3)

with final condition:

V (s, T ) = ς(s), (2.4)

and boundary conditions:

V (0, t) = E exp{−r(T − t)}, lim
s→+∞

V (s, t) = 0, (2.5)

where ς is the so-called option’s payoff:

ς(s) = max(E − s, 0), (2.6)

which is clearly not differentiable at s = E.
An exact analytical solution to the problem (2.3)-(2.5), i.e. the famous Black-Scholes formula, is avail-

able.
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2.2. American option

The option price V (s, t) satisfies, for s ∈ [0,+∞) and t ∈ [0, T ), the following partial differential problem
[30, 26]:

LV (s, t) = 0, s > B(t), (2.7)

V (s, t) = E − s, 0 ≤ s < B(t), (2.8)

∂V (s, t)

∂s

∣∣∣∣
s=B(t)

= −1, (2.9)

V (B(t), t) = E −B(t), (2.10)

with final condition:

V (s, T ) = ς(s), (2.11)

and boundary condition:

lim
s→+∞

V (s, t) = 0, (2.12)

where B(t) denotes the so-called exercise boundary, which is unknown and is implicitly defined by (2.7)-
(2.12). The above free-boundary partial differential problem does not have an exact closed-form solution,
and thus some numerical approximation is required.

Problem (2.7)-(2.12) can be reformulated as a linear complementarity problem [10]:

LV (s, t) ≥ 0, (2.13)

V (s, t)− ς(s) ≥ 0, (2.14)

(LV (s, t)) · (V (s, t)− ς(s)) = 0, (2.15)

which holds for s ∈ (0,+∞) and t ∈ [0, T ), with final condition:

V (s, T ) = ς(s), (2.16)

and boundary conditions:

V (0, t) = E, lim
s→+∞

V (s, t) = 0. (2.17)

In this work, the price of American option is computed by Richardson extrapolation of the price of
Bermudan option which is also employed in other works, such as for example [8, 9, 23, 25, 62]. In essence
the Richardson extrapolation reduces the free boundary problem and linear complementarity problem to a
fixed boundary problem which is much simpler to solve. Thus, instead of describing the aforementioned linear
complementarity problem or penalty method, we directly focus our attention onto the partial differential
equation satisfied by the price of a Bermudan option which is faster and more accurate than other methods.
Let us consider in the interval [0, T ], M +1 equally spaced time levels t0 = 0, t1, t2, ..., tM = T . Let VM (s, t)
denote the price of a Bermudan option with maturity T and strike price E. The Bermudan option is an
option that can be exercised not on the whole time interval [0, T ], but only at the dates t0, t1, . . ., tM . That
is we consider the problems

{
LVM (s, t) = 0,

VM (0, t) = E, lims→∞ VM (s, t) = 0,
(2.18)

which hold in the time intervals (t0, t1), (t1, t2), . . ., (tM−1, tM ). By doing that also the relation (2.15) is
automatically satisfied in every time interval (tk, tk+1), k = 0, 1, . . . ,M − 1. Moreover, the relation (2.14)
is enforced only at times t0, t1, . . ., tM−1, by setting

VM (s, tk) = max( lim
t→t

+
k

VM (s, t), ς(s)), k = 0, 1, . . . ,M − 1. (2.19)
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Note that the function VM (·, tk) computed according to (2.19) is used as the final condition for the problem
(2.18) that holds in the time interval (tk−1, tk), k = 1, 2, . . . ,M − 1. Instead, the final condition for the
problem (2.18) that holds in the time interval (tM−1, tM ), according to the relation (2.16), is prescribed as
follows:

VM (s, tM ) = ς(s). (2.20)

That is, in summary, problems (2.18) are recursively solved for k = M − 1,M − 2, . . . , 0, starting from the
condition (2.20), and at each time tM−1, tM−2, . . ., t0 the American constraint (2.19) is imposed.

The Bermudan option price VM (s, t) tends to become a fair approximation of the American option price
V (s, t) as the number of exercise dates M increases. In this work the accuracy of VM (s, t) is enhanced by
Richardson extrapolation which is second-order accurate in time.

3. Methodology

To evaluate the option, the LBIE and LRPI methods are used in the present work. The methods are
based on local weak forms over intersecting sub-domains. For ease of exposition, we focus our attention
onto American option, as the application of the method to European option is substantially analogous and
requires only minor modifications. At first we discuss a time-stepping method for the time derivative.

3.1. Time discretization

First of all, we discretize the Black-Scholes operator (2.2) in time. For this propose, we can apply
the Laplace transform or use a time-stepping approximation. Algorithms for the numerical inversion of a
Laplace transform lead to a reduction in accuracy. Then, we employ a time-stepping method to overcome
the time derivatives in this equation.

Let V k(s) denote a function approximating VM (s, tk), k = 0, 1, ...,M − 1. Note that the subscript M
has been removed from V k(s) to keep the notation simple. According to (2.20) we set V M (s) = ς(s). Let
us consider the following θ-weighted scheme:

LV k(s) =
θσ2

2
s2

d2

ds2
V k+1(s) + θrs

d

ds
V k+1(s) + (−θr +

1

∆t
)V k+1(s)−

(θ − 1)σ2

2
s2

d2

ds2
V k(s)− (θ − 1)rs

d

ds
V k(s)−

(−(θ − 1)r +
1

∆t
)V k(s). (3.1)

Therefore, the American option problems are rewritten as follows:

{
LV k(s) = 0,

V k(0) = E, lims→∞ V k(s) = 0,
(3.2)

and also, the relations (2.19) and (2.20) are rewritten as follows:

V k(s) = max
(

lim
t→t

+
k+1

V k(s), ς(s)
)
, k = 0, 1, . . . ,M − 1, (3.3)

V M (s) = ς(s).

3.2. Spatial variable transformation

Now, the infinite space domain is truncated to [0, Smax] with a sufficiently large Smax to avoid an
unacceptably large truncation error. However, in [63] shown that upper bound of the asset price is three
or four times of the strike price, so we can set Smax = 5E. The options’ payoffs considered in this paper
are non-smooth functions, in particular their derivatives are discontinuous at the strike price. Therefore, to
reduce the losses of accuracy the points of the trial functions are concentrated in a spatial region close to
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s = E. So, we employ the following change of variables which is not new but has already been proposed by
[60] and has also been employed for example in [25, 39, 40]:

x(s) =
sinh−1(ξ(s− E)) + sinh−1(ξE)

sinh−1(ξ(Smax − E)) + sinh−1(ξE)
, (3.4)

or

s(x) =
1

ξ
sinh

(
x sinh−1(ξ(Smax − E))− (1− x) sinh−1(ξE)

)
+ E. (3.5)

Note that the Eq. (3.4) maps the [0, Smax] to the [0, 1]. We define

U(x, t) = V (s(x), t), (3.6)

L̃Uk(x) = θα(x)
d2

dx2
Uk+1(x) + θβ(x)

d

dx
Uk+1(x) + γ1U

k+(x)−

(θ − 1)α(x)
d2

dx2
Uk(x) − (θ − 1)β(x)

d

dx
Uk(x) − γ2U

k(x), (3.7)

where

α(x) =
1

2
σ2

(
s(x)

s′(x)

)2

,

β(x) = −
1

2
σ2

(
s(x)

s′(x)

)2
s′′(x)

s′(x)
+ r

s(x)

s′(x)
,

γ1 =

(
− θr +

1

∆t

)
,

γ2 =

(
− (θ − 1)r +

1

∆t

)
.

Using the change of variable (3.4), the relations (3.2) are rewritten as follows:
{
L̃Uk(x) = 0,

Uk(0) = E, Uk(1) = 0,
(3.8)

and also, the relations (3.3) are rewritten as follows:

Uk(x) = max( lim
t→t

+
k+1

Uk(x), ς̃(x)), k = 0, 1, . . . ,M − 1, (3.9)

UM (x) = ς̃(x),

where

ς̃(x) = max
(
E − s(x), 0

)
. (3.10)

3.3. The local weak form

In this section, we use the local weak form instead of the global weak form. The LBIE and LRPI methods
construct the weak form over local sub-domains such as Ωs, which is a small region taken for each node in
the global domain Ω = [0, 1]. The local sub-domains overlap each other and cover the whole global domain
Ω. This local sub-domains could be of any size. Therefore the local weak form of the approximate equation
(3.8) for x ∈ Ωi

s can be written as

∫

Ωi
s

(
θα(x)

d2

dx2
Uk+1(x) + θβ(x)

d

dx
Uk+1(x) + γ1U

k+1(x)

)
u∗dΩ

=

∫

Ωi
s

(
(θ − 1)α(x)

d2

dx2
Uk(x) + (θ − 1)β(x)

d

dx
Uk(x) + γ2U

k(x)

)
u∗dΩ, (3.11)
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which Ωi
s is the local domain associated with the point i, i.e. it is a interval centered at x of radius rQ. In

LRPI, u∗ is the Heaviside step function

u∗(x) =

{
1, x ∈ Ωi

s,

0, otherwise,

as the test function in each local domain, but in LBIE method, u∗ is the fundamental solution for the
one-dimensional Laplace operator defined by the equation

∂2

∂x2
u∗(x, ξ) = δ(x, ξ), (3.12)

where x and ξ are a field point and a source point, respectively, and δ is Dirac delta function. The
fundamental solution and its derivative are given as follows

u∗(x, ξ) =
1

2
|x− ξ|, (3.13)

∂

∂x
u∗(x, ξ) =

1

2
sgn(x − ξ),

where the symbol sgn denotes the signum function. Using the integration by parts, we have

∫

Ωi
s

α(x)
d2

dx2
U j(x)u∗dΩ =

(
α(x)

d

dx
U j(x)− α′(x)U j(x)

)
u∗

∣∣∣∣∣
∂Ωi

s

(3.14)

+

∫

Ωi
s

U j(x)α′′(x)u∗dΩ +

∫

Ωi
s

U j(x)α′(x)
∂u∗

∂x
dΩ−

∫

Ωi
s

d

dx
U j(x)α(x)

∂u∗

∂x
dΩ,

and

∫

Ωi
s

β(x)
d

dx
U j(x)u∗dΩ = β(x)U j(x)u∗

∣∣∣∣∣
∂Ωi

s

−

∫

Ωi
s

U j(x)β′(x)u∗dΩ

−

∫

Ωi
s

U j(x)β(x)
∂u∗

∂x
dΩ, (3.15)
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for j = k, k + 1. In above relations, ∂Ωi
s is the boundary of Ωi

s. Using relations (3.11), (3.12), (3.14) and
(3.15) for LBIE scheme, we get

θ

2
|x− xi|

(
α(x)

d

dx
Uk+1(x)− α′(x)Uk+1(x)

)∣∣∣∣∣
∂Ωi

s

+
θ

2

∫

Ωi
s

Uk+1(x)α′′(x)|x − xi|dΩ+
θ

2
|x− xi|β(x)Uk+1(x)

∣∣∣∣∣
∂Ωi

s

−
θ

2

∫

Ωi
s

Uk+1(x)β′(x)|x − xi|dΩ

+γ1

∫

Ωi
s

Uk+1(x)dΩ −
θ

2

∫

Ωi
s

Uk+1(x)β(x)sgn(x− xi)dΩ

+
θ

2

∫

Ωi
s

Uk+1(x)α′(x)sgn(x− xi)dΩ−
θ

2

∫

Ωi
s

d

dx
Uk+1(x)α(x)sgn(x− xi)dΩ

=
θ − 1

2
|x− xi|

(
α(x)

d

dx
Uk(x)− α′(x)Uk(x)

)∣∣∣∣∣
∂Ωi

s

+
θ − 1

2

∫

Ωi
s

Uk(x)α′′(x)|x − xi|dΩ +
θ − 1

2
|x− xi|β(x)Uk(x)

∣∣∣∣∣
∂Ωi

s

−
θ − 1

2

∫

Ωi
s

Uk(x)β′(x)|x − xi|dΩ + γ1

∫

Ωi
s

Uk(x)dΩ

−
θ − 1

2

∫

Ωi
s

Uk(x)β(x)sgn(x− xi)dΩ +
θ − 1

2

∫

Ωi
s

Uk(x)α′(x)sgn(x− xi)dΩ

−
θ − 1

2

∫

Ωi
s

d

dx
Uk(x)α(x)sgn(x− xi)dΩ. (3.16)

Also, because the derivative of the Heaviside step function u∗ is equal to zero, then for LRPI scheme using
relations (3.14) and (3.15) the local weak form equation (3.11) is transformed into the following simple local
integral equation

θ

(
α(x)

d

dx
Uk+1(x) − α′(x)Uk+1(x)

)∣∣∣∣∣
∂Ωi

s

+θ

∫

Ωi
s

Uk+1(x)α′′(x)dΩ + θβ(x)Uk+1(x)

∣∣∣∣∣
∂Ωi

s

− θ

∫

Ωi
s

Uk+1(x)β′(x)dΩ

+γ1

∫

Ωi
s

Uk+1(x)dΩ

= (θ − 1)

(
α(x)

d

dx
Uk(x) − α′(x)Uk(x)

)∣∣∣∣∣
∂Ωi

s

+(θ − 1)

∫

Ωi
s

Uk(x)α′′(x)dΩ + (θ − 1)β(x)Uk(x)

∣∣∣∣∣
∂Ωi

s

− (θ − 1)

∫

Ωi
s

Uk(x)β′(x)dΩ

+γ2

∫

Ωi
s

Uk(x)dΩ. (3.17)

It is important to observe that in relations (3.16) and (3.17) exist unknown functions, we should approximate
these functions. To this aim the local integral equations (3.16) and (3.17) are transformed in to a system
of algebraic equations with real unknown quantities at nodes used for spatial approximation, as described
in the next section.
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3.4. Spatial approximation

Instead of using traditional non-overlapping, contiguous meshes to form the interpolation scheme, the
LBIE and LRPIM methods use a local interpolation or approximation to represent the trial or test functions
with the values (or the fictitious values) of the unknown variable at some randomly located nodes. There
are a number of local interpolation schemes for this purpose. The moving least squares approximation and
radial point interpolation are two of them. In this section, the fundamental idea of these approximations is
reviewed.

3.4.1. The MLS approximation

Consider a sub-domain Ωx of Ω in the neighborhood of a point x for the definition of the MLS approx-
imation of the trial function around x. To approximate the distribution of function Uk(x) in Ωx, over a

number of randomly located nodes {xi}, i = 1, 2, ..., n, the moving least squares approximation Ũk(x) of
Uk(x) for each x ∈ Ωx, can be defined by [49, 50, 51, 52, 54, 64, 65]

Ũk(x) = pT (x)ak(x), ∀x ∈ Ωx, (3.18)

where pT (x) = [p1(x) p2(x) ... pm(x)] is a complete monomial basis of order m. In the present work, both
the constant and the linear monomials are used, i.e. we set m = 2. Also ak(x) is an undetermined coefficient
vector with components akj (x), j = 1, 2, ...,m, which is decided by minimizing the evaluation function Jk(x)
shown below [49, 50, 51, 52, 54, 64, 65]

Jk(x) =

n∑

i=1

wi(x)

[
pT (xi)ak(x)− Ûk

i

]2

=

[
P.ak(x) − Ûk

]T
.W.

[
P.ak(x) − Ûk

]
, (3.19)

where wi(x) is a positive weight function associated with the node i, which decreases as |x − xi| increases.
It always takes unit value at the sampling point x and vanishes outside the support domain Ωx of x. The
cubic spline weight function is considered in the present work. The weight function corresponding to node
i for a one-dimensional domain may be written as [49, 50, 51]

wi(x) =





2
3 − 4r2i + 4r3i , ri ≤ 0.5,
4
3 − 4ri + 4r2i −

4
3r

3
i , 0.5 < ri ≤ 1,

0, ri > 1,

(3.20)

where ri = |x − xi|/rw is the distance from node xi to x, while rw is the size of support for the weight
function wi(x).

In relation (3.19), n is the number of nodes in the support domain Ωx and Ûk
i are the fictitious nodal

nodes. The matrices P and W are defined as [49, 50, 51, 52, 54, 64, 65]

P =




pT (x1)
pT (x2)

...
pT (xn)



n×m

, W = Diag(w1(x), w2(x), . . . , wn(x)). (3.21)

The stationarity condition of Jk(x) in Eq. (3.19) with respect to ak(x) i.e. ∂Jk(x)/∂ak(x), leads to the

following linear relation between ak(x) and Ûk (see [49, 50, 51, 52, 54, 64, 65] for more details)

A(x)ak(x) = B(x)Ûk , (3.22)

from which

ak(x) = A−1(x)B(x)Ûk , (3.23)
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where the matrices A(x) and B(x) are defined by

B(x) = PTW, A(x) = PTWP = B(x)P.

The MLS is well-defined only when A is non-singular or the rank of P equals m or at least m weight
functions are non-zero i.e. n > m for each x ∈ Ω. Substituting Eq. (3.23) into Eq. (3.18), the approximate

function Ũk(x) can be expressed in terms of the shape functions as

Ũk(x) = ϕT (x)Ûk(x) =

n∑

i=1

ϕi(x)Û
k
i , ∀x ∈ Ωx, (3.24)

where the nodal shape function ϕi(x) is given by

ϕT (x) = pT (x)A−1(x)B(x),

or

ϕi =

m∑

j=1

pj(x)[A
−1(x)B(x)]ji . (3.25)

Derivatives of ϕi(x) are obtained as (see [54, 64, 65] for more details)

ϕi,x =
m∑

j=1

pj,x[A
−1B]ji + pj [A

−1Bx +A−1
x B]ji,

ϕi,xx =
m∑

j=1

pj,xx[A
−1B]ji + 2pj,x[A

−1Bx +A−1
x B]ji + pj[2A

−1
x Bx +A−1Bxx +A−1

xxB]ji,

where A−1
x = (A−1)x and A−1

xx = (A−1)xx represent the one and two derivatives of the inverse of A with
respect to x, respectively, which are given by

A−1
x = −A−1AxA

−1,

A−1
xx = −A−1

x AxA
−1 −A−1AxA

−1 −A−1AxA
−1
x ,

where (.)x denotes d(.)
dx .

3.4.2. Local radial point interpolation

According to the local point interpolation [48], the value of point interpolation approximation of Uk(x)
at any (given) point x ∈ Ω = [0, 1] is approximated by interpolation at n nodes x1, x2, . . ., xn (centers)
laying in a convenient neighborhood of x i.e. Ωx. The domain in which these nodes are chosen, whose
shape may depend on the point x, is usually referred to as local support domain. Various different local
point interpolation approaches can be obtained depending on the functions used to interpolate Uk(x). In
this paper we focus our attention onto the so-called local radial point interpolation method (LRPI), which
employs a combination of polynomials and radial basis functions.

The function that interpolate Uk(x) for each x ∈ Ωx, which we denote by Uk
RBPI(x), is obtained as

follows:

Uk
RBPI(x) =

n∑

i=1

Ri(x)a
k
i +

m∑

j=1

Pj(x)b
k
j , (3.26)

where P1, P2, . . ., Pm denote the firstm monomials in ascending order (i.e. P1 = 1, P2 = x, . . ., Pm = xm−1)
and R1, R2, . . ., Rn are n radial functions centered at x1, x2, . . ., xn, respectively. Moreover ak1 , a

k
2 , . . .,

akn, b
k
1 , b

k
2 , . . ., b

k
m are n+m real coefficients that have to be determined.

As far as the radial basis functions R1, R1, . . ., Rn are concerned, several choices are possible (see,
for example, [66]). In this work we decide to use the Wu’s compactly supported radial basis functions
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(WCS-RBFs) with C4 smoothness [59], as they do not involve any free shape parameter (which is not
straightforward to choose, see [67, 68, 69, 39, 40]). WCS-RBFs are as follows:

Ri(x) = (1− ri)
6
+(6 + 36ri + 82r2i + 72r3i + 30r4i + 5r5i ), i = 1, 2, . . . , n, (3.27)

where ri = |x − xi|/rw is the distance from node xi to x, while rw is the size of support for the radial
function Ri(x). Also, (1− ri)

6
+ is (1− ri)

6 for 0 ≤ ri < 1 and zero otherwise.
Note that the monomials P1, P2, . . . , Pm are not always employed (if bki = 0, i = 1, 2, . . . ,m, pure RBF

approximation is obtained). In the present work, both the constant and the linear monomials are used to
augment the RBFs (i.e. we set m = 2).

By requiring that the function Uk
RBPI interpolate U at x1, x2, . . ., xn, we obtain a set of n equations in

the n+m unknown coefficients ak1 , a
k
2 , . . ., a

k
n, b

k
1 , b

k
2 , . . ., b

k
m:

n∑

i=1

Ri(xp)a
k
i +

m∑

j=1

Pj(xp)b
k
j = Ûk(xp), p = 1, 2, . . . , n, (3.28)

where Ûk are the fictitious nodal nodes. Moreover, in order to uniquely determine Uk
RBPI , we also impose:

n∑

i=1

Pj(xi)a
k
i = 0, j = 1, 2, . . . ,m. (3.29)

That is we have the following system of linear equations:

G

[
ak

bk

]
=

[
Ûk

0

]
,

where

Ûk =
[
Ûk
1 Ûk

2 . . . Ûk
n

]T
=
[
Û(x1) Û(x2) . . . Û(xn)

]T
, (3.30)

G =

[
R P

PT 0

]
,

R =




R1(x1) R2(x1) . . . Rn(x1)
R1(x2) R2(x2) . . . Rn(x2)

...
...

. . .
...

R1(xn) R2(xn) . . . Rn(xn)


 ,

P =




P1(x1) P2(x1) . . . Pm(x1)
P1(x2) P2(x2) . . . Pm(x2)

...
...

. . .
...

P1(xn) P2(xn) . . . Pm(xn)


 ,

ak = [ak1 ak2 . . . akm]T , (3.31)

bk = [bk1 bk2 . . . bkm]T . (3.32)

Unique solution is obtained if the inverse of matrix R exists, so that

[
ak

bk

]
= G−1

[
Ûk

0

]
.
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Accordingly, (3.26) can be rewritten as

Uk
RBPI(x) =

[
RT (x) PT (x)

] [ ak

bk

]
,

or, equivalently,

Uk
RBPI(x) =

[
RT (x) PT (x)

]
G−1

[
Ûk

0

]
. (3.33)

Let us define the vector of shape functions:

Φ(x) = [ ϕ1(x) ϕ2(x) . . . ϕn(x)] ,

where

ϕp(x) =

n∑

i=1

Ri(x)G
−1
i,p +

m∑

j=1

Pj(x)G
−1
n+j,p, p = 1, 2, . . . , n, (3.34)

and G−1
i,p is the (i, p) element of the matrix G−1. Using (3.34) relations (3.33) are rewritten in the more

compact form:

Uk
RBPI(x) = Φ(x)Ûk, (3.35)

or, equivalently,

Uk
RBPI(x) =

n∑

i=1

Ûk
i ϕi(x). (3.36)

It can be easily shown that the shape functions (3.34) satisfy the so-called Kronecker property, that is

ϕi(xj) = δij , (3.37)

where δij is the well-known Kronecker symbol, so that essential boundary and final conditions such as those
considered in Section 2 (e.g., (2.4), (2.5), (2.16), (2.17)) can be easily imposed. Note also that the derivatives
of Uk

RBPI (of any order) with respect to x are easily obtained by direct differentiation in (3.36).

3.5. Discretized equations

For implementation of the LBIE and LRPI methods, N +1 regularly nodes xj , j = 0, 1, ..., N are chosen
in the interval [0, 1] where x0 = 0 and xN = 1. We define X = {x0, x1, ..., xN}. Distance between two
nodes is defined by h = xi+1 − xi, for i = 0, 1, ..., N − 1. It is important to observe that Uk+1(x) must be
considered as known quantities, since it is approximated at the previous iteration. We want to approximate
Uk(x) using radial point interpolation and MLS approximations. Substituting the displacement expression
in Eqs. (3.24) and (3.36) into the local weak forms (3.16) and (3.17), respectively, the discrete equation for
each interior node is obtained as follows

n∑

j=1

Ûk+1
j

∫

Ωi
s

(θα′′(x) − θβ′(x) + γ1)ϕj(x)dΩ + θ
n∑

j=1

Ûk+1
j (β(x) − α′(x))ϕj(x)

∣∣∣∣∣
∂Ωi

s

+θ
n∑

j=1

Ûk+1
j α(x)ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

=

n∑

j=1

Ûk
j

∫

Ωi
s

((θ − 1)α′′(x)− (θ − 1)β′(x) + γ2)ϕj(x)dΩ

+(θ − 1)

n∑

j=1

Ûk
j (β(x) − α′(x))ϕj(x)

∣∣∣∣∣
∂Ωi

s

+ (θ − 1)

n∑

j=1

Ûk
j α(x)ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

(3.38)
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and

n∑

j=1

Ûk+1
j

∫

Ωi
s

[
θ

2
(α′′(x) − β′(x))|x − xi|+

θ

2
(α′(x)− β(x))sgn(x− xi) + γ1

]
ϕj(x)dΩ

−

n∑

j=1

Ûk+1
j

∫

Ωi
s

θ

2
α(x)sgn(x− xi) ϕj(x)dΩ +

θ

2

n∑

j=1

Ûk+1
j

[
|x− xi|(β(x) − α′(x))

]
ϕj(x)

∣∣∣∣∣
∂Ωi

s

+
θ

2

n∑

j=1

Ûk+1
j

[
|x− xi|α(x)

]
ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

=

n∑

j=1

Ûk
j

∫

Ωi
s

[
θ − 1

2
(α′′(x) − β′(x))|x − xi|+

θ − 1

2
(α′(x)− β(x))sgn(x− xi) + γ1

]
ϕj(x)dΩ

−

n∑

j=1

Ûk
j

∫

Ωi
s

θ − 1

2
α(x)sgn(x − xi) ϕj(x)dΩ +

θ − 1

2

n∑

j=1

Ûk
j

[
|x− xi|(β(x) − α′(x))

]
ϕj(x)

∣∣∣∣∣
∂Ωi

s

+
θ − 1

2

n∑

j=1

Ûk
j

[
|x− xi|α(x)

]
ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

. (3.39)

The matrix forms of the relations (3.38) and (3.39) are respectively as follows

n∑

j=1

(
θAij + γ1Bij + θCij + θDij

)
Ûk+1
j =

n∑

j=1

(
(θ − 1)Aij + γ2Bij

+(θ − 1)Cij + (θ − 1)Dij

)
Ûk
j , (3.40)

and

n∑

j=1

(
θÃij + γ1B̃ij − θC̃ij + θD̃ij + θẼij

)
Ûk+1
j =

n∑

j=1

(
(θ − 1)Ãij + γ2B̃ij

−(θ − 1)C̃ij + (θ − 1)D̃ij + (θ − 1)Ẽij

)
Ûk
j , (3.41)

where

Aij =

∫

Ωi
s

(α′′(x)− β′(x))ϕj(x)dΩ, Bij =

∫

Ωi
s

ϕj(x)dΩ,

Cij = (β(x) − α′(x))ϕj(x)

∣∣∣∣∣
∂Ωi

s

, Dij = α(x)ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

,

Ãij =
1

2

∫

Ωi
s

[
(α′′(x) − β′(x))|x − xi|+ (α′(x) − β(x))sgn(x− xi)

]
ϕj(x)dΩ,

(3.42)

B̃ij =

∫

Ωi
s

ϕj(x)dΩ, C̃ij =
1

2

∫

Ωi
s

α(x)sgn(x− xi)ϕj,x(x)dΩ,

D̃ij =
1

2

[
|x− xi|(β(x) − α′(x))

]
ϕj(x)

∣∣∣∣∣
∂Ωi

s

, Ẽij =
1

2

[
|x− xi|α(x)

]
ϕj,x(x)

∣∣∣∣∣
∂Ωi

s

.

In the LBIE method, it is difficult to enforce the boundary conditions (3.8) for that the shape function
constructed by the MLS approximation lacks the delta Kronecker property. In this work, we use the
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collocation method to the nodes on the boundary. In fact, at the boundary x0 and xN , Uk(x) will be
obtained by

E = Ũk(x0) =

n∑

j=1

ϕj(x0)Û
k
j , 0 = Ũk(xN ) =

n∑

j=1

ϕj(xN )Ûk
j , (3.43)

but in LRPIM, using the delta Kronecker property, the boundary conditions (3.8) can be easily imposed.
In fact, we have

Ûk
j = δ1jE, Ûk

j = 0, j = 1, 2, . . . , n. (3.44)

Therefore, we can rewrite the relations (3.41) and (3.43) in LBIE scheme, and also (3.40) and (3.44) in
LRPI scheme in the compact forms

PÛk = QÛk+1 + Ĥk, (3.45)

and

FV̂k = GV̂k+1. (3.46)

In these systems, we have

Ûk = [ Ûk
0 Ûk

1 Ûk
2 . . . Ûk

N
]T1×(N+1),

V̂k = [ Ûk
1 Ûk

2 Ûk
3 . . . Ûk

N−1 ]T1×(N−1),

also in the linear system (3.45), Ĥk is an 1× (N + 1) vector

Ĥk = [ E 0 0 . . . 0 ]T1×(N+1), (3.47)

and Q is the (N + 1) × (N + 1) banded matrix with bandwidth bw = 2⌊rw⌋+ 1 whose first and last rows
contain only zero elements and the other rows are

Qi = θÃi + γ1B̃i − θC̃i + θD̃i + θẼi, i = 1, . . . , N − 1,

where

Ãij =

{
integration obtained in relation (3.42), xj ∈ X ∩ Ωi

s,

0, otherwise.

The quantities B̃i, C̃i, D̃i and Ẽi are defined analogously. Also P is the (N +1)× (N +1) banded matrix
with bandwidth bw (See Figure 1) whose first and last rows given by the first and second of relations (3.43),
respectively, and the other rows are

Pi = (θ − 1)Ãi + γ2B̃i − (θ − 1)C̃i + (θ − 1)D̃i

+(θ − 1)Ẽi, i = 1, . . . , N − 1. (3.48)

On the other hand, in the linear system (3.46), we have two banded matrices F andG of size (N−1)×(N−1)
with bandwidth bw = 2⌊rw⌋+ 1, so that

Gi = θAi + γ1Bi + θCi + θDi,

Fi = (θ − 1)Ai + γ2Bi + (θ − 1)Ci + (θ − 1)Di,

for i = 1, 2, ..., N − 1. Finally, in LBIE scheme, combining Eqs. (3.9) and (3.45) leads to the following
system:

{
PΞ̂k = QÛk+1 + Ĥk,

Ûk = max{Ξ̂k, Π̂},
(3.49)
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to be recursively solved for k = M − 1,M − 2, . . . , 0, starting from

ÛM = Π̂, (3.50)

where Π̂ are obtained from MLS approximation to option’s payoff (3.10).
And for LRPI scheme, we find the following iterative system

{
FΞ̂k = GV̂k+1,

V̂k = max{Ξ̂k,Π},

to be recursively solved for k = M − 1,M − 2, . . . , 0, starting from

V̂M = Π = [ ς̃(x1) ς̃(x2) . . . ς̃(xN−1) ]T . (3.51)

Remark 1: Note that the numerical methods proposed in this work require solving at every time step
a system of linear equations (systems (3.45) and (3.46)). These highly sparse linear equations can be
solved using efficient solution techniques for sparse matrices based on either direct methods or iterative
methods. Direct methods, like LU factorization method, can be applied to any non-singular matrix and
are well adapted to matrix inversion and solution of linear systems. These methods are especially well
suited to solving dense systems with O(N3) computational complexity. Direct methods can be impractical
if coefficient matrix is large and sparse, because the triangular factors of a sparse matrix usually have many
more nonzero elements than itself. So a considerable amount of memory is required and even the solution of
the triangular system costs many floating point operations. This necessitates the use of iterative algorithms
to preserve the sparsity of the coefficient matrix. The most powerful iterative algorithm of these types is
the Bi-conjugate gradient stabilized method (BCGSTAB) developed by Van de Vorst [70] for solving sparse
linear systems. Suppose that the final system of equations has the form Ax = b. This method generates
a sequence of approximate solutions {x(k)} and essentially involve the coefficient matrix A only in the
context of matrix-vector multiplication which is relatively inexpensive for a sparse matrix O(N(2bw + 1))
as compared to a full matrix O(N2). It should also be noted that the complexity of BCGSTAB method
O(2N(2bw+1)K), where K is the number of iteration of algorithm. We simply observe that complexity of
this algorithm is very lower than complexity of direct methods. Note that in all the cases considered, the
tolerance number tolerance is selected as 10−10. Convergence was achieved after less than 5 iterations in all
cases tested.

Remark 2: The key note in applying the local weak form schemes is computing the local integrals using
an accurate numerical integration rule. In the following we consider the well-known numerical integration
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rule named Simpson’s rule which has a truncate error of order O(r4Q) to Aij , Bij , Ãij and C̃ij :

Aij =

∫

Ωi
s

(α′′(x) − β′(x))ϕj(x)dΩ =

∫ xi+rQ

xi
−rQ

(α′′(x) − β′(x))ϕj(x)dx

=
rQ
2

[
(α′′(xi − rQ)− β′(xi − rQ))ϕj(x

i − rQ) + 4(α′′(xi)− β′(xi))ϕj(x
i)

+ (α′′(xi + rQ)− β′(xi + rQ))ϕj(x
i + rQ)

]
+O(r4Q),

Bij =

∫

Ωi
s

ϕj(x)dΩ =

∫ xi+rQ

xi
−rQ

ϕj(x)dx =
rQ
2

[
ϕj(x

i − rQ) + 4ϕj(x
i) + ϕj(x

i + rQ)

]
+O(r4Q),

Ãij =
1

2

∫

Ωi
s

[
(α′′(x)− β′(x))|x − xi|+ (α′(x) − β(x))sgn(x− xi)

]
ϕj(x)dΩ

=
rQ
4

[{
(α′′(xi − rQ)− β′(xi − rQ))rQ − (α′(xi − rQ)− β(xi − rQ))

}
ϕj(x

i − rQ)

+

{
(α′′(xi + rQ)− β′(xi + rQ))rQ + (α′(xi + rQ)− β(xi + rQ))

}
ϕj(x

i + rQ)

]
+O(r4Q),

C̃ij =
1

2

∫

Ωi
s

α(x)sgn(x− xi)ϕj,x(x)dΩ

=
rQ
4

[
− α(xi − rQ)ϕj,x(x

i − rQ) + α(xi + rQ)ϕj,x(x
i + rQ)

]
+O(r4Q),

The Bi-conjugate gradient stabilized method is presented in the following pseudo code:

begin

Set x(0) ← 0
Compute r(0) = b−Ax(0)

Set p(0) ← r(0), q(0) ← 0, v(0) ← 0, ω̂(0) ← 1 , β(0) ← 1 and α(0) ← 1
repeat i = 1, 2, ... until ‖r(i)‖2 < tolerance‖r(0)‖2; tolerance = 10−10

β̂(i) =< p(i−1), r(i−1) >,

ω(i) = β̂(i)ω̂(i−1)

β(i−1)α(i−1) ,

β(i−1) = β̂(i),
q(i) = r(i−1) + ω̂(i)(q(i−1) − α(i−1)v(i−1)),
v(i) = Aq(i),

ω̂(i) = β̂(i)

<p(i),v(i)>
,

s(i) = r(i−1) − ω̂(i)v(i),
t(i) = As(i),

α(i) = <t
(i),s(i)>

<t(i),t(i)>
,

x(i) = x(i−1) + ω̂(i)q(i) + α(i)s(i),
r(i) = s(i) − α(i)t(i)

end repeat

x = x(i),

end
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3.6. Stability analysis

In this section, we present an analysis of the stability of the LBIE and LRPI schemes. Initially, we
consider the LBIE scheme. In this scheme, the solution at any time level can be obtained using Eqs. (3.24)
and (3.49)

Ũk = φmax{P−1Qφ−1Ũk+1 +P−1Ĥk, Π̃}, (3.52)

where φ is the (N + 1) × (N + 1) banded matrix with bandwidth bw which is easily obtained using the
relation (3.24). Then we have

Ũk = φÛk,

and also we have

Π̃k = φΠ̂k.

By choosing k = l and using (3.52), we get Ũl. Assume that

Ûl = [ Û l
0 Û l

1 Û l
2 . . . Û l

N
]T .

Also, let Ul
e be the exact solution at the lth time level with the following components

Ul
e = [ U l

e0 U l
e1 U l

e2 . . . U l
eN ]T .

It is well-known that for any i = 0, 1, ..., N , Ũ l
i is either smaller than U l

ei or greater than it i.e.

Ũ l
i < U l

ei, or Ũ l
i ≥ U l

ei, ∀ i = 0, 1, . . . , N.

Case 1: Firstly, we consider the vector components of Ũl and Ul
e which have the following property

Ũ l
i ≥ U l

ei,

let us define the vectors 1Ũ
l and 1U

l
e as follow

1Ũ
l
i =

{
Ũ l
i , Ũ l

i ≥ U l
ei,

0, otherwise,
1U

l
ei =

{
U l
ei, Ũ l

i ≥ U l
ei,

0, otherwise.

Eq. (3.52) can be rewritten using the vector 1Ũ
l as follows

1Ũ
l = φmax{P−1Qφ−1

1Ũ
l+1 +MP−1Ĥl,MΠ̃}, (3.53)

where M is a (N + 1)× (N + 1) matrix

Mij =

{
1, i = j, and Ũ l

i ≥ U l
ei,

0, otherwise.
(3.54)

The error El
1 at the lth time level is given by

El
1 = 1Ũ

l − 1U
l
e. (3.55)

It is important to observe that all components of El
1 are positive values, also we conclude

1Ũ
l = El

1 + 1U
l
e. (3.56)

Using the relations (3.53) and (3.56), we get

El
1 + 1U

l
e = φmax{P−1Qφ−1

1U
l+1
e +MP−1Ĥl +P−1Qφ−1El+1

1 ,MΠ̃}, (3.57)
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we can easily see that the relation (3.57) is transformed to the following equation using the maximum
function properties:

El
1 + 1U

l
e ≤ φmax{P−1Qφ−1

1U
l+1
e +MP−1Ĥl,MΠ̃}

+φmax{P−1Qφ−1El+1
1 ,O}, (3.58)

where O is the zero vector. Also we know that

1U
l
e = φmax{P−1Qφ−1

1U
l+1
e +MP−1Ĥl,MΠ̃}. (3.59)

Therefore, using (3.58) and (3.59) we can write

El
1 ≤ φmax{P−1Qφ−1El+1

1 ,O}. (3.60)

Finally, we obtain [71]

||El
1|| ≤ ||φmax{P−1Qφ−1El+1

1 ,O}||

≤ ||φP−1Qφ−1El+1
1 || ≤ ||φP

−1Qφ−1||||El+1
1 ||, (3.61)

or, equivalently

||El
1|| ≤ ||φP

−1Qφ−1||||El+1
1 ||. (3.62)

Case 2. Now, we consider the vector components of Ũl and Ul
e which have the following property

Ũ l
i < U l

ei,

suppose that 2Ũ
l and 2U

l
e are two vectors defined by

2Ũ
l
i =

{
Ũ l
i , Ũ l

i < U l
ei,

0, otherwise,
2U

l
ei =

{
U l
ei, Ũ l

i < U l
ei,

0, otherwise.

Eq. (3.52) can be rewritten such to contain 2Ũ
l only

2Ũ
l = φmax{P−1Qφ−1

2Ũ
l+1 +NP−1Ĥl,NΠ̃}, (3.63)

where N is a (N + 1)× (N + 1) matrix defined by

Nij =

{
1, i = j, and Ũ l

i < U l
ei,

0, otherwise.
(3.64)

In this case we propose the error El
2 at the lth time level

El
2 = 2Ũ

l − 2U
l
e. (3.65)

It is clear that El
2 is hold as

El
2 ≥ 0. (3.66)

By using relation (3.65), we obtain

2Ũ
l = 2U

l
e −El

2. (3.67)

Therefore, the relation (3.63) converted to the following equation

2U
l
e −El

2 = φmax{P−1Qφ−1
2U

l+1
e +NP−1Ĥl −P−1Qφ−1El+1

2 ,NΠ̃}. (3.68)
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Moreover, using the maximum function property, we have

2U
l
e −El

2 ≥ φmax{P−1Qφ−1
2U

l+1
e +NP−1Ĥl,NΠ̃}

−φmax{P−1Qφ−1El+1
2 ,O}, (3.69)

or

0 ≤ El
2 ≤ φmax{P−1Qφ−1El+1

2 ,O}. (3.70)

Then, it follows from the norm and maximum property that [71]

||El
2|| ≤ ||φmax{P−1Qφ−1El+1

2 ,O}|| ≤ ||φP−1Qφ−1El+1
2 ||

≤ ||φP−1Qφ−1||||El+1
2 ||, (3.71)

or, equivalently

||El
2|| ≤ ||φP

−1Qφ−1||||El+1
2 ||. (3.72)

The numerical scheme will be stable if l → ∞, the error ||El
1|| → 0 and ||El

2|| → 0 [71]. This can be
guaranteed provided ρ(φP−1Qφ−1) ≤ 1 or ρ(P−1Q) ≤ 1 (because P−1Q and φP−1Qφ−1 are similar
matrices), where ρ denotes the spectral radius of the matrix.

For the analysis, we need a simple version of the matrix P. It is given by

P = (θ − 1)Ã+ γ2B̃− (θ − 1)C̃+ (θ − 1)D̃+ (θ − 1)Ẽ+ Z,

where Ã, B̃, C̃, D̃ and Ẽ are the (N +1)× (N +1) banded matrix with bandwidth bw whose first and last
rows of them contain only zero elements and the other rows are obtain using relation (3.48). Also in the
above relation, Z is an (N + 1)× (N + 1) matrix

Zij =





ϕj(x0), i = 0,

ϕj(xN ), i = N,

0, otherwise,

where x0 = 0 and xN = 1.

Lemma 1. In the MLS approximation, if we put

m = 2, rQ = 0.51h, rw = 4rQ,

then the following relations hold:

ϕj(x0) = δ0j , ϕj(xN ) = δNj ,

where δ is the Kronecker delta.

Proof. We can write the relation (3.25) as follows

ϕj(x0) =

2∑

k=1

pk(0)[A
−1(0)B(0)]kj = [A−1(0)B(0)]1j .

Also using section 3.4.1, we have

B(x) =

[
w1(x) w2(x) . . . wn(x)

x1w1(x) x2w2(x) . . . xnwn(x)

]
,

and

A−1(x) =
1

[
∑n

i=1 wi(x)

][
∑n

i=1 x
2
iwi(x)

]
−

[
∑n

i=1 xiwi(x)

]2
[ ∑n

i=1 x
2
iwi(x) −

∑n
i=1 xiwi(x)∑n

i=1 xiwi(x)
∑n

i=1 wi(x)

]
.

19



Then, one has

[A−1(0)B(0)]1j =

wj(0)

[
∑n

i=1 x
2
iwi(0)− xj

∑n

i=1 xiwi(0)

]

[
∑n

i=1 wi(0)

][
∑n

i=1 x
2
iwi(0)

]
−

[
∑n

i=1 xiwi(0)

]2 . (3.73)

It is exactly clear that to boundary points x0 and xN , we have n = ⌊rw⌋+ 1, then here n = 3. Indeed, we
have xj = (j − 1)h, j = 1, 2, 3. Eq. (3.73) is calculated as follows

[A−1(0)B(0)]1j =

wj(0)

[
∑3

i=1(i− 1)2h2wi(0)− (j − 1)h
∑3

i=1(i − 1)hwi(0)

]

[
∑3

i=1 wi(0)

][
∑3

i=1(i− 1)2h2wi(0)

]
−

[
∑3

i=1(i− 1)hwi(0)

]2 .

With a little computation, we conclude that

[A−1(0)B(0)]1j =

wj(0)

[
(2− j)w2(0) + 2(3− j)w3(0)

]

[
w1(0)w2(0) + w2(0)w3(0) + 4w1(0)w3(0)

] ,

on the other hand, we know w3(0) = 0, then

[A−1(0)B(0)]1j =
(2− j)wj(0)

w1(0)
.

Therefore, we obtain

ϕj(x0) = [A−1(0)B(0)]1j = δ1j .

Now, we want to show ϕj(xN ) = δNj . Using relation (3.25), we have

ϕj(xN ) = [A−1(1)B(1)]1j + [A−1(1)B(1)]2j ,

similar to the above discussion we can claim the following formula

[A−1(1)B(1)]1j =
wj(1)[(1 − 2h)(1− j)w1(1) + (1− h)(2 − j)w2(1) + (3− j)w3(1)]

hw3(1)(4w1(1) + w2(1))
,

and

[A−1(1)B(1)]2j =
wj(1)[(j − 1)w1(1) + (j − 2)w2(1) + (j − 3)w3(1)]

hw3(1)(4w1(1) + w2(1))
.

Also, we get

ϕj(xN ) =
wj(1)[2(j − 1)w1(1) + (j − 2)w2(1)]

w3(1)(4w1(1) + w2(1))
.

It is well-known that w1(1) = 0, therefore we have

ϕj(xN ) = ϕj(1) = δjN . �
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According to Lemma 1 we can write

Zij =





δ1j , i = 0,

δNj, i = N,

0, otherwise,

(3.74)

then we obtain

P = (θ − 1)S+
1

∆t
B̃+ Z, (3.75)

Q = θS+
1

∆t
B̃,

where

S = Ã− rB̃− C̃+ D̃+ Ẽ.

We simply observe that the first and last rows of Q contain only zero elements, so using Gershgorin theorem
all the eigenvalues of Q are in Q, i.e.

Q(x) =




0 0 . . . 0 0
Q

0 0 . . . 0 0


 ,

where

Q = [Q2 Q3 ... QN ]T .

Also, using the relation (3.74) and (3.75), we can see that

P(x) =




1 0 . . . 0 0

P

0 0 . . . 0 1


 ,

where

P = [P2 P3 ... PN ]T .

It is also worth noticing that one of the eigenvalues of P is λ = 1 i.e.

|λ1 − 1| ≤ 0, → λ1 = 1,

|λN+1 − 1| ≤ 0, → λN+1 = 1.

This is obtained using the Gershgorin theorem on the first and last rows of P. Therefore, the other

eigenvalues of P are in matrix P. However, we can consider the ρ(P
−1

Q) instead of ρ(P−1Q), we have

P = (θ − 1)S+
1

∆t
B̃,

Q = θS+
1

∆t
B̃,

or

B̃
−1

P = (θ − 1)B̃
−1

S+
1

∆t
I, (3.76)

B̃
−1

Q = θB̃
−1

S+
1

∆t
I,

on the other hand, we know that

P
−1

Q = P
−1

B̃ B̃
−1

Q = (B̃
−1

P) −1(B̃
−1

Q),
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let us define

Σ = B̃
−1

P, Γ = B̃
−1

Q, Υ = B̃
−1

S,

therefore, we can rewrite relation (3.77) as follows

Σ = (θ − 1)Υ+
1

∆t
I, (3.77)

Γ = θΥ+
1

∆t
I.

Now by applying Cayley-Hamilton theorem, we have

λ(P
−1

Q) = λ(Σ−1Γ) =
λ(Γ)

λ(Σ)
=

∣∣∣∣∣
θ∆tλ(Υ) + 1

(θ − 1)∆tλ(Υ) + 1

∣∣∣∣∣ ≤ 1, (3.78)

where λ are eigenvalues of the matrices. We can easily see that for implicit Euler (θ = 0) and Crank-
Nicolson (θ = 0.5) schemes, the inequality (3.78) is always satisfied and the scheme will be unconditionally
stable if ρ(Υ) ≤ 0. Figure 2 shows numerically how the spectral radius of Υ varies as a function of N and
M . Recollect that the stability condition is satisfied only when ρ(Υ) ≤ 0. It can be seen from Figure 2
that this condition is satisfied in the present numerical methods i.e. LBIE and LRPI. In this work, we use
Crank-Nicolson scheme which is second-order accuracy with respect to time variable.

Remark 3: Note that the analysis of the stability of the LRPI method is similar to the above analysis.
It should also be noted that the stability analysis for European option is similar to the American option.

4. Numerical results and discussions

The numerical simulations are run on a PC Laptop with an Intel(R) Core(TM)2 Duo CPU T9550 2.66
GHz 4 GB RAM and the software programs are written in Matlab. Let U , ULBIE and ULRPI respectively
denote the option price (either European or American) and its approximation obtained using the LBIE and
LRPI methods developed in the Section 3. To measure the accuracy of the ULBIE and ULRPI methods at
the current time (t = 0), the discrete maximum norm and the mean square norm have been used with the
following definitions:

MaxErrorLBIE = max
i=0,1,...,8

|ULBIE(xi, 0)− U(xi, 0)| , (4.1)

MaxErrorLRPI = max
i=0,1,...,8

|ULRPI(xi, 0)− U(xi, 0)| ,

RMSErrorLBIE =
1

8 + 1

√√√√
8∑

i=0

(ULBIE(xi, 0)− U(xi, 0))
2
, (4.2)

RMSErrorLRPI =
1

8 + 1

√√√√
8∑

i=0

(ULRPI(xi, 0)− U(xi, 0))
2.

In MaxErrorLBIE , MaxErrorLRPI , RMSErrorLBIE and RMSErrorLRPI , xi, i = 0, 1, .., 8 are nine different
points that will be chosen in a convenient neighborhood of the strike E, i.e. xi ∈ (45E, 6

5E). For simplicity,
in European and American options we set xi = 8 + 0.5i, i = 0, 1, .., 8 and xi = 80 + 5i, i = 0, 1, .., 8,
respectively. Note that in the case of the American option the exact value of U is not available. Therefore,
in (4.1), (4.2) we use instead a very accurate approximation of it, which is obtained using the LBIE method
with a very large number of nodes and time steps (precisely we set N = 1024 and M = 1024).

In the following analysis, the radius of the local sub-domain is selected rQ = 0.51h, where h is the
distance between the nodes. The size of rQ is such that the union of these sub-domain must cover the whole
global domain i.e. ∪Ωi

s ⊂ Ω. It is also worth noticing that the MLS approximation is well-defined only when
A is non-singular or the rank of P equals m or at least m weight functions are non-zero i.e. n > m for each
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x ∈ Ω. Therefore, to satisfy these conditions, the size of the support domain rw should be large enough
to have sufficient number of nodes covered in Ωx for every sample point (n > m). In all the simulations
presented in this work we use rw = 4rQ. Also, in Test cases 1 and 2, we use ξ = 1 and ξ = 0.1, respectively.
These values are chosen by trial and error such as to roughly minimize the errors on the numerical solutions.

To show the rate of convergence of the new schemes when h → 0 and ∆t → 0, the values of ratio with
the following formula have been reported in the tables

RatioLBIE = log2

{
MaxErrorLBIE in the previous row

MaxErrorLBIE in the current row

}
,

RatioLRPI = log2

{
MaxErrorLRPI in the previous row

MaxErrorLRPI in the current row

}
.

Finally, the computer time required to obtain the option price using the numerical method described in
previous section is denoted by CPUT ime.

4.1. Test case 1

To test the proposed numerical schemes, our first test problem is the same test problem as is presented
in [30] and [72]. To be precise, let us consider an European option with the parameters and option data
which are chosen as in Table 1. Moreover, we set Smax = 5E.

Of special interest to us is testifying the numerical convergence of the solution by this problem. Hence,
applying the suggested schemes in this paper together with different choice of N and M , we get the con-
sequences tabulated in Tables 2 and 3. The number of time discretization steps is set equal to nodes
distributed in the domain. As we have experimentally checked, this choice is such that in all the simulations
performed the error due to the time discretization is negligible with respect to the error due to the LBIE
and LRPI discretization (note that in the present work we are mainly concerned with the LBIE and LRPI
spatial approximation).

From Tables 2 and 3, it can be seen that the LBIE and LRPI methods provide very accurate, stable and
fast approximation for option pricing. We observe that the accuracy grows as the number of basis increases
gradually, then the option price can be computed with a small financial error in a small computer time. In
fact, for example, in LBIE scheme the option pricing is computed with at least 3 correct significant digits.
note that, in Table 2, as well as in the following ones, the fact that MaxErrorLBIE is approximately 10−3

means that ULBIE(x, 0) is up to at least the 3th significant digit, equal to U(x, 0). Moreover, the computer
times necessary to perform these simulations are extremely small. In fact, using 32 nodal points in domain
and 32 time discretization steps, European option is computed with an error of order 10−4 in only 7× 10−3

second, instead, using 128 nodal points and 128 time discretization steps, the option price is computed with
an error of order 10−5 in 0.13 second and using 256 nodal points and 256 time discretization steps, the
option price is computed with an error of order 10−6 in 0.44 second. On the other hand, by looking at
Table 3, it can also be seen that in LRPI scheme error of orders 10−4, 10−5 and 10−6 are computed using
64, 256 and 1024 nodal points and time discretization steps, respectively in 0.01, 0.42 and 7.07 seconds. We
can observe that the option price computed by LBIE on sub-domains requires approximately 0.44 second
to reach an accuracy of 10−6 compared to the 0.42 second required by LRPI method to reach an accuracy
of 10−5 on the same number of sub-domains. Therefore, we can simply conclude that in this case LBIE
method is more accurate than LRPI method. As the final look at the numerical results in Tables 2 and 3,
we can see MaxErrorLRPI

MaxErrorLBIE
≈ 4, i.e. LBIE scheme is approximately 4 times accurate than LRPI scheme. Also

rate of convergence of LBIE is 2 but in LRPI, it is approximately 2.
Remark 4: The error estimates of MLS approximation are given in [73] and [74] using different strate-

gies. They have proved that the error of this approximation is of order O(∆xm). According to theoretical
bounds, the ratios should be approximately m. As we can see in Ratio of Table 2, the numerical results con-
firm the analytical bounds. Anyway, the presented schemes have nearly the order 2 (Note that in previous
section we consider m = 2).

Comparison with previous works: We can compare the prices obtained from the two meshless
methods proposed in this paper with a solution computed in [26]. Hon and his co-author [26] proposed
Kansa collocation method combined with method of lines (MOL) for the pricing of European options.

23



Kansa collocation method is a well-known strong form meshless method based on radial basis functions
(especially multi-quadratic radial basis function which is used in [26]) and also the method of lines is
a general way of viewing a time-dependent partial differential equation (PDE) as a system of ordinary
differential equations (ODEs). The partial derivatives with respect to the space variables are discretized to
obtain a system of ODEs in the variable t. This system could be obtained using an explicit fourth order
backward time integration scheme (RK4). However, according to what was reported in [26], the numerical
proposed therein allows us to obtain the European option price with the RMSError = 3 × 10−4 using
N = 81 and M = 30. In [26], the authors say no any things about the computer time of algorithm but in
the other paper of these authors [30], they said that the computer time of Qusi-RBF method for European
option pricing which is 12 seconds, is much less than method proposed in [26]. The main reasons of why the
our numerical methods are more efficient than the one proposed by [26] are the following: (1) In contrast to
the sparse and banded matrices associated with local weak form meshless methods proposed in this paper,
the matrices associated to system of the method in [26] usually leads to a fully populated matrices. (2)
The approach followed in [26] is based on the MOLs, which allows one to reduce the model to a system
of ordinary differential equations (ODEs). However the system of ODEs is solved using RK4 which is a
iterative method, in particular, to reach convergence, such an iterative procedure requires us to perform at
each time step, a long number of iterations, thus reducing the efficiency of the numerical scheme. However,
according to what is reported in this paper, the numerical methods proposed do not have any requirement
to solve a system of ODEs. (3) Looking at Tables 2 and 3 and reported result in [26], we can see that
the solutions of [26] are slower and more inaccurate than our results. Putting all these things together
(comment 2 and this comment), we conclude that the numerical method proposed in this paper is very fast
and accurate than the method developed in [26]. (4) More importantly, in [26] there aren’t any stability
analysis of scheme. (5) The convergence error of approximated solution obtained by [26] is the same as
reported by Remark 4, i.e. O(∆x2), but it can be increased using our method by increasing value of m.
(please see Remark 4).

Let us compare the numerical schemes proposed in this work with that proposed in [30]. Again, in [30],
Hon et al. solved this problem using combined MOL method and a strong form meshless method named as
Qusi-RBF method. The method is more better than the proposed method in [26], because, the coefficient
matrix of the final system is sparse and banded. In [30], the most significant result obtained in Test case 1 is
the following: the RMSError is 4×10−5 in a computer time 12 seconds using M = 100 and N = 2000. Let
us investigate the reasons why the numerical technique proposed in this paper performs significantly better
than the method presented in [30]. (1) The final linear system of our work and [30] is a system using banded
coefficient matrix with bandwidth 2P + 1, but value of P in our work and [30] is 5 and 20, respectively.
Therefore, the coefficient matrix obtained using LBIE and LRPI schemes is very more sparse than [30].
(2) In this work, we solve at every time step a sparse and banded linear system using a powerful iterative
algorithm named Bi-conjugate gradient stabilized method with complexity O(2N(2bw + 1)K), whereas in
[30], the authors solved the final linear system with a direct method named banded LU factorization method
with partial pivoting with complexity O(2NP (P + 2)). In fact, for example, suppose that in [30] we get
P = 20 and in our meshless methods we get bw = 5 and K = 5. We can easily see that the complexity
of [30] is more bigger that our schemes. (3) Authors of [30] did not present the stability analysis for their
method. (4) Looking at Tables 2 and 3 and also reported numerical result in [30], we observed that solution
of [30] is slower and more inaccurate than our results. In fact, for example, in [30] option price is founded
with RMSError 4×10−5 in a computer time 12 seconds using N = 2000 and M = 100, whereas we compute
the option price with RMSErrorLBIE 3.45 × 10−5 in a computer time 0.13 in LBIE using N = 128 and
M = 128 and also RMSErrorLRPI 4.37× 10−5 in a computer time 0.42 in LRPI second using N = 256 and
M = 256. Putting all these things together we conclude that the numerical methods proposed in this paper
are at least thirty of times faster and more efficient than the method of [30].

4.2. Test case 2

For the second test problem consider an American option with the useful data which are provided in
the Table 4. As done in Test case 1, we suppose Smax = 5E. The results of implementing the problem by
utilizing the present methods with various number of sub-domains and time discretization steps are shown
in Tables 5 and 6. Overall, as already pointed out, following the numerical findings in the different errors,
convinces us that the error of the proposed techniques decrease very rapidly as the number of sub-domains in
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domain and time discretization steps increase. In fact, for example, in LBIE and LRPI schemes the price of
the American option can be computed with 3 correct significants in only 0.87 and 0.92 second, respectively
which is excellent and very fast. We emphasize that the ratio shown in Tables 5 and 6 are approximately
1.5 order accuracy instead of second order. This is thanks to the fact that this model is a free boundary
problem, therefore its solution is non-smoothness which spoils the accuracy of the spatial approximation
(again we have experimentally checked that the time discretization alone is second-order accurate and thus
the low rate of convergence is due to the error of the spatial approximation).

Remark 5: We believe that, in this option model we can do a comparison between our schemes and
numerical methods proposed in [30] and [26]. Firs of all, we emphasize that approximately this comparison
is substantially analogous with presented comparison between theirs in Test case 1 and requires only minor
changes. In particular, looking at Tables 5 and 6 and what is reported in [30] and [26] we simply observe that
the numerical methods proposed in this paper perform much better than the numerical methods proposed
in [30] and [26]. In fact, for example, the LBIE and LRPI allow us to compute the American option price
with the errors 2.08× 10−3 and 2.02 × 10−3 in 5.13 and 6.49 seconds, respectively (Tables 5 and 6) using
N = 512 and M = 512, whereas, it takes 47 seconds for the quasi-RBF scheme to compute the option price
with the error 3.4 × 10−3 using N = 2000 and M = 500. Putting all these things together, we conclude
that the numerical method proposed in this paper is approximately seven times faster than the method
developed in [30].

5. Conclusions

In this paper, the weak form meshless methods namely local boundary integral equation method (LBIE)
based on moving least squares approximation (MLS) and local radial point interpolation (LRPI) based on
Wu’s compactly supported radial basis functions (WCS-RBFs), were formulated and successfully applied to
price European and American options under the Block-Scholes model.

Overall the numerical achievements that should be highlighted here are as given in the following:
(1) The price of American option is computed by Richardson extrapolation of the price of Bermudan

option. In essence the Richardson extrapolation reduces the free boundary problem and linear complemen-
tarity problem to a fixed boundary problem which is much simpler to solve. Thus, instead of describing the
aforementioned linear complementarity problem or penalty method, we directly focus our attention onto the
partial differential equation satisfied by the price of a Bermudan option which is faster and more accurate
than other methods.

(2) The infinite space domain is truncated to [0, Smax] with a sufficiently large Smax to avoid an unac-
ceptably large truncation error. The options’ payoffs considered in this paper are non-smooth functions, in
particular their derivatives are discontinuous at the strike price. Therefore, to reduce as much as possible
the losses of accuracy the points of the trial functions are concentrated in a spatial region close to the strike
prices. So, we employ the change of variables proposed by Clarke and Parrott [60].

(3) We used the θ-weighted scheme. Stability analysis of the method is analyzed and performed by the
matrix method in the present paper. In fact, according to an analysis carried out in the present paper, the
time semi-discretization is unconditionally stable for implicit Euler (θ = 0) and Crank-Nicolson (θ = 0.5)
schemes.

(4) Up to now, only strong form meshless methods based on radial basis functions (RBFs) and quasi-
RBF have been used for option pricing in mathematical finance field. These techniques yield high levels
of accuracy, but have of a very serious drawback such as produce a very ill-conditioned systems and very
sensitive to the select of collocation points. Again we do emphasize that in the new methods presented in this
manuscript, coefficient matrix of the linear systems are sparse and banded with bandwidth bw = 2⌊rw⌋+1.
It should be noted that these coefficient matrices are positive definite.

(5) The present methods are truly a meshless method, which do not need any element or mesh for both
field interpolation and background integration.

(6) Meshless methods using global RBFs such as Gaussian and multiquadric RBFs have a free parameter
known as shape parameter. Despite many research works which are done to find algorithms for selecting
the optimum values of ǫ [67, 68, 69, 75, 76], the optimal choice of shape parameter is an open problem
which is still under intensive investigation. Cheng et al. [67] showed that when ǫ is very small then the
RBFs system error is of exponential order but the solution breaks down when ǫ is smaller than the limiting
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value. In general, as the value of the shape parameter ǫ decreases, the matrix of the system to be solved
becomes highly ill-conditioned. To overcome this drawback of the global RBFs, the local RBFs such as Wu,
Wendland and Buhmann compactly supported radial basis functions which are local and stable functions,
are proposed which are applied in this work.

(7) In the LBIE method, it is difficult to enforce the boundary conditions for that the shape function
constructed by the MLS approximation lacks the delta Kronecker property but in LRPIM, using the delta
Kronecker property, the boundary conditions can be easily imposed. In LBIE, we use the collocation method
to the nodes on the boundary.

(8) A crucial point in the weak form meshless methods is an accurate evaluation of the local integrals.
Based on MLS and RBFs, the nodal trial functions are highly complicated, hence an accurate numerical
integration of the weak form is highly difficult. In this work, the numerical integration procedure used is
Simpson’s rule, which is well-known to be fourth-order accurate.

(9) It should be noted that LBIE and LRPI schemes lead to banded and sparse system matrices. There-
fore, we use a powerful iterative algorithm named the Bi-conjugate gradient stabilized method (BCGSTAB)
to get rid of this system. Numerical experiments are presented showing that the LBIE and LRPI approaches
are extremely accurate and fast.

(10) To demonstrate the accuracy and usefulness of these methods, some numerical examples were
presented. For all test cases, the RMSError, MaxError, Ratio and CPU Time of schemes to various nodal
points in domain and time discretization steps, were reported. A good agreement between the results for
the LBIE and LRPI techniques, and the solutions obtained by other numerical schemes in literature [30]
and [26], was observed clearly.The results of our numerical experiments, confirm the validity of the new
techniques.
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Table 1: Test case 1, model parameters and data
Volatility Interest rate Strike price Maturity

0.2 year−0.5 0.05 year−1 10 0.5 year

Table 2: Test case 1, efficiency of the LBIE scheme
N M RMSErrorLBIE MaxErrorLBIE RatioLBIE CPU Time (s)

16 16 3.17 × 10−3 6.94 × 10−3
− 0.005

32 32 2.42 × 10−4 5.55 × 10−4 3.64 0.007

64 64 5.90 × 10−5 1.38 × 10−4 2.01 0.02

128 128 1.46 × 10−5 3.45 × 10−5 2.00 0.13

256 256 3.61 × 10−6 8.54 × 10−6 2.01 0.44

512 512 8.78 × 10−7 2.10 × 10−6 2.02 3.79

1024 1024 2.09 × 10−7 5.06 × 10−7 2.05 6.34

Table 3: Test case 1, efficiency of the LRPI scheme
N M RMSErrorLRPI MaxErrorLRPI RatioLRPI CPU Time (s)

16 16 2.17 × 10−3 5.70 × 10−3
− 0.003

32 32 1.11 × 10−3 2.57 × 10−3 1.15 0.005

64 64 2.82 × 10−4 6.54 × 10−4 1.97 0.01

128 128 7.08 × 10−5 1.67 × 10−4 1.97 0.14

256 256 1.77 × 10−5 4.37 × 10−5 1.93 0.42

512 512 4.40 × 10−6 1.18 × 10−5 1.89 4.11

1024 1024 1.09 × 10−6 3.42 × 10−6 1.79 7.07
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Figure 1: Plot of sparsity for N = 128, rQ = 0.51h and rw = 4rQ (sub-figure 1), rw = 6rQ (sub-figure 2), rw = 8rQ (sub-figure
3)
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Figure 2: Spectral radius of Υ in LRPI and LBIE methods
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Table 4: Test case 2, model parameters and data
Volatility Interest rate Strike price Maturity

0.3 year−0.5 0.1 year−1 100 1 year

Table 5: Test case 2, efficiency of the LBIE scheme
N M RMSErrorLBIE MaxErrorLBIE RatioLBIE CPU Time (s)

64 64 5.79 × 10−3 3.86 × 10−2
− 0.05

128 128 2.74 × 10−3 1.67 × 10−2 1.21 0.22

256 256 1.19 × 10−3 6.11 × 10−3 1.44 0.87

512 512 4.13 × 10−4 2.08 × 10−3 1.55 5.13

Table 6: Test case 2, efficiency of the LRPI scheme
N M RMSErrorLRPI MaxErrorLRPI RatioLRPI CPU Time (s)

64 64 8.13 × 10−3 3.15 × 10−2
− 0.02

128 128 3.49 × 10−3 1.56 × 10−2 1.01 0.21

256 256 1.37 × 10−3 5.75 × 10−3 1.44 0.92

512 512 4.50 × 10−4 2.02 × 10−3 1.51 6.49
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