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Abstract

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approxi-

mation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem

of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of

Hankel structure. We demonstrate that finding optimal solutions of this problem is very hard. For example, we argue

that if HSLRA is considered as a problem of estimating parameters of damped sinusoids, then the associated opti-

mization problem is basically unsolvable. We discuss what is known as the orthogonality condition, which solutions

to the HSLRA problem should satisfy, and describe how any approximation may be corrected to achieve this orthog-

onality. Unlike many other methods described in the literature the family of algorithms we propose has the property

of guaranteed convergence.
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1. Introduction

1.1. Statement of the problem

Let L, K and r be given positive integers such that 1 ≤ r < L ≤ K. Denote the set of all real-valued L × K

matrices by RL×K . Let Mr = M
L×K
r ⊂ RL×K be the subset of RL×K containing all matrices with rank ≤ r, and

H = HL×K ⊂ RL×K be the subset of RL×K containing matrices of some known structure. The set of structured L × K

matrices of rank ≤ r isA =Mr ∩H .

Assume we are given a matrix X∗ ∈ H . The problem of structured low rank approximation (SLRA) is:

f (X)→ min
X∈A

(1)

where f (X) = ρ2(X,X∗) is a squared distance on RL×K × RL×K .

In this paper we only consider the case where H is the set of Hankel matrices and thus refer to (1) as HSLRA.

Recall that a matrix X = (xlk) ∈ RL×K is called Hankel if xlk = const for all pairs (l, k) such that l + k = const; that

is, all elements on the anti-diagonals of X are equal. There is a one-to-one correspondence between L × K Hankel

matrices and vectors of size N = L + K − 1. For a vector Y = (y1, . . . , yN)T , the matrix X = H(Y) = (xlk) ∈ RL×K with

elements xlk = yl+k−1 is Hankel and vise-versa: for any matrix X ∈ H , we may define Y = H−1(X) so that X = H(Y).

We consider the distances ρ defined by the semi-norms

||A||2
W
= tr AWAT (so that f (X) = tr(X − X∗)W(X − X∗)

T ), (2)

where A ∈ RL×K and W is a symmetric non-negative definite negative matrix of size K × K. Moreover, in our main

application the weight matrix W is diagonal:

W = diag(w1, . . . ,wK) , (3)

where w1, . . . ,wK are some positive numbers.
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1.2. Background

The aim of low-rank approximation methods is to approximate a matrix containing observed data, by a matrix

of pre-specified lower rank r. The rank of the matrix containing the original data can be viewed as the order of

complexity required to fit to the data exactly, and a matrix of lower complexity (lower rank) ‘close’ to the original

matrix is often required. A further requirement is that if the original matrix of the observed data is of a particular

structure, then the approximation should also have this structure. An example is the HSLRA problem as defined in

the previous section.

HSLRA is a very important problem with applications in a number of different areas. In addition to the clear

connection with time series analysis and signal processing, HSLRA has been extensively used in system identification

(modeling dynamical systems) [1], in speech and audio processing [2], in modal and spectral analysis [3] and image

processing [4]. Some discussion on the relationship of HSLRA with some well known subspace-based methods of

time series analysis and signal processing is given in [5]. Similar structures used in (1) include Toeplitz, block Hankel

and block Toeplitz structures. In image processing, there is much use of Hankel-block Hankel structures. Further

details, references and specific applications of SLRA are provided in [6, 7, 8].

1.3. Notation

The following list contains the main notation used in this paper.

N, L,K, r Positive integers with 1≤r<L≤K<N, N=L+K−1

RL×K Set of L × K matrices

RN Set of vectors of length N

HL×K orH Set of L × K Hankel matrices

Mr Set of L × K matrices of rank r

A =Mr ∩H Set of L × K Hankel matrices of rank r

Y = (y1, . . . , yN)T Vector in RN

H(Y) Hankel matrix inHL×K associated with vector Y ∈ RN

X∗ ∈ H
L×K Given matrix

Y∗ = (y1∗, . . . , yN∗)
T Vector in RN such that H(Y∗) = X∗ (vector of observed values)

πH (X) Projection of the matrix X ∈ RL×K onto the setH

π(r)(X) Projection of a matrix X ∈ RL×K onto the setMr

Ip Identity matrix of size p × p.

1.4. Structure of the paper and the main results

The structure of the paper is as follows. In Section 2 we formally define the HSLRA problem (1) as an op-

timization problem in the space of matrices and introduce a generic norm defining the objective function f (·). In

Section 2 we also describe projection operators to H and especiallyMr that are used throughout the majority of the

algorithms introduced in this paper, in the process of solving the HSLRA problem. In Section 3 we study the relations

between different norms which define the objective function in two different setups. In Section 3, we also discuss

some computational aspects for dealing with infinite and infinitesimal numbers. In Section 4 we study the so-called

orthogonality condition which optimal solutions of (1) should satisfy, and describe how an approximation may be

corrected to achieve this orthogonality. Section 5 considers some algorithms for solving the HSLRA problem repre-

sented as optimization problems in the set of Hankel matrices H . We start with formulating a well-known algorithm

based on alternating projections to the spaces Mr and H , and call this AP. This is followed by an introduction of

an improved version of this algorithm which we call ‘Orthogonalized Alternating Projections’ (OAP). In Section 5.2

we introduce a family of algorithms which incorporate randomization, backtracking, evolution and selection. The

algorithms described in this section have guaranteed convergence to the optimum, unlike all other methods described

in the literature. The main algorithm introduced and studied in the paper is called APBR (which in an abbreviation for

‘Alternating Projections with Backtracking and Randomization’). Examples provided in Section 6 show that APBR

significantly outperforms AP, as well as some other methods. In Appendix A, we consider the HSLRA problem (1)

by associating matrices X ∈ A with vectors whose elements can be represented as sums of damped sinusoids; this

approach is popular in the signal processing literature. We demonstrate that the resulting objective function can be

very complex which means that the associated optimization problems are basically unsolvable. Section 7 concludes

the paper.
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2. HSLRA as an optimization problem

2.1. HSLRA as a problem of parameter estimation in non-linear regression

In the signal processing literature, it is customary to represent the HSLRA as a problem of estimating the parame-

ters of a nonlinear regression model with terms given by damped sinusoids, see for example [9] and [10]. This can be

formulated as follows.

Consider a general non-linear regression model where it is assumed that each element of the observed vector Y∗
may be written as

y j∗ = yn(θ) + ε j ( j = 1, . . . ,N) , (4)

where θ is a vector of unknown parameters, y j(θ) is a function nonlinear in θ and ε1, . . . , εN is a series of noise terms

so that Eε j = 0 and Eεiε j = 0 for i , j.

Parameter estimation in a general (weighted) non-linear regression model is usually reduced to solving the mini-

mization problem

F(θ) =

N
∑

j=1

s j(y j∗ − y j(θ))
2 → min

θ
. (5)

Assuming the variances σ2
j
= Eε2

j
of ε j’s are known, the weights s j can naturally be chosen as s j = 1/σ2

j
.

The estimator θ̂ is defined as θ̂ = arg minθ F(θ) . In the case of damped sinusoids, the function yn(θ) has the form

yn(θ) =

q
∑

i=1

ai exp(din) sin(2πωin + ϕi), n = 1, . . . ,N , (6)

where θ = (a, d, ω, ϕ) with a = (a1, . . . , aq), d = (d1, . . . , dq), ω = (ω1, . . . , ωq), and ϕ = (ϕ1, . . . , ϕq).

The correspondence between q in (6) and r in (1) is as follows: if ωi , 0 then the term ai exp(din) sin(2πωin + ϕi)

in (6) adds 2 to the rank of the corresponding matrix X ∈ A while if ωi = 0 (so that the term is simply ai exp(din))

then this term only adds 1 to the rank of this X ∈ A. Each vector Y of the form (6) generates a low-rank Hankel matrix

X = H(Y). Note, however, that the set of vectors {Y = H−1(X),X ∈ A} is slightly richer than the set of vectors of the

form (6) with appropriate values of q and the forms of the terms in this formula; see [8] or [11].

Let Y∗ = (y1∗, . . . , yN∗)
T , Y(θ) = (y1(θ), . . . , yN(θ))T and let S be the diagonal matrix S = diag(s1, . . . , sN) ∈ RN×N .

Then the objective function in (5) can be written as

F(θ) = (Y∗ − Y(θ))T S(Y∗ − Y(θ)) . (7)

The papers [10] and [12] contain discussions about the behaviour of the objective function (5), with y j(θ) defined

through (6). In [12] the fact that the objective function F is multiextremal has been observed; the function F was de-

composed into three different components and it was numerically demonstrated that the part of the objective function

with the observation noise removed dominates the shape of the objective function. An extension of this analysis is

given in Appendix A.1. Note that up until now, only the weights s j = 1 have been considered in the literature devoted

to the optimization problem defined by (5) and (6). Given the form of the objective function (5) there is likely to be

much potential for the methodology described in [13] but this is the subject of further work.

This optimization problem is very difficult with the objective function possessing many local minima. The objec-

tive function has very large Lipschitz constants which increase with N, the number of observations. Additionally, the

number of local minima in the neighbourhood of the global minimum increases linearly in N. Adding noise to the

observed data increases the complexity of the objective function and moves the global minimizer away from the true

value; for more details see Sections A.1 and A.2 in Appendix A.

2.2. Matrix optimal solution and its approximation

Consider the HSLRA problem (1). Since 0 ≤ f (X) < ∞ for any X ∈ A, f (X) is a continuous function on A and

f (X)→ ∞ as ||X|| → ∞, a solution to (1) always exists. However, the solution is not necessarily unique. Set

X
∗ = {X∗ = arg min

X∈A
f (X)} and f ∗ = f (X∗) = min

X∈A
f (X) .
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Any algorithm designed to solve the optimization problem (1) should return a matrix Xappr which can be considered

as an approximation to one of the solutions X∗ ∈ X
∗; approximations to the value f ∗ alone (without approximations

to X
∗) are not sufficient. Ideally, the matrix Xappr should belong to the set of matricesA.

A typical optimization algorithm designed for solving the problem (1) could be represented as a procedure which

generates a sequence of matrices X0,X1, . . . such that some of the matrices Xn for large n can be considered as

approximations to X∗, a solution of (1). This matrix sequence must have at least one limiting point (matrix) in the

set A. Denote by X∞ the limiting point of the algorithm which has the smallest value of f among all its limiting

points belonging to A. In general, f (X∞) ≥ f ∗. The algorithm (theoretically) converges to the optimal solution if

f (X∞) = f ∗; that is, if X∞ ∈ X
∗.

In many optimization algorithms attempting to solve the SLRA problem (1) and operating in matrix spaces, the

projection to the spacesH andMr is of prime importance. Let us consider these two projections.

2.3. Projection toH

The space H = HL×K of L × K Hankel matrices is a linear subspace of RL×K . The closest Hankel matrix (for

a variety of norms and semi-norms including (2)) to any given matrix is obtained by using the diagonal averaging

procedure.

Recall that every L×K Hankel matrix X ∈ H is in a one-to-one correspondence with some vector Y = (y1, . . . , yN)T ,

with N = L + K − 1. This correspondence is described by the function H : RN → HL×K which is defined by

H(Y) = ||yl+k−1||
L,K

l,k=1
for Y = (y1, . . . , yN)T . Each element of the vector Y is repeated in X = H(Y) several times. Let

E = (elk) ∈ RL×K be the matrix consisting entirely of ones. We can compute the sum of each anti-diagonal of E,

denoted tn, as

tn =
∑

l+k=n+1

elk =



















n for n = 1, . . . , L−1 ,

L for n = L, . . . ,K−1,

N−n+1 for n = K, . . . ,N.

(8)

The value tn is the number of times the element yn of the vector Y is repeated in the Hankel matrix H(Y).

Let πH (X) denote the projection of X ∈ RL×K onto the spaceH . Then the element x̃i j of πH (X) is given by

x̃i j = t−1
i+ j−1

∑

l+k=i+ j

xlk .

The squared distance between matrix X and the spaceH is

ρ2(X,H) = min
X′∈H
ρ2(X,X′) = ρ2(X, πH (X)) = ||X − πH (X)||2 .

Since projecting toH is very easy, using this subspace as the feasible domain for the HSLRA problem (1) is more

natural than using the original space RL×K . Based on results of Appendix A we also argue that this leads to more

tractable optimization problems than the approach based on the use of the damped sinusoids model.

2.4. Projection toMr

Unlike H , the setMr is clearly not convex. However, the projections from RL×K toMr for the semi-norms (2)

can be easily computed using the singular value decomposition (SVD) of an appropriate matrix.

Let A be some matrix in RL×K and suppose that we need to compute the projection of this matrix ontoMr.

2.4.1. Frobenius norm

Assume first that W is the K × K identity matrix so that the semi-norm in (2) is the usual Frobenius norm

||A||2F =

L
∑

l=1

K
∑

k=1

a2
lk for A = (alk)L,K

l,k=1
∈ RL×K . (9)

Then for any r, a projection toMr can be computed with the help of the SVD of A as follows. Let σi = σi(A),

the singular values of A, be ordered so that σ1 ≥ σ2 ≥ . . . ≥ σL. Denote Σ0 = diag(σ1, σ2, . . . , σL) and Σ =
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diag(σ1, σ2, . . . , σr, 0, . . . , 0). Then the SVD of A can be written as A = UΣ0VT , where columns Ul of the matrix

U ∈ RL×L are the left singular vectors of A and columns Vl of the matrix V ∈ RK×L are the right singular vectors

Vl = AT Ul/σl (if for some l the singular value σl = 0 then Vl ∈ R
K can be chosen arbitrarily). The matrix

π(r)(A) = UΣVT =

r
∑

i=1

UiZ
T
i with ZT

i = UT
i A

belongs toMr and minimizes the squared distance ||A − Ã||2
F
= tr(A − Ã)(A − Ã)T over Ã ∈ Mr, see [14] or [11],

Sect. 1.2.2. The projection π(r)(A) of A ontoMr is uniquely defined if and only if σr > σr+1. The squared distance

between matrix A andMr is

ρ2(A,Mr) = min
Ã∈Mr

ρ2(A, Ã) = ρ2(A, π(r)(A)) = ||A − π(r)(A)||2F =

L
∑

i=r+1

σ2
i (A) .

2.4.2. The weighted semi-norm (2)

In the more general case of the semi-norm (2), one needs to compute SVD of the matrix B = AW1/2 rather

than of A. Note that for non-singular weight matrix W1/2 the considered problem is a special case of Theorem

3.18 in [15]. Let σ′
i
= σi(B), be the ordered singular values of B and let Σ′

0
= diag(σ′

1
, σ′

2
, . . . , σ′

L
) and Σ′ =

diag(σ′
1
, σ′

2
, . . . , σ′r, 0, . . . , 0). Then the SVD of B is B = U′Σ′

0
(V′)T and the matrix

π(r)(B) = U′Σ′(V′)T =

r
∑

i=1

U′i (Z
′
i )

T with (Z′i )
T = (U′i )

T B

belongs toMr and minimizes the squared distance ||B − B̃||2
F
= tr(B − B̃)(B − B̃)T over B̃ ∈ Mr.

Define

π(r)
W

(A) = π(r)(B)W−1/2 =

r
∑

i=1

U′i (T
′
i )T ∈ Mr with (T ′i )T = (U′i )

T BW−1/2 . (10)

Then

||A − π(r)
W

(A)||2
W
= tr(A − π(r)

W
(A))W(A − π(r)

W
(A))T = tr(AW1/2 − π(r)

W
(A)W1/2)(AW1/2 − π(r)

W
(A)W1/2)T

= tr(B − π(r)(B))(B − π(r)(B))T = ||B − π(r)(B)||2F .

Note that this equality holds even for singular W. Note also that one can show (A − π(r)
W

(A)) = (B − π(r)(B))(W1/2)†

where (·)† denotes the pseudoinverse. This identity may help circumnavigate some of the problems to be described at

the end of Section 3.2.

The squared weighted distance between matrix A andMr is

ρ2(A,Mr) = min
Ã∈Mr

||A − Ã||2
W
= ||A − π(r)(A)||2

W
= ||B − π(r)(B)||2F =

L
∑

i=r+1

σ2
i (B) .

3. Distances defining the objective function f in (1)

In accordance with (2) the objective function f in (1) is

f (X) = tr(X − X∗)W(X − X∗)
T , (11)

where W is a diagonal matrix of weights, W = diag(w1, . . . ,wK). In this section, we discuss the choice of the matrix

W in (11) by making associations between the squared distances (7) and (11).

Note that Y∗ in (7) is in the one-to-one correspondence with X∗ = H(Y∗) in (11) and Y(θ) in (7) defines a matrix

X = H(Y(θ)) ∈ A conditionally the values of q in (7) and r in (1) are in agreement, as discussed in Sect. 2.1. Given

this, the main difference between the optimization problem (1) with the objective function (11) and problem (5) is that

in (5) all the constraints (Hankel structure and rank of the matrices) are incorporated into the objective function.
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3.1. Frobenius norm

The Frobenius norm (9) is the most commonly used norm for defining the distance in (1); see for example [11, 16,

15]. This frequent occurrence of the Frobenius norm can be explained by the following two reasons:

(i) the Frobenius norm is very natural in the non-structured low-rank approximation (when A = Mr) and the

structured low-rank approximation problems are often considered simply as extensions of the non-structured

approximation problems;

(ii) the very important operation of projecting a matrix on the set of matrices of a given rank (the setMr) is simplest

when the chosen norm is Frobenius, see Sect. 2.4.

Consideration of the Frobenius norm in (1) corresponds to defining the objective function (7) with S = U, where

U = diag(u1, . . . , uN) is the diagonal matrix with elements u1, . . . , uN defined in (8). This does not look natural if we

look at the HSLRA problem as a problem of time series analysis or signal processing.

3.2. Uniform weights for each observation

If the uncertainty for all observations y j∗ is approximately the same, then from the view-point of a time series

analyst the most natural definition of the HSLRA objective function would be (5) with s j = 1 for all j; that is, (7)

with S = IN , the N × N identity matrix. An important question thus arises: ‘can we find a matrix W such that the

semi-norm in (11) coincides with the norm in (7) with S = IN (conditionally r in (1) and q in (5) match)?’ The answer

is given in the following lemma.

Lemma 1. Let Y ∈ RN and X = H(Y) ∈ RL×K . If h = N/L is integer, then tr X W(0) XT = YT Y where W(0) is a

diagonal matrix with diagonal elements

w
(0)

kk
=

{

1 if k = jL + 1 for some j = 0, . . . , h − 1,

0 otherwise.

Proof. Assume that h = N/L is integer so that N = hL and K = N − L + 1 = (h − 1)L + 1.

By the definition, the elements of the L × K matrix X are xlk = yl+k−1. This gives

tr X W(0) XT =

L
∑

l=1

K
∑

k=1

K
∑

k′=1

xlkw
(0)

kk′
xlk′ =

L
∑

l=1

K
∑

k=1

w
(0)

kk
x2

lk =

L
∑

l=1

h−1
∑

j=0

x2
l, jL+1 =

L
∑

l=1

h−1
∑

j=0

y2
l+ jL =

N
∑

n=1

y2
n .

�

Thus, the answer to the question raised above is positive conditionally N is divisible by L. Very often this is not a

serious restriction as typically there is some freedom in the choice of L and, if needed, the first few values of Y can be

ignored (to alter the value of N).

Note that the matrix W(0) has zeros at the diagonal and therefore (10) cannot be used as such. To be able to use the

technique of Sect. 2.4.2 we either need to replace 0 with a small number or use the methodology outlined in Sect. 3.5.

3.3. Arbitrary observation weights

Consider now the general case of the HSLRA objective function (5) with arbitrary s j > 0. Now, the answer to

the question: ‘can we find a matrix W such that the semi-norm in (11) coincides with the norm in (7) with arbitrary

diagonal matrix S?’ is generally negative. The reason is as follows. First, it is easy to see that allowing the matrix

W to be non-diagonal will not increase our freedom in improving the quality of approximation of the sum YT SY by

tr X W XT , where Y ∈ RN is arbitrary and X = H(Y). And second, for a diagonal W, tr X W XT is a weighted sum

of squares of y j’s but the number of degrees of freedom (that is, diagonal elements in W) is K which is less than the

number of diagonal elements in S.

The next question is: ‘how can we approximate the sum of squares YT SY by tr X W XT for arbitrary Y in the best

way?’ To answer this question, we shall use Least Squares (LS) approximation.

Let S ∈ RN×N and W ∈ RK×K be diagonal matrices with diagonals determined by the vectors S = (s1, . . . , sN)T

and W = (w1, . . . ,wK)T , respectively. The vector S is a given and chosen, for example, as discussed in Sect. 2.1.

6



The vector W is unknown and has to be determined by trying to match the sum of squares S S 1(Y) = tr X W XT to

S S 2(Y) = YT SY for all Y ∈ RN .

Lemma 2. Let Y ∈ RN , X = H(Y) and W be a diagonal matrix with diagonal W = (w1, . . . ,wK)T . Then we have

S S 1(Y) =
∑N

n=1 s̃ny2
n where s̃n =

∑K
k=1 cnkwk and the coefficients cnk are given by

cnk =



















1 if 1 ≤ n ≤ K and max{1, n − L + 1} ≤ k ≤ n,

1 if K + 1 ≤ n ≤ N and n − L + 1 ≤ k ≤ K,

0 otherwise.

Proof. Using the substitution of indices l→ n = l + k − 1 (so that 1 ≤ n ≤ N) we obtain

S S 1(Y) = tr X W XT =

L
∑

l=1

K
∑

k=1

wk x2
lk =

L
∑

l=1

K
∑

k=1

wky2
l+k−1 =

N
∑

n=1

y2
n

∑

1 ≤ k ≤ K

1 ≤ n − k + 1 ≤ L

wk =

N
∑

n=1

y2
n

K
∑

k=1

cnkwk =

N
∑

n=1

s̃ny2
n

where the coefficients cnk are as above. �

Set S̃ = (s̃1, . . . , s̃N)T ∈ RN and C = (cnk) ∈ RN×K , where cnk are the coefficients defined above. Then S̃ = CW

and thus we have the approximation problem S ≃ CW. We write this problem in the form of a linear regression

S = CW + ε . Note that C has the following structure:

C =









































































1 0 · · · 0
...
. . .

. . .
...

1
. . . 0

0
. . . 1

...
. . .

. . .
...

0 · · · 0 1









































































.

Here S plays the role of the vector of observations and vector W is the vector of unknown parameters. We use a

general least squares estimator (LSE) for W:

Ŵ =
(

CT
Σ
−1C

)−1
CT
Σ
−1S , (12)

where Σ is an arbitrary positive definite N×N matrix. The LSE of the vector S is Ŝ = CŴ. The matrix Σ in (12) plays

the role of a covariance matrix determining the precision of estimates of elements of the vector S . In accordance with

results of Sect. 3.2, if Σ = IN , the vector C is the vector of 1’s and N is divisible by L, then we achieve the equality

Ŝ = S .

The vectors Ŵ = (ŵ1, . . . , ŵK)T and Ŝ = (ŝ1, . . . , ŝN)T are the vectors which define the norms (or semi-norms) we

use instead of the norm we would have liked to use: for any Y ∈ RN ,

YT SY ≃ YT ŜY = tr X Ŵ XT

where X = H(Y), Ŝ = diag(ŝ1, . . . , ŝN) and Ŵ = diag(ŵ1, . . . , ŵK).

3.4. Dealing with missing values

We now explain how one can formulate the HSLRA problem when there are missing observations among y j∗.

Denote by J ⊂ {1, 2 . . . ,N} be the set of indices j such that the observations y j∗ are missing.

Let us return to the discussion in Sect. 2.1 just after formula (5). In that discussion, we mentioned that a natural

choice of s j is s j = 1/σ2
j
, where σ2

j
is the variance of the observation error of y j. If j ∈ J then we can use any number

as y j∗ but assume σ2
j
= ∞ for this j. This would yield s j = 0 for all j ∈ J. This is, however, not sufficient as we also

want to achieve ŝ j = 0 for all j ∈ J. Note that in formula (12), we may need to multiply large numbers by s j and do
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not want the results to vanish. We therefore assume that s j are very small numbers (infinitesimal) for all j ∈ J rather

than zeros.

Assume Σ is diagonal: Σ = diag(Σ11, . . . ,ΣNN). As we want to achieve ŝ j = 0 for all j ∈ J, we need to choose

Σ j j = 0 for all j ∈ J implying Σ−1
j j
= ∞ for j ∈ J. This would guarantee ŝ j = 0 for all j ∈ J. The main problem here

is the organization of calculations as in the process of computing the estimator (12) we many times need to multiply

and divide by infinity. This problem is discussed in the next section (Sect. 3.5). Note that it is also possible to achieve

ŝ j = 0 for all j ∈ J by using the method known as constrained least squares [17].

Note that in a special case when missing observations are at the end of the series, the problem of estimation

of missing observations is known as the problem of forecasting. To forecast using low-rank approximations we

can proceed in two ways: (i) solve the HSLRA problem and consequently build the model (6) using the available

observations and use the model (6) for forecasting, and (ii) solve the HSLRA problem with a larger value of N

treating the observations at the end of the series as missing. An important question arises of whether the two HSRA

models and associated models (6) are the same. The answer to this question is positive conditionally that we deal with

infinity as explained in Sect. 3.5 (that is, avoiding any approximate computations), see Example 1′ for the illustration

of this phenomena.

3.5. Computations involving infinite and infinitesimal numbers

As explained in Sect. 3.4, if there are missing values in the series Y∗, then to compute the weighting matrix W

defining the objective function in the HSLRA problem (1) we need to perform many operations with infinity (including

division by 0). The usual way would be to replace infinity with a very large number and 0 with a very small number,

see an example below. This creates difficulties as we do not know in advance how large or small should be the numbers

that replace infinity and zero and we thus need to try several numbers to be sure that we have reached an acceptable

accuracy. Also, in this way we would never be able to get an exact answer as the one derived in Sect. 3.2.

There is, however, a novel methodology for dealing with numerical infinity; that is, with infinite and infinitesimal

quantities. This methodology has been developed by Ya. Sergeyev and published in a small book [18] and a series

of papers; see for example, [19, 20, 21]. The place of Sergeyev’s methodology for dealing with infinitesimals and

infinites among other mathematical approaches is discussed in a historical survey [22].

Following Ya. Sergeyev, we denote a numerical infinity by ① and a numerical infinitesimal quantity by ①
−1. ①

satisfies some axioms; see the above cited papers of Ya. Sergeyev and [23] for a discussion of Sergeyev’s axioms and

their modifications.

If the ‘Infinity computer’ of Ya. Sergeyev existed then we would have been able to perform all operations with

infinite and infinitesimal numbers numerically (rather than symbolically, which is computationally very demanding).

Let us consider a simple example of constructing the norm (2) (to be used for defining the objective function (11))

in the case of missing data.

Example 1. Assume N = 10 and L = 3 so that K = 8. Assume we have 2 missing observations which are

y3∗ and y5∗ (the results are very similar with respect to the location of missing values and even with respect to the

number of missing values). The vector S , defining the ‘ideal’ norm (7), that we have to approximate is S ideal =

(1, 1, 0, 1, 0, 1, 1, 1, 1, 1)T . In view of the discussion in Sect. 3.4, we set S = (1, 1, α, 1, α, 1, 1, 1, 1, 1)T , where α > 0 is

a very small (infinitesimal) number.

According to the recommendation of Sect. 3.4 we may choose the matrix Σ = diag(Σ11, . . . ,ΣNN) so that Σ33 =

Σ55 = 0 and all other diagonal elements Σ j j = 1 for j , 3, 5. Since we need to invert Σ, we cannot set Σ33 = Σ55 = 0

and therefore we set Σ33 = Σ55 = β, where β > 0 is a very small positive number (it may and generally should differ

from α). Straightforward calculations using (12) give

Ŵ =
1

β + 10

[

γ1, 6 − 2α, β + 11α − 12, 12 − 6α, β + 5α, 0, 6 − 2α, γ1

]T
,

Ŝ = CŴ =
1

β + 10

[

γ1, γ2, 2β + 10α, γ1, 2β + 10α, γ2, γ1, γ2, γ2, γ1

]T

where γ1 = 6 + 2α + β, γ2 = 12 − α + β. An important observation here is that Ŝ [3] and Ŝ [5] tend to 0 as α→ 0 and
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β→ 0. In this particular case, we may set α = β = ①
−1. Then we have

Ŝ =
3

5
[1, 2, 0, 1, 0, 2, 1, 2, 2, 1]T +

3

25 ①
[2,−1, 10, 2, 10,−1, 2,−1,−1, 2]T + O

(

1

①
2

)

, (13)

where O
(

①
−2

)

indicates the terms or order ①
−2 or less. In addition to the limiting vector of weights, the expansion

(13) gives the exact rate of convergence to this limiting vector (as α and β tend to 0 with the same speed).

Example 1′. As in Example 1, assume N = 10, L = 3 but assume that we place two missing observations at the

end of the series; that is, we assume that y9∗ and y10 ∗ are missing. Similar to (13) we obtain Ŝ = S as +O
(

①
−1

)

, where

S as =
3
7

[2, 2, 3, 2, 2, 3, 2, 2, 0, 0]T . If we set N = 8, L = 3, Σ = I8 and no observations are missed, then we obtain

Ŝ = 3
7

[2, 2, 3, 2, 2, 3, 2, 2]T , with no infinitesimals involved. This vector gives the first eight components of S as ∈ R
10

above. This illustrates the statement we have made at the end of Sect. 3.4.

4. Orthogonality condition and associated algorithms

4.1. Orthogonality condition

In this section, we consider the so-called orthogonality condition which any locally optimal solution to (1) should

satisfy.

Theorem 1. Let Y = H−1(X) and Y∗ = H−1(X∗) be non-zero vectors in RN , W ∈ RK×K be a diagonal weight

matrix (with diagonal given by a vector W) defining the norm (2), S = CW ∈ RN be the associated vector (computed

as S̃ in Lemma 2) defining the squared norm YT SY =
∑N

n=1 sny2
n = tr XWXT , where S ∈ RN×N is a diagonal matrix

with vector S on the diagonal. Set

β∗ = YT SY∗
/

YT SY = trXWXT
∗

/

trXWXT . (14)

Then we have

(β∗Y − Y∗)
T SY = tr(β∗X − X∗)WXT = 0 . (15)

Proof. Following from the statement of the Theorem it is straightforward to show that tr(β∗X − X∗)WXT =

(β∗Y − Y∗)
T SY.

We have

(β∗Y − Y∗)
T SY =

(

YT SY∗

YT SY
Y − Y∗

)T

SY

=
1

YT SY

[

(YT SY∗)Y − (YT SY)Y∗
]T

SY

=
1

YT SY

[

(YT SY∗)Y
T SY − (YT SY)YT

∗ SY
]

= 0 .

�

In a particular case W = IK we have S = T , where T = (t1, . . . , tN)T is the vector with elements given by (8). In

this particular case, the equality

(Ỹ − Y∗)
T SỸ = 0 (16)

is called orthogonality condition for Ỹ , see [16]. It was proved in [16] that if Ỹ is a local minima of S S (Y) =

(Y − Y∗)
T S(Y − Y∗), then Ỹ must satisfy the orthogonality condition. By analogy, we shall call (16) the orthogonality

condition even if S , T . In Theorem 1, we have shown that we can achieve orthogonality simply by multiplying all

elements of either the Hankel matrix, or its associated vector, by a suitable constant. Note that the space A is closed

with respect to multiplication by a non-zero constant.

4.2. Associated algorithms with W = IK

In this section we consider two existing algorithms described in the literature with W = IK . Algorithms for general

W follow similarly.
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4.2.1. De Moor’s method

Following De Moor [16], introduce the Lagrangean function as follows. Let c1 ∈ R
L−r, c2 ∈ R, and R ∈ RK×(K−r).

The Lagrangean function corresponding to the HSLRA with the unweighted distance (9) is given by

F1(X,R, c1, c2) = ||X − X∗||
2
F + cT

1 X∗R + c2(RT R − IK−r) . (17)

The constraint rank(X∗) = r is defined through its kernel representation X∗R=0, where R = (R′,−IK−r)
T for

some matrix R′ ∈ Rr×(K−r). The constraint RT R = I(K−r) is introduced to ensure the identifiability of R. By setting

all derivatives of the Lagrangean to zero, De Moor derived the condition (14) for the solution to the HSLRA prob-

lem. Moreover, by manipulating with the Lagrangean, De Moor has represented the solution of (17) as a non-linear

generalized SVD. Subsequently, De Moor has developed an algorithm for numerical approximation of the non-linear

generalized SVD problem which approximates the solution to the HSLRA problem; the convergence to the optimal

solution is however not guaranteed. For full details we refer to De Moor [16]. For our comparative examples discussed

in Section 6 we shall refer to this method as the ‘DM’ method.

4.2.2. I. Markovsky’s method

The body of work by I.Markovsky and some of his co-authors (see [7], [8] and [15]) has concentrated on devel-

oping computationally efficient methods of approximating the solution of (1), where the structure is not necessarily

Hankel. In the case of HSLRA, Markovsky defines the problem (1) through the minimization of the objective function

F2(X,R) = ||X − X∗||
2
F such that X∗R = 0, RT R = I(K−r), (18)

using again the unweighted distance (9). R is as in (17). It can be seen this objective function has a direct analogy

with (17).

The objective function (18) is non-convex, and in [8] the function (18) is locally optimized from an initial starting

matrix (or vector). The latest software implementation to optimize (18) is given and described in [24]. In this software,

by default, the initial starting point is the unstructured rank r approximation of X∗, which is computed by π(r)(X∗).

Consequently there is no guarantee that a global minimum of (18) is found. We shall use this software for our

comparative examples discussed in Section 6; note that this software can only be used when r = L − 1. We will refer

to the minimization of (18), via the software described in [24], as the ‘IM method’.

Some other methods are known; see [10, 25, 26]. As far as the authors are aware, none of the methods known in

the literature on HSLRA have the theoretical property of convergence and hence the construction of reliable methods

for solving the HSLRA problem remains an open problem. Moreover, most of the known algorithms require the

condition r = L − 1. Except for the IM method, we failed to find reliable software implementing these other methods.

5. Algorithms based on the use of alternating projections

In this section we consider algorithms for solving the HSLRA problem represented as optimization problems using

alternating projections between the spaces H and Mr. We restrict our attention to the distance function associated

with the matrix Frobenuis norm (9), that is, we take W = I in (11).

5.1. Classical algorithms and their modifications

5.1.1. Alternating projections (AP)

The algorithm (19) below is the direct implementation of the alternating projections. For brevity we will refer to

this algorithm as AP.

X0 = X∗, Xn+1 = πH
[

π(r)(Xn)
]

for n = 0, 1, . . . (19)

These projections have also been studied in [27] and are sometimes known as Cadzow iterations [28]. Here we simply

alternate projections to the spaceMr with projections to the spaceH . In this form of alternating projections, we have

Xn ∈ H for all n = 0, 1, . . ..

General information about algorithms that use alternating projections (where the sets are not necessarily convex)

is provided in Andersson and Carlsson [29] and Andersson et al. [30]. AP can be considered as a particular instance of

the Alternating Least Squares method used in signal processing, see Section 3.3 in [31]. Note also that one iteration of

AP for HSLRA corresponds to the basic version of the technique of time series analysis known as singular spectrum

analysis (SSA), see [32]; for further details regarding the link between AP and SSA; see, for example, Gillard [28].
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5.1.2. Orthogonalized Alternating Projections (OAP)

The following algorithm is a slight improvement over AP (19):

X0 = X∗, Xn+1 =
trXnXT

∗

trXnXT
n

πH
[

π(r)(Xn)
]

for n = 0, 1, . . . (20)

The algorithm (20) uses the coefficients (14) to improve at each iteration. We shall refer to the algorithm (20) as

‘Orthogonalized Alternating Projections’ (abbreviated OAP in the discussion and examples below).

5.1.3. Discussion on the convergence of AP and OAP

Despite AP often appearing to be myopic and too greedy by only aiming at minimizing the distance ρ2(X,Mr), it

is very popular in practice. The popularity of AP is explained by the simplicity of the algorithm and by the fact that

convergence to the space A is guaranteed, see [33]. However, as seen in examples provided in Section 6, AP often

converges to a matrix which is far away from the set of optimal solutions X∗.

As shown in [29, Th. 6.1], AP converges linearly; that is, there exist constants c < 1 and A > 0 such that

ρ2(X∞,Xn) < Acn , ∀n, where X∞ is some matrix in A. Moreover, it is easy to prove monotonicity of AP iterations.

As derived by Chu et al. [33], we have

||Xn+1 − π
(r)(Xn+1)||2F ≤ ||Xn+1 − π

(r)(Xn)||2F ≤ ||Xn − π
(r)(Xn)||2F .

Similar to AP (19), the algorithm OAP (20) converges to some matrix in A. Numerical results show that the

resulting approximation is never worse than the approximation obtained by (19) (usually it is slightly better than the

approximation obtained by AP); it also converges faster to the setA. Examples of Section 6 show that typically both

AP and OAP do not converge to the set of optimal solutions X∗.

5.2. Alternating Projections with Backtracking and Randomization

In this section, we describe a family of algorithms which can be run as a random multistart-type algorithm, as

a multistage algorithm and also as an evolutionary method. The main steps of this algorithm are summarized by its

title ‘Alternating Projections with Backtracking and Randomization’ and we abbreviate this algorithm APBR. Here we

describe two versions of this algorithm, Multistart APBR and APBR with selection. APBR with selection significantly

reduces the number of computations by terminating non-prospective trajectories at early stages.

The underpinning idea for the family of the APBR algorithms has been suggested by the authors in [12] where the

potential of the multistart APBR has been demonstrated on a number of examples.

5.2.1. Multistart APBR

The multistart version of APBR is described as follows. Let U denote a realization of a random number with

uniform distribution in [0, 1] and let X̃ denote a random Hankel matrix which corresponds to a realization of a white

noise Gaussian process Ỹ = (ξ1, . . . , ξN) with ξi, i = 1, . . .N, independent Gaussian random variables with mean 0

and variance s2 ≥ 0.

In Multistart APBR, we run M independent trajectories in the spaceH starting at random Hankel matrices

X0, j = (1 − s0)X∗ + s0X̃, (21)

with some s0 (0 ≤ s0 ≤ 1), and use the updating formula

Xn+1, j =
(

trZn, jX
T
∗

/

trZn, jZ
T
n, j

)

Zn, j (22)

where j = 1, . . . ,M,

Zn, j = (1 − δn) πH
[

π(r)(Xn, j)
]

+ δnX∗ + σnX̃ (23)

and

{

δn = U/(n + 1)p, σn = c/(n + 1)q, if ρ2(Xn, j,Mr) ≥ ε ,

δn = 0, σn = 0, otherwise .
(24)
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Each trajectory is either run until convergence or for a pre-specified number of iterations. U could be either random

or simply set to 1, c ∈ {0, 1} and positive numbers p, q and ε can be chosen arbitrarily, see Section 6 concerning the

choice of U, c, p and q. A MATLAB implementation of this version of APBR, developed by the authors, is available

at [34].

If s0 = δn = σn = 0 then the iterations in (22) coincide with iterations of OAP (20). If s0 > 0 then the j-th

trajectory of the algorithm starts at a random matrix in the neighbourhood of X∗ (the width of this neighbourhood is

controlled by the parameter s0). If σn > 0 then there is a ‘random mutation’ at the n-th iteration (22). When δn > 0,

the current approximation ‘backtracks’ towards X∗ conditionally that the backtracking does not worsen the distance

ρ2(Xn, j,X∗). If ρ2(Xn, j,Mr) < ε, we set δn = 0 and σn = 0. That is, in the final stage for any trajectory of the APBR

we perform OAP iterations (20) to achieve faster convergence toA.

Note that in APBR the initial value of ρ2(X0, j,X∗) could be large but the resulting j-th trajectory may be very

good, see Figure 3(b).

5.2.2. APBR with selection

Step I (initialization). Run OAP until convergence and record the distance F∗ = ρ
2(X∗,XOAP), where XOAP is the

approximation of X∗ obtained by OAP (20).

Step II (main iterations). For some pre-specified numbers M and Q, we compute the first Q terms of M indepen-

dently run trajectories in the space H starting at random Hankel matrices X0, j = X̃, so that we use (21) with s0 = 1,

and apply the updating formula (22).

Having reached the matrix XQ, j of the j-th trajectory ( j = 1, . . . ,M), we test the prospectiveness of this j-th

trajectory. Any trajectory with ρ2(X∗,XQ, j) ≥ F∗ is considered non-prospective and terminated. We then choose k

trajectories corresponding to the k smallest distances ρ2(X∗,XQ, j), j = 1, . . . ,M, and perform OAP iterations until

convergence (here k is a predefined small number). Let X∞,i, i = 1, . . . , k, be the k HSLRA approximations obtained.

Update the record value F∗ ← mini=1,...,k{F∗; ρ
2(X∗,X∞,i)}.

The trajectories which are not run until convergence and not terminated are halted and kept in a buffer. Step II is

repeated with the updated record value F∗.

Step III (buffer check). Consider all trajectories halted at Step II and held in the buffer. First, remove all matrices

XQ, j with ρ2(X∗,XQ, j) ≥ F∗ for the updated value of F∗. We then compare all the halted approximations XQ, j

in terms of their distances to X∗ and to the space Mr. If for some i , j we have ρ2(XQ,i,X∗) < ρ
2(XQ, j,X∗)

and ρ2(XQ,i,Mr) < ρ
2(XQ, j,Mr) then the matrix XQ,i dominates the matrix XQ, j and the j-th trajectory could be

discontinued. All trajectories left after this sieving are run to convergence using OAP.

Remark 1. In Step II, prior to running AP for the k most prospective trajectories, we may ‘split’ them into further

trajectories by adding small random Hankel matrices to the matrices XQ, j from these prospective trajectories.

Remark 2. Using several matrices (with n ≥ Q) from any trajectory {Xn, j}n created by APBR with selection, we

can estimate the exact value of the limit F∞, j = limn→∞ ρ
2(Xn, j,X∗) in the following way. Consider a Hankel matrix

Xn, j with some j and n > Q. Let X∞, j be the (unknown) limiting matrix for the trajectory {Xi, j}i. Assuming that Xn, j

is close enough to the set A, we have the geometrically fast convergence of Xi, j to X∞, j for i = n, n + 1, . . .. Indeed,

at all iterations with n > Q the APBR with selection only makes alternative projections (20) to the spacesH andMr.

Therefore, as follows from results stated in Section 5.1.3, we have the geometrically fast convergence of π(r)(Xi, j) to

X∞, j with the sequence {ρ2(Xi, j,X∗)}i increasing and the sequence {ρ2(π(r)(Xi, j),X∗)}i decreasing. (It is straightforward

to check that ρ2(Xi, j,X∗) ≤ ρ
2(π(r)(Xi, j),X∗) for any i and j.) Then F∞, j is the uniquely defined constant α such that

the sequence of ratios [ρ2(Xi, j,X∗) − α]/[ρ2(Xi+1, j,X∗) − α] tends to a constant c < 1 as i→ ∞. Similarly, F∞, j is the

uniquely defined constant β such that the sequence of ratios [ρ2(π(r)(Xi, j),X∗) − β]/[ρ
2(π(r)(Xi+1, j),X∗) − β] tends to a

constant c′ < 1 as i→ ∞.

Using the estimators F̂ j of F∞, j we can terminate non-prospective trajectories as soon as F̂ j ≥ F∗; this may happen

earlier than the event ρ2(X∗,XQ, j) ≥ F∗ which has been used in Steps II and III for termination of non-prospective

trajectories.

5.3. Convergence of algorithms

Consider the APBR defined by the formulas (21)–(24); these formulas underpin both versions of APBR defined

above. These algorithms are typical stochastic global optimization algorithms and hence their theoretical properties
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of convergence can be studied using the common tools readily available in the literature on global random search; see,

for example, [35, Sect. 2.1.3].

The APBR algorithms, considered as optimization algorithms for the objective function (1), benefit from both

globality and locality of search. Local convergence to the set A is a consequence of the fact that OAP iterations

always locally converge (linearly) to A, see [29, 33]. Global convergence is guaranteed if we assume that s0 = 1

and M → ∞. In this case, the set of starting matrices for APBR becomes everywhere dense. This is a necessary

condition of convergence for any global optimization algorithm employing local descent iterations which does not use

any properties of the objective function other than its continuity. It also becomes a sufficient condition if the iterations

are monotonic so that the value of the objective function is non-increasing. For the algorithms considered, this is a

consequence of the condition used in (22).

6. Examples

In examples below we shall use the following additional notation:

XAP = H(YAP) Approximation obtained by AP (19)

XOAP = H(YOAP) Approximation obtained by OAP (20)

XIM = H(YIM) Approximation obtained by software of I.Markovsky and K.Usevich [24]

XDM = H(YDM) Approximation obtained by De Moor in [16]

XAPBR = H(YAPBR) Approximation obtained by Multistage APBR

Min(APBR) Minimal distance to X∗ obtained by Multistage APBR

Med(APBR) Median distance to X∗ obtained by Multistage APBR

In all examples we have used Multistage APBR, with ρ2 defined by the Frobenius norm (9) and the number of

trajectories was chosen as M = 1000. Unless otherwise stated, U is a realization of a random number with uniform

distribution in [0, 1]. For ease of exposition, (24) is defined as

{

δn = U/(n + 1)p, σn = c/(n + 1)q, for n = 0, 1, . . . , P ,

δn = 0, σn = 0, for n > P .

6.1. Numerical results for the example of De Moor

In this section we consider the data given by De Moor [16] to demonstrate the sub-optimality of AP (19). De

Moor’s data and parameter settings are as follows: Y∗ = (3, 4, 2, 1, 5, 6, 7, 1, 2)T , N = 9, L = 4, and r = 3. Let X∗ =

H(Y∗). Table 1 contains the Frobenius distances to X∗ obtained using AP (19), OAP (20), the IM method, for different

values of the parameters L and r. Table 1 also contains the result obtained by De Moor. The approximation achieved by

AP and by De Moor, YAP and YDM are provided in [16] (four decimal places only). One of the best Multistage APBR

approximations for the De Moor’s data is YAPBR = (3.451346, 3.533941, 2.002535, 1.487395, 4.039565, 7.078974,

5.995627, 1.720123, 1.613392)T . This Multistage APBR solution is slightly different from YDM while the values of

the Frobenius distances to X∗ coincide (with the precision provided by De Moor). We have no access to the soft-

ware realizing the method of De Moor and therefore we cannot perform a comparative study involving this method.

I.Markovsky’s latest software implementation [24] can only be applied for the case r = L − 1 unless one reshapes the

Hankel matrix. Note that if a L × (N − L + 1) Hankel matrix is of rank r then the reshaped (r + 1) × (N − r) Hankel

matrix is also of rank r, see for example [36]. Also note that this reshaping approach can only be applied to Hankel

matrices.

In this example, the parameters of Multistage APBR are selected to be M = 1000, P = 500, c = 1, s0 = 0.25,

s = 1, p = 0.5 and q = 1.5. The total number of iterations was set at 600. OAP (20) was marginally better than AP

(19). Multistage APBR yields solutions similar to that obtained by the method of De Moor. For all values of L and r

Multistage APBR provides better (or, in one case, similar) solutions than the other methods considered.

Table 2 contains the minimum Frobenius distance to X∗ using Multistage APBR, varying the parameters p and q in

(22). With s0 = 0.25 and s = 1 it can be seen that there are many (p, q) parameter pairs which yield similar solutions,

with Frobenius distances to X∗ comparable to that achieved by De Moor’s method. Summarizing the numerical results

obtained in this example (and similar ones), we can give the following recommendations concerning the choice of

parameters p and q of the Multistage APBR algorithm (22).
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L = 4

AP OAP IM Med (APBR) Min (APBR) DM

r = 1 110.3142 110.3141 110.0095 110.0101 110.0095 -

r = 2 73.6980 73.6955 72.8526 72.8550 72.8530 -

r = 3 14.8251 14.8218 14.1482 14.1481 14.1478 14.1478

L = 5

AP OAP IM Med (APBR) Min (APBR)

r = 1 111.8552 111.8552 111.5625 111.5690 111.5625

r = 2 73.3795 73.3786 73.1739 73.1790 73.1740

r = 3 15.6168 15.6160 14.9518 14.9597 14.9519

r = 4 3.4535 3.4535 3.4535 3.4535 3.4509

Table 1: Frobenius distances of the approximations to X∗ using Multistage APBR, AP (19), OAP (20), IM method (18) and De Moor (DM) results.

p�q 0.25 0.5 0.75 1 1.5 2

0.25 14.2678 14.1528 14.1483 14.1478 14.1478 14.1478

0.5 14.3230 14.1540 14.1486 14.1478 14.1478 14.1478

0.75 16.6083 14.2294 14.1535 14.1479 14.1478 14.1478

1 17.1857 14.4427 14.1721 14.1498 14.1478 14.1478

1.5 36.1126 16.3141 14.3893 14.4292 14.1976 14.2249

2 38.4927 18.0746 14.9541 14.9674 14.4582 14.7119

Table 2: Minimum Frobenius distances to X∗ using Multistage APBR, varying the parameters p and q; L = 4, r = 3.

Backtracking (regulated by the parameter p), is extremely important. It is worth noting that numerical results

show that in many examples the use of the random variable U in the formula for δn in (22) often works marginally

better than a constant. For the data considered in this example, Multistage APBR was best performing with values of

p in between 0.25 and 1, implying that the rate at which backtracking decreases should be slow.

Randomization (regulated by the parameter q) could be useful too. Note also that the mechanism of this stochastic

mutation in Multistage APBR resembles the mechanism of regularization of the Alternating Least Squares methods

used in signal processing and in particular tensor decompositions, see [31]. Randomization appears to be beneficial

both at the start of the iterations and throughout the running of the algorithm, but as illustrated in Table 2, the rate

at which randomization decreases should be slightly faster than for backtracking (that is, we recommend choosing

p < q). For the data considered in this example, Multistage APBR was best performing with values of q in between 1

and 2.

6.2. Numerical results for other examples

In this example we introduce a parametric family based on the data originally studied in [37]. Let N = 11 and

Y
(m)
∗ = (0, 3−2m, 0,−1, 0,m, 0,−1, 0, 3−2m, 0)T , where m = −1, 0, 1, 2, 3. We fix L = 3 and r = 2. Set X

(m)
∗ = H

(

Y
(m)
∗

)

.

We have rank
(

X
(1)
∗

)

= 2 while the rank of other matrices X
(m)
∗ (for m = −1, 0, 2, 3) is equal to 3.

We compare the results obtained from performing AP (19), OAP (20), Multistage APBR (22) and the IM method

from [24]. The parameters of (22) are M = 1000, c = 1, s0 = 0.25, s = 1, p = 0.5 and q = 1.5. The total number of

iterations was fixed at 250 with P = 200. Table 3 contains the Frobenius distances to X
(m)
∗ using AP (19), OAP, (20),

Multistage APBR (22) and the IM method. The results show that Multistage APBR gives better results than the other

methods.

Figure 1 contains plots of the original data Y
(m)
∗ , for m = −1, 2, 3, and approximations obtained from performing

Cadzow iterations (19), Multistart APBR (22) and the IM method. The difference between the results obtained using

the IM method and AP is not seen for m = −1 and m = 2. Results obtained by different methods for m = 0 and m = 1

are indistinguishable in the figures and so are not included.
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m AP OAP IM Med (APBR) Min (APBR)

−1 68.3077 68.1548 68.3077 56.8699 56.7487

0 17.0769 17.0769 17.0769 17.0769 17.0769

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 17.0769 17.0769 17.0769 12.9900 12.8791

3 50.1888 50.1873 49.9663 36.2506 36.2357

Table 3: Frobenius distances to X
(m)
∗ using AP (19), OAP (20) and IM method. The minimal and median Frobenius distances to X

(m)
∗ using

Multistage APBR (22) with M = 1000 are also provided.
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(c) m = 3

Figure 1: Plots of Y
(m)
∗ for m = −1, 2, 3 (points) with approximations using AP (dashed line), IM method (dotted line) and the best approximation

achieved using Multistart APBR (solid line).

Figure 2 contains the Frobenius distances from X∗ for AP and Multistart APBR as a function of m where −2 ≤

m ≤ 4, for L = 3 and L = 4. Note a slight improvement in the overall trend for AP at m = 3. Figure 2 shows,

in particular, that AP provides consistently poor results in our example. Figure 6.2 contains a plot of the solutions

obtained by AP in the region 2.8 ≤ m ≤ 3.2. The solution at m = 3 is different from the other solutions obtained in

the regions 2.8 ≤ m < 3 and 3 < m ≤ 3.2. Solutions in the regions 2.8 ≤ m < 3 and 3 < m ≤ 3.2 are very similar.
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(a) Frobenius distances from X∗, L = 3
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(b) Frobenius distances from X∗, L = 4
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(c) Solutions for the case L = 3 in the region

of 2.8 ≤ m ≤ 3.2

Figure 2: Frobenius distances from X∗ for AP (solid line) and the best approximation achieved using Multistart APBR (dashed line) as a function

of m evaluated at increments of 0.01, with solutions for the case L = 3 in the region of 2.8 ≤ m ≤ 3.2. The solution corresponding to m = 3 is in

the dashed line.

In this example we can see that AP (19) is the poorest. OAP (20) and the IM method give marginal improvement

on AP. For the cases m = 0 and m = 1, all algorithms give identical solutions. In these cases, the SLRA problem is

quite simple. For example, for m = 1 the first AP iteration yields the optimal SLRA approximation.

Consider some results for the case m = 3. Figure 3 contains plots of the Frobenius distances ||Xn − X∗||
2
F

as
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Figure 3: Plots of the Frobenius distances ||Xn − X∗ ||
2
F

as functions of n for AP (bold line) and three randomly selected Multistart APBR iterations

(dot-dash line), for different s0.

functions of n (for AP and three randomly selected Multistart APBR iterations), for different s0. For small s0 the

distances are initially small, but then grow as the algorithm iterates towards a solution. For large s0 it is likely that the

distances are large initially, but the inclusion of backtracking in the Multistart APBR algorithm eventually makes these

distances smaller. In Multistart APBR, after performing P = 200 iterations with randomization and backtracking, we

perform 50 iterations of the OAP algorithm. The effect of using OAP in the Multistart APBR is very clear: the

distances from X∗ increase while the algorithm converges to some matrix inA.

Table 4 contains the minimum and median Frobenius distances to X
(3)
∗ (m = 3) using Multistart APBR, for varying

parameters p and q in (22). With s0 = 0.25 and s = 1 it can be seen that there are a number of (p, q) parameter pairs

which yield similar solutions. As is consistent with the previous example we advise to choose 0 < p < q. We can also

see that the results are very stable with respect to the values of p and q.

Min (APBR)

p�q 0.25 0.5 0.75 1 1.5 2

0.25 36.8456 37.1360 37.1899 36.2055 37.2088 37.2088

0.5 36.1380 37.1232 36.2359 36.2359 36.2357 36.2358

0.75 36.1970 37.1932 36.2620 36.2661 36.2744 36.2749

1 36.4415 36.4320 36.2829 36.2912 36.2998 36.2999

2 36.4580 36.4960 36.3614 36.3178 36.3672 36.3253

Median (APBR)

p�q 0.25 0.5 0.75 1 1.5 2

0.25 37.5396 37.2330 37.2111 36.2178 37.2129 37.2132

0.5 37.7568 37.3393 36.2489 36.2448 36.2408 36.2410

0.75 40.1898 37.6974 36.3167 36.2876 36.2791 36.2794

1 44.0458 37.8351 36.5178 36.3345 36.3069 36.3055

2 47.2857 42.0455 39.1298 38.1299 37.7234 37.5386

Table 4: Minimum and median Frobenius distances to X
(3)
∗ (in Frobenius norm) using Multistart APBR respectively, varying the parameters p and

q.
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6.3. Application to ‘Air Passenger’ data

In this example we consider the celebrated ‘Air Passenger’ data (available from [38]) which consists of monthly

counts of airline passengers, measured in thousands, for the period January 1949 through December 1960. We denote

this data by Y∗, and let X∗ = H(Y∗). We include this example to demonstrate that Multistart APBR may be used for

the time series analysis of real data. Note that for general guidance concerning choice of the parameters L and r, see

for example [5]. We wish to find an r = 2 approximation to the log-transformed data using AP (19), OAP (20) and

Multistart APBR (22). Table 5 contains the Frobenius distances to X∗ obtained using these methods with L = 24. The

parameters of Multistart APBR (22) are selected to be M = 1000, c = 1, s0 = 0.25, s = 1, p = 0.5, q = 1.5, and

P = 600. The total number iterations was 800. Figure 4 contains a plot of the log-transformed data and the rank 2 AP

and Multistart APBR approximations respectively.
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Figure 4: Plot of the log-transformed Air Passenger data (grey) and the rank 2 AP (dashed line) and Multistart APBR approximations (solid line)

respectively.

AP OAP Med (APBR) Min (APBR)

9.9652 9.9652 9.8606 9.8578

Table 5: Frobenius distances to X∗ obtained using AP (19), OAP (20), and Multistart APBR (22).

7. Conclusion

This paper is devoted to the construction of numerical methods for solving the HSLRA problem. Finding optimal

solutions to the HSLRA problem is very difficult. If HSLRA is considered as a problem of estimating parameters

of damped sinusoids, then the associated objective function becomes extremely complex so that the associated opti-

mization problem is basically unsolvable. This leads us to a conclusion that constructing algorithms for solving the

HSLRA problem with trajectories in the space H of Hankel matrices lead to more tractable algorithms with higher

chances of success. This is the approach which we undertook in the main body of the paper.

In Section 4 we discussed the so-called orthogonality condition which optimal solutions should satisfy, and de-

scribed how any approximation may be corrected to achieve this orthogonality. In Section 5 we introduced our family

of algorithms called APBR, which can be viewed as a global random search extension of AP. Examples provided in

Section 6 show that Multistart APBR significantly outperforms AP and some other methods. APBR with selection

is much more efficient than Multistart APBR. Many other, possibly more efficient, techniques could be adapted for

solving the HSLRA problem but this is a theme for future research.
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Appendix A. Complexity of the HSLRA optimization problem when using parametric forms of the solution

Appendix A.1. Objective function and its split into components

In this Appendix, we consider the HSLRA problem (1) as an optimization problem after a parametric repre-

sentation of the solution has been set. The most popular parameterization of the set A = Mr ∩ H , often found

in the signal processing literature (see for example [26]), is obtained by associating matrices X ∈ A with vectors

Y(θ) = (y1(θ), . . . , yN(θ))T whose elements can be represented as sums of damped sinusoids (other parametric forms

are known but they lead to even more difficult optimization problems).

The definition of the objective function was given in (5), with elements of the vector Y(θ) = (y1(θ), . . . , yN(θ))T

given by (6).

Let Θ be a parameter space so that θ ∈ Θ. The ranges for parameters ai and di is (−∞,∞), whilst the ranges for ωi

and ϕi are [0, 1) and [0, π/2) respectively. Denote the true value of parameters by θ(0) = (a(0), d(0), ω(0), ϕ(0)).

If we assume that there is a true signal represented in the form (6), such as in the standard ‘signal plus noise’

model (4), then we denote the true values of parameters by θ(0) = (a(0), d(0), ω(0), ϕ(0)) where a(0) = (a
(0)

1
, . . . , a

(0)
q ),

d(0) = (d
(0)

1
, . . . , d

(0)
q ), ω(0) = (ω

(0)

1
, . . . , ω

(0)
q ) and ϕ(0) = (ϕ

(0)

1
, . . . , ϕ

(0)
q ). The associated true signal values will be y

(0)
n ,

n = 1, . . . ,N. If the observations are noise-free, then the vector of observations Y = (y1, . . . , yN)T coincides with the

signal vector Y (0) = (y
(0)

1
, . . . , y

(0)

N
)T . Otherwise Y is different from Y (0).

Given an observed vector Y = (y1, . . . , yN)T we define the objective function f (θ) as follows:

f (θ) =

N
∑

n=1

snε
2
n(θ) =

N
∑

n=1

sn(yn − yn(θ))2 , (A.1)

where 0 ≤ sn ≤ ∞, n = 1, . . . ,N are a series of weights and εn(θ) = yn − yn(θ).

A comprehensive study of the objective function (A.1) with the parameterization (6) has been undertaken in [37].

Some analysis of the objective function (A.1) has also been reported in [10], but we show below that it is possible to

extend the analysis of [10].

Let θ̂ = (â, d̂, ω̂, ϕ̂) denote either an estimated value of θ(0) or simply any value in Θ. Then we may write:

εn(θ) = yn − yn(θ) = yn − yn(θ̂) + yn(θ̂) − yn(θ) = εn(θ̂) + (yn(θ̂) − yn(θ)) . (A.2)

Hence we may write (A.1) as

f (θ) = f (θ̂) + f1(θ, θ̂) + f2(θ, θ̂), (A.3)

where

f1(θ, θ̂) =

N
∑

n=1

sn

(

yn(θ) − yn(θ̂)
)2

and f2(θ, θ̂) = 2

N
∑

n=1

snεn(θ̂)
(

yn(θ̂) − yn(θ)
)

.

Here we consider each component of (A.3) in turn. The component f (θ̂) is a constant representing the sum of

squares between the observed vector Y = (y1, . . . , yN)T and the vector Y(θ̂) = (y1(θ̂), . . . , yN(θ̂))T . The function f1(θ, θ̂)

is a sum of squares but f2(θ, θ̂) is a sum of terms which may have alternating signs. This observation has led the

authors of [10] to the suggestion that the following could be a common phenomena: if θ̂ is not a good approximation

to the true parameter θ(0) then f1(θ, θ̂) dominates the shape of the objective function f (θ), and the contribution of

f2(θ, θ̂) is almost negligible. However, this seems to be true only if the vector Y is observed either without noise or

when the noise is very small; that is, when Y ≃ Y (0). In the next paragraph we will argue and then demonstrate in the

examples that follow that f2(θ, θ̂) often has a considerable and important contribution to the objective function f (θ̂)

for all θ̂ ∈ Θ, especially if θ̂ is not a good approximation of θ(0).

Consider the function f2(θ, θ̂). Represent it as f2(θ, θ̂) = C(θ̂) − f3(θ, θ̂), where

C(θ̂) = 2

N
∑

n=1

sn

(

yn − yn(θ̂)
)

yn(θ̂) and f3(θ, θ̂) = 2

N
∑

n=1

sn

(

yn − yn(θ̂)
)

yn(θ).

Appealing to the standard results concerning the orthogonality of residuals [39], if θ̂ has been obtained as a least

squares estimator of θ(0) then f3(θ(0), θ̂) ≈ 0 and f3(θ(0), θ) does not make a large contribution to the shape of the
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objective function f (θ), at least in the region where θ ≃ θ̂. However, if θ̂ is not a good approximation to θ(0) then

f3(θ(0), θ̂) may be significantly different from 0, and we can expect f3(θ(0), θ) to be significantly contributing to the

shape of f (θ). Moreover, due to the autocorrelation inherent in Y , there are likely to be some oscillatory or seasonal

patterns to be observed in f2(θ, θ̂). This phenomenon is confirmed by the results in the example below.

Appendix A.2. Example

Similar to [10] let us consider the parametrization (6) with q = 1 and the objective function defined by (A.1).

Assume we generate a vector of N = 10 observations Y (0) = (y
(0)

1
, . . . , y

(0)

N
)T from (6) with ω(0) = 0.4, ϕ(0) = π

2
,

d(0) = 0, a(0) = 2 and create a vector of observations Y = (y1, . . . , yN)T such that yn = y
(0)
n + ϵn. The noise terms ϵn are

assumed to be normally distributed with mean 0 and variance σ2. We take w1 = · · · = wN = 1. Similar phenomenon

as demonstrated in this example can be observed for different weights.
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(a) σ2 = 0.01, ω̂ = 0.4004, f (ω̂) = 0.0613,

f (ω(0)) = 0.0653.
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(b) σ2 = 9, ω̂ = 0.3801, f (ω̂) = 66.6674,

f (ω(0)) = 74.7927.

–100

0

100

200

300

0.2 0.4 0.6 0.8 1
 

(c) σ2 = 25, ω̂ = 0.1752, f (ω̂) = 162.3507,

f (ω(0)) = 223.8836.

Figure A.5: Function f (ω) in solid line, f (ω(0)) in solid line (horizontal), f1(ω,ω(0)) in dashed line and f2(ω,ω(0)) in grey; for different values of

σ. Estimated global minimum ω̂ and corresponding value of the objective function f (ω̂) also given.

In this example we assume that d(0), ϕ(0) and a(0) are known but ω(0) is not (a similar case was considered in [10]).

This yields θ = ω and the objective function becomes

f (ω) =

N
∑

n=1

(

yn − a(0) exp(d(0)n) sin(2πωn + ϕ(0))
)2
.

The feasible domain for ω can be chosen as Θ = [0, 1); in this interval, the function f many local minimizers (in

addition to the global minimizer). As mentioned in [37] the number of local minima of f (ω) is linear in N and

therefore the complexity of the objective function f (·) increases with N.

Fig. A.5 contains plots of f (ω), f (ω(0)), f1(ω,ω(0)) and f2(ω,ω(0)) for particular realizations of noise for varying

values of σ2. Adding noise to the observed data increases the complexity of the function f (ω) and moves the global

minimizer of f (ω) away from the true value ω(0) = 0.4. As ω̂ we use the global minimizer of f (ω).

Fig. A.6 contains plots of Y and the estimated reconstructed signal. The effect of adding noise is to increase the

complexity of the objective function f , and as such it it possible to obtain estimates of ω(0) that are far away from the

true value. The consequences of measurement error are clearly seen in this figure.

Now set σ2 = 2.5. Fig. A.7 contains plots of f (ω), f (ω̂), f1(ω, ω̂) and f2(ω, ω̂) with θ̂ = ω̂ perturbed away from

the true value ω(0) = 0.4. Theoretical work by Lemmerling and Van Huffel [10] suggests that it is sufficient to study
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(a) σ2 = 9, ω̂ = 0.3801
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(b) σ2 = 25, ω̂ = 0.1752

Figure A.6: Plots of Y and the estimated reconstructed signal a(0) exp(d(0)n) sin(2πω(0)n+ϕ(0)) in black, with true signal a(0) exp(d(0)n) sin(2πω̂)n+

ϕ(0) in grey, corresponding to the estimated global minimizer shown in Fig. A.5.
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(a) ω̂ = 0.3
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(b) ω̂ = 0.325
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(c) ω̂ = 0.35
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(d) ω̂ = 0.4
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(e) ω̂ = 0.425
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(f) ω̂ = 0.45

Figure A.7: ω(0) = 0.4, function f (ω) in solid line, f (ω(0)) in solid line (horizontal), f1(ω,ω(0)) in dashed line and f2(ω,ω(0)) in grey; with

σ2 = 2.5.

f1(ω, ω̂), as this component dominates the shape of the objective function f (ω), and the contribution of f2(ω, ω̂) is

negligible particularly when ω̂ is not close to the true value of θ. However, it can be seen in Fig. A.7 that f2(ω, ω̂)

is a very significant component of the objective function f (·), whatever the choice of ω̂. We can also see that the

inclusion of noise in the vector Y always moves the global minimizer of f (·) away from the true value ω(0) (which is

the minimizer of f (·) in the noise-free situation).

20



Appendix A.3. Derivatives and simplification of the objective function (5), parameterized by (6) with q = 1

Let q = 1 and consider the optimization problem (5) defined by the model (6). For brevity let xn = exp(dn) sin(2πωn+

ϕ) and w1 = · · · = wN = 1. Equation (5) may be written

f (a, d, ω, ϕ) =

N
∑

n=1

(yn − axn)2 . (A.4)

Since

∂ f (a, d, ω, ϕ)

∂a
= −2

N
∑

n=1

(yn − axn)xn ,

then we may obtain an explicit estimator for a, which we denote â. This estimator is a function of the remaining

parameters d, ω and ϕ;

â =

∑N
n=1 ynxn

∑N
n=1 x2

n

.

Substituting â into (A.4) gives a new objective function, which we denote g(d, ω, ϕ) :

g(d, ω, ϕ) =

N
∑

n=1















yn − xn

∑N
k=1 yk xk

∑N
k=1 x2

k















2

=

N
∑

n=1

ϵ2n,k .

where ϵn,k = yn −

∑N
k=1 yk xk

∑N
k=1 x2

k

.

It is possible to compute the derivative of the objective function with respect to each of the unknown parameters.

However, even for simple cases the derivatives cannot be written in a neat form. Here we state the first derivatives of

g(d, ω, ϕ) with respect to each of the unknown parameters:

∂g

∂d
= −2

N
∑

n=1



















ϵn,k





















xn

∑N
k=1 kyk xk

∑N
k=1 x2

k

+
xn

∑N
k=1 yk xk

(

∑N
k=1 x2

k

)2















n

N
∑

k=1

x2
k − 2

N
∑

k=1

kx2
k





















































.

Let c
(n)

1
= nedn cos(2πωn + ϕ)

∑N
k=1 x2

k
− xn

∑N
k=1 kxkedk cos(2πωk + ϕ), then

∂g

∂ω
= −4π

N
∑

n=1



















ϵn,k





















xn

∑N
k=1 kedk cos(2πωk + ϕ)

∑N
k=1 x2

k

+

∑N
k=1 yk xk

(

∑N
k=1 x2

k

)2
c

(n)

1







































.

Let c
(n)

2
= edn cos(2πωn + ϕ)

∑N
k=1 x2

k
− 2xn

∑N
k=1 xkedk cos(2πωn + ϕ), then

∂g

∂ϕ
= −2

N
∑

n=1



















ϵn,k





















xn

∑N
k=1 ykedk cos(2πωk + ϕ)

∑N
k=1 x2

k

+

∑N
k=1 yk xk

(

∑N
k=1 x2

k

)2
c

(n)

2







































.
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[35] A. Zhigljavsky, A. Žilinskas, Stochastic global optimization, Springer, New York, 2008.

[36] G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators, Springer, 1984.

[37] J. Gillard, A. A. Zhigljavsky, Analysis of Structured Low Rank Approximation as an Optimization Problem, Informatica 22 (4) (2011)

489–505.

[38] R. J. Hyndman, Time series data library, http://data.is/TSDLdemo.

[39] W. A. Fuller, Introduction to statistical time series, 2nd Edition, Wiley & Sons, N.Y., 1996.

22


