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In order to disentangle the internal dynamics from exogenous factors within the

Autoregressive Conditional Duration (ACD) model, we present an effective measure

of endogeneity. Inspired from the Hawkes model, this measure is defined as the

average fraction of events that are triggered due to internal feedback mechanisms

within the total population. We provide a direct comparison of the Hawkes and

ACD models based on numerical simulations and show that our effective measure of

endogeneity for the ACD can be mapped onto the “branching ratio” of the Hawkes

model.

I. INTRODUCTION

An outstanding challenge in socio-economic systems is to disentangle the internal dynam-

ics from the exogenous influence. It is obvious that any non-trivial system is both subject to

external shocks as well as to internal organizational forces and feedback loops. In absence

of external influences, many natural and social systems would regress or die, however the

internal mechanisms are of no less importance and can either stabilize or destabilize the

system. These systems are continuously subjected to external shocks, forces, noises and

stimulations; they propagate and process these inputs in a self-reflexive way. The stability

(or criticality) of these dynamics is characterized by the relative strength of self-reinforcing
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mechanisms.

For instance, the brain development and performance is given by both external stimuli and

endogenous collective and interactive wiring between neurons. The normal regime of brain

dynamics corresponds to asynchronous firing of neurons with relatively low coupling between

individual neurons. However as the coupling strength increases, the internal feedback loops

starts playing an increasingly important role in the dynamics, and the system moves towards

the tipping point at which abnormal synchronous “neuronal avalanches” result in an epileptic

seizure [77]. As another example, financial systems are known to be driven by exogenous

idiosyncratic news that are digested by investors and complemented with quasi-rational

(sometimes self-referential) behavior. Correlated over-expectations (herding) of investors

correspond to the bubble phase that pushes the system towards criticality, where the crash

may result as a bifurcation towards a distressed regime [78].

In physical systems at thermodynamic equilibrium, the so-called fluctuation-dissipation

theorem relates quantitatively the response of the system to an exogenous (and instanta-

neous) shock to the correlation structure of the spontaneous endogenous fluctuations [86].

In out-of-equilibrium systems, the existence of such relation is still an open question [68]. In

a given observation set, it seems in general hopeless to separate the contributions resulting

from external perturbations and internal fluctuations and responses. However, one would

like to understand the interplay between endogeneity and exogeneity (the ‘endo-exo’ prob-

lem, for short) in order to characterize the reaction of a given system to external influences,

to quantify its resilience, and explain its dynamics. Using the class of self-exciting condi-

tional Poisson (Hawkes) processes [42, 43], some progress has recently been made in this

direction [15, 18, 79, 80].

In the modeling of complex point processes in natural and socio-economic systems, the

Hawkes process [42, 43] has become the gold standard due to its simple construction and

flexibility. Nowadays, it is being successfully used for modeling sequences of triggered earth-

quakes [62]; genomic events along DNA [67]; brain seizures [63, 82]; spread of violence [52]

and crime [56] across some regions; extreme events in financial series [19] and probabilities

of credit defaults [25]. In financial applications, the Hawkes processes are most actively used

for modeling high frequency fluctuations of financial prices (see for instance [4, 7, 11, 32]),

however applications to lower frequency data, such as daily, are also possible (see A).

Being closely related to branching processes [39], the Hawkes model combines, in a natural
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and parsimonious way, exogenous influences with self-excited dynamics. It accounts simul-

taneously for the co-existence and interplay between the exogenous impact on the system

and the endogenous mechanism where past events contribute to the probability of occur-

rence of future events. Moreover, using the mapping of the Hawkes process onto a branching

structure, it is possible to construct a representation of the sequence of events according to

a branching structure, with each event leading to a whole tree of offspring.

The linear construction of the Hawkes model allows one to separate exogenous events

and develop a single parameter, the so-called “branching ratio” η that directly measures the

level of endogeneity in the system. The branching ratio can be interpreted as the fraction

of endogenous events within the whole population of events [32, 45]. The branching ratio

provides a simple and illuminating characterization of the system, in particular with respect

to its fragility and susceptibility to shocks. For η < 1, on average, the proportion 1 − η of

events arrive to the system externally, while the proportion η of events can be traced back to

the influence of past dynamics. As η approaches 1 from below, the system becomes “critical”,

in the sense that its activity is mostly endogenous or self-fulfilling. More precisely, its activity

becomes hyperbolically sensitive to external influences. The regime η > 1 corresponds to

the occurrence of an unbounded explosion of activity nucleated by just a few external events

(e.g., news) with non-zero probability. In any realistic case, when present, this explosion

will be observable in finite time. Not only does the Hawkes model provide this valuable

parameter η, but it also amenable to an easy and transparent estimation by maximum

likelihood [60, 64] without requiring stochastic declustering [54, 93], which is essential in the

branching processes’ framework but has several limitations [84].

However, the Hawkes model is not the only model that describes self-excitation in point

processes. In particular, the Autoregressive Conditional Duration (ACD) model [22, 23]

and the Autoregressive Conditional Intensity (ACI) model [69] have been introduced and

successfully used in econometric applications. A similar concept was used in the so-called Au-

toregressive Conditional Hazard (ACH) model [37]. These processes were designed to mimic

properties of the famous Autoregressive Conditional Heteroskedasticity (ARCH) model [20]

and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model [8] that

successfully account for volatility clustering and self-excitation in price time series. Some

other modifications of ACD models such as Fractionally Integrated ACD (FIACD) [47] or

Augmented ACD (AACD) [29] were introduced to account for additional effects (such as
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long memory) or to increase the flexibility of the model (for a more detailed review, see [7]

and references therein).

In general, all approaches to modeling self-excited point processes can be separated into

the classes of Duration-based (represented by the ACD model and its derivations) and

Intensity-based approaches (Hawkes, ACH, ACI, and so on), which define a stochastic ex-

pression for inter-event durations and intensity respectively. Of all the models, as discussed

above, the Hawkes process dominates by far in the class of intensity-based model, and the

ACD model – a direct offspring of the GARCH-family – is the most used duration-based

model.

Despite belonging to different classes, both models describe the same phenomena and

exhibit similar mathematical properties. In this article, we aim to establish a link between

the ACD and Hawkes models. We show that, despite the fact that the ACD model cannot

be directly mapped onto a branching structure, and thus the branching ratio for this model

cannot be derived, it is possible to introduce a parameter ζ ∈ [0, 1] that serves as an

effective degree of endogeneity in the ACD model. We show that this parameter shares

important properties with the branching ratio η ∈ [0, 1] in the framework of the Hawkes

model. Namely, both ζ and η characterize stationarity properties of the models, and provide

an effective transformation of the exogenous excitation of the system onto its total activity.

By numerical simulations, we show that there exists a monotonous relationship between

the parameter ζ of the ACD model and the branching ratio η of the corresponding Hawkes

model. In particular, the purely exogenous case (η = 0) and the critical state (η = 1) are

exactly mapped to the corresponding values ζ = 0 and ζ = 1. We validate our results by

goodness-of-fit tests and show that our findings are robust with respect to the specification

of the memory kernel of the Hawkes model.

The article is structured as follows. In section II, we introduce the Hawkes and ACD

models and briefly discuss their properties. Section III introduces the branching ratio and

relates it to the measure of endogeneity within the framework of the Hawkes model. In

section IV, we discuss similarities between the Hawkes and ACD models, and identify a

parameter in the ACD model that can be treated as an effective degree of endogeneity.

We support our thesis with extensive numerical simulations and goodness-of-fit tests. In

section V, we conclude.
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II. MODELS OF SELF-EXCITED POINT PROCESSES

Let us define a univariate point process of event times {ti}i∈N>0
(ti > tj for i > j) with

the counting process {N(t)}t≥0 = max(i : ti ≤ t), and the duration process of inter-event

times {δti}i∈N>0
= ti − ti−1. Properties of the point process {ti} are usually described with

the (unconditional) intensity process λ(t) = limh↓0
1
h
Pr[N(t+h)−N(t) > 0] and conditional

intensity process λ(t|Ft−) = limh↓0
1
h
Pr[N(t + h) − N(t) > 0|Ft−], which is adapted to the

natural filtration Ft− = (t1, . . . , ti : t < ti) representing the history of the process.

The well-known Poisson point process is defined as the point process whose conditional

intensity does not depend on the history of the process and is constant:

λ(t|Ft−) ≡ λ(t) = λ0 > 0, (1)

The non-homogenous Poisson process extends expression (1) to account for time-dependence

of both conditional and unconditional intensity functions: λ(t|Ft−) ≡ λ(t) = λ0(t) > 0.

Both homogeneous and non-homogeneous Poisson processes are completely memoryless,

which means that the durations {δti} are independent from each other and are completely

determined by the exogenous parameter (function) λ0(t).

The Self-excited Hawkes process and Autoregressive Conditional Durations (ACD) model,

which are described in this article, extend the concept of the Poisson point processes by

adding path dependence and non-trivial correlation structures. These models represent two

different approaches in modelling point processes with memory: the so called intensity-based

and duration-based approaches. As follows from their names, the first approach focuses

on models for the conditional intensity function λ(t|Ft−) and the second considers models

of the durations {δti}. For example, in the context of the intensity-based approach, the

Poisson process is defined by equation (1). In the context of the duration-based approach,

the Poisson process is defined as the point process whose durations {δti} are independent

and identically distributed (iid) random variables with exponential probability distribution

function f(δt) = λ0 exp(−λ0δt).
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A. Hawkes Model

The linear Hawkes process [42, 43], which belongs to the class of intensity-based models,

has its conditional intensity λ(t|Ft−) being a stochastic process of the following general form:

λ(t|Ft−) = µ(t) +

∫ t

−∞

h(t− s)dN(s), (2)

where µ(t) is the background intensity, which is a deterministic function of time that accounts

for the intensity of arrival of exogenous events (not dependent on history). A determinis-

tic kernel function h(t), which should satisfy causality (h(t) = 0 for t < 0), models the

endogenous feedback mechanism (memory of the process). Given that each event arrives

instantaneously, the differential of the counting process dN(t) can be represented in the

form of a sum of delta-functions dN(t) =
∑

ti<t δ(t − ti)dt, allowing (2) to be rewritten in

the following form:

λ(t|Ft−) = µ(t) +
∑

ti<t

h(t− ti). (3)

It can be shown (and we will discuss this point in the following section) that the stationarity

of the process (3) requires that

0 <

∫ ∞

0

h(t)dt < 1. (4)

The shape of the kernel function h(t) defines the correlation properties of the process.

In particular, the geophysical applications of the Hawkes model, or more precisely of its

spatio-temporal extension called the Epidemic-Type Aftershock sequence (ETAS) [62, 90, 91],

assume in general a power law time-dependence of the kernel h(t):

h(t) =
K

(t+ c)ϕ
χ(t), (5)

that describes the modified Omori-Utsu law of aftershock rates [88, 89]. Financial applica-

tions [11, 14, 32, 46] traditionally use an exponential kernel

h(t) = a exp(−t/τ)χ(t), (6)

which has been originally suggested by [43] and ensures Markovian properties of the

model [59]. In both cases, a Heaviside function χ(t) ensures the validity of the causal-

ity principle. The stationarity condition (4) requires Kc1−ϕ/(ϕ− 1) < 1 for the power law

kernel and aτ < 1 for the exponential kernel.
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In the present work, we focus on the Hawkes model with an exponential kernel (6) and

background intensity µ(t) that does not depend on time: µ(t) ≡ µ > 0. We introduce a new

dimensionless parameter, η = aτ , which will be discussed in detail later, which allows us to

write the final expression for the conditional intensity as follows:

λ(t|Ft−) = µ+
η

τ

∑

ti<t

exp

(

−
t− ti
τ

)

. (7)

Then, the stationarity condition reads η < 1. In order to check the robustness of the results

presented below, in particular with respect to the choice of the memory kernel, we have also

considered a power law kernel (5) with time-independent background intensity µ(t) ≡ µ > 0.

Similarly to the exponential kernel, the integral from 0 to +∞ of the memory kernel defines

the dimensionless parameter η = Kc1−ϕ/(ϕ − 1), which allows us to rewrite the Hawkes

model with power law kernel as:

λ(t|Ft−) = µ+ ηc1−ϕ(ϕ− 1)
∑

ti<t

1

(t− ti + c)ϕ
, (8)

Again, the stationarity condition reads η < 1.

B. Autoregressive Conditional Durations (ACD) Model

The class of Autoregressive Conditional Durations (ACD) models has been introduced

by [22, 23] in the field of econometrics to model financial data at the transaction level.

The ACD model applies the ideas of the Autoregressive Conditional Heteroskedasticity

(ARCH) [20] model, which separates the dynamics of a stationary random process into

a multiplicative random error term and a dynamical variance that regresses the past values

of the process. In the spirit of the ARCH, the ACD model is represented by the duration

process δti in the form

δti = ψiǫi, (9)

where ǫi defines an iid random non-negative variable with unit mean E[ǫi] = 1, and the

function ψi ≡ ψ(N(Ft−); θ) is the conditional expected duration: E[δti|Ft−] = ψi. Here, θ

represents the set of parameters of the model. From expression (9), one can simply derive

the conditional intensity of the process [23]:

λ(t|Ft−) = λǫ

(

t− tN(t)

ψN(t)+1

)

1

ψN(t)+1

, (10)
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where λǫ(s) represents the intensity function of the noise term, ǫi. Assuming ǫi to be iid

exponentially distributed, one can call this model (9) an Exponential ACD model.

The conditional expected duration ψ(N(Ft−); θ) of the ACD(p,q) model, where (p, q)

denotes the order of the model, is defined as an autoregressive function of the past observed

durations δti and the conditional durations ψi themselves:

ψi = ω +

p
∑

j=1

αjδti−j +

q
∑

k=1

βkψi−j , (11)

where ω > 0, αj ≥ 0 and βk ≥ 0 are parameters of the model that constitute the set θ =

{ω, α1, . . . , αp, β1, . . . , βp}. The stationarity condition for the ACD model has the form [23]:

p
∑

j=1

αj +

q
∑

k=1

βk < 1. (12)

In the simple ACD(1,1) case that is considered in the present article, equation (11) is

reduced to:

ψi = ω + αδti−1 + βψi−1. (13)

Similarly, the conditional intensity (10) of the Exponential ACD(1,1) has the form:

λ(t|Ft−) =
1

ψN(t)+1

=
1

ω + αδtN(t) + βψN(t)

(14)

and the stationarity condition (12) reduces to α+ β < 1.

III. THE BRANCHING RATIO AS A MEASURE OF ENDOGENEITY IN THE

HAWKES MODEL

The linear structure of the Hawkes process (3) with identical functional form of summands

h(t − ti), that depend only on arrival time of a single event ti, allows one to consider it as

a cluster process in which the random process of cluster centers {t
(c)
i }i∈N>0

is the Poisson

process with rate µ(t). All clusters associated with centers {t
(c)
i } are mutually independent

by construction and can be considered as a generalized branching process [44], illustrated in

figure 1.

[Insert Figure 1 here]

In this context, each event ti can be either an immigrant or a descendant. The rate of

immigration is determined by the background intensity µ(t) and results in an exogenous
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random process. Once an immigrant event occurs, it generates a whole cluster of events.

Namely, a zeroth-order event (which we will call the mother event) can trigger one or more

first-order events (daughter events). Each of these daughters, in turn, may trigger sev-

eral second-order events (the grand-daughters of the initial mother), and so on. All first-,

second- and higher-order events form a cluster and are called descendants (or aftershocks)

and represent endogenously driven events that appear due to internal feedback mechanisms

in the system. It should be noted that this mapping of the Hawkes process (3) onto the

branching structure (figure 1) is possible due to the linearity of the model, and is not valid

for nonlinear self-excited point processes, such as the class of nonlinear mutually excited

point processes [12], of which the Multifractal stress activation model [83] is a particular

implementation.

The crucial parameter of the branching process is the branching ratio (n), which is defined

as the average number of daughter events per mother event. Depending on the branching

ratio, there are three regimes: (i) sub-critical (n < 1), (ii) critical (n = 1) and (iii) super-

critical or explosive (n > 1). Starting from a single mother event (or immigrant) at time

t1, the process dies out with probability 1 in the sub-critical and critical regimes and has a

finite probability to explode to an infinite number of events in the super-critical regime. The

critical regime for n = 1 separates the two main regimes and is characterized by power law

statistics of the number of events and in the number of generations before extinction [71]. For

n ≤ 1, the process is stationary in the presence of a Poissonian or more generally stationary

flux of immigrants.

Being the parameter that describes the clustering structure of the branching process,

the branching ratio n defines the relative proportion of exogenous events (immigrants) and

endogenous events (descendants or aftershocks). Moreover, in the sub-critical regime, in the

case of a constant background intensity (µ(t) = µ = const), the branching ratio is exactly

equal to the fraction of the average number of descendants in the whole population [32,

45]. In other words, the branching ratio is equal to the proportion of the average number

of endogenously generated events among all events and can be considered as an effective

measure of endogeneity of the system.

To see this, let us count separately the rates of exogenous and endogenous events. The

rate of exogenous immigrants (zeroth-order events) is equal to the background activity rate:

Rexo = µ. Each immigrant independently gives birth, on average, to n daughters and thus
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the rate of first-order events is equal to r1 = µn. In turn, each first-order event produces,

on average, n second-order events, whose rate is equal to r2 = nr1 = µn2. Continuing this

process ad infinitum and summing over all generations, we obtain the rate of all endogenous

descendants:

Rendo =
∞
∑

i=1

ri = µ
∞
∑

i=1

ni =
µn

1− n
, (15)

which is finite for n < 1. The global rate is the sum of the rates of immigrants and

descendants and equal to

R = Rexo +Rendo = µ+
µn

1− n
=

µ

1− n
. (16)

And the proportion of descendants (endogenously driven events) in the whole system is equal

to the branching ratio:
Rendo

R
= n. (17)

Calibrating n on the data therefore provides a direct quantitative estimate of the degree of

endogeneity.

In the framework of the Hawkes model (3) with µ(t) = µ = const, the branching ratio n

is easily defined via the kernel h(t):

n =

∫ ∞

0

h(t)dt. (18)

For the exponential parametrization (6), the branching ratio, n = aτ , is equal to a dimension-

less parameter n ≡ η previously introduced. The Hawkes framework provides a convenient

way of estimating the branching ratio, n ≡ η, from the observations {ti}, using the Max-

imum Likelihood method, which benefits from the fact that the log-likelihood function is

known for Hawkes processes [60, 64]. The calibration of the model and estimation of the

branching ratio n can then be performed with the numerical maximization of Log-Likelihood

function in the parameter space {µ, n, τ} for the exponential kernel (6) and {µ, n, c, ϕ} for

the power law model (5). Despite being a relatively straightforward calibration procedure,

special care should be taken with respect to data processing, choice of the kernel, robustness

of numerical methods and stationarity tests as discussed in details in [34].
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IV. THE EFFECTIVE DEGREE OF ENDOGENEITY IN THE

AUTOREGRESSIVE CONDITIONAL DURATIONS (ACD) MODEL

A. Formal similarities between the ACD and Hawkes models

Note that the ACD(p,q) and Hawkes models operate on different variables with inverse

dimensions: duration δt for the ACD(p,q) model and conditional intensity λ(t|Ft−) for the

Hawkes model, which is of the order of the inverse 1/δt of the duration δt. As a consequence,

equations (21) and (16) apply to different statistics (average durations E[δt] and average

rate R = E[1/δt]). Moreover, the ACD model cannot be exactly mapped onto a branching

structure whereas the Hawkes process can.

Indeed, the branching structure requires that the conditional probability for an event

to occur within the infinitely small interval [t, t + dt) (which is the conditional intensity)

should be decomposed into a sum of (1) a (deterministic or stochastic) function of time that

represents the immigration intensity and (2) the contributions fi from each past event ti

that satisfy the following conditions: (i) these contributions should depend only on ti and

be independent from all other events tj < t; (ii) these contributions should exhibit identical

structure for all events; and (iii) they should satisfy the causality principle. Thus, in its

general form, a conditional Poisson process that can be mapped on (multiple) branching

structures if it is described by the following conditional intensity:

λ(t|Ft−) = µ(t) +
∑

ti<t

f(t, ti)χ(t− ti), (19)

where f(t, ti) is some deterministic function, and χ(t) is a unit step (Heaviside function). In

the context of autoregressive models (such as ACD), the expected waiting time at a given

time t is defined as a regressive sum of past durations, which means that the contribution of

each event ti < t to the intensity at time t depends on all the events tj that happened after it

(ti < tj < t). This violates the first principle for a branching processes of the independence

of distinct branches. For the ACD model, the analysis is also complicated by the structure

of the conditional intensity function (10), where past history is influencing the intensity

both in a multiplicative way and with a shift in the baseline intensity λǫ. One should note

that autoregressive intensity models (such as ACI) in general also do not have a branching

structure representation due to the problem discussed above.
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Despite the differences in their definition and the impossibility of developing an exact

mapping onto a branching structure, the ACD model shares many similarities with the

Hawkes model and their point processes exhibit similar degrees of clustering. In particular,

for the ACD defined by expression (11), the combined parameter,

ζ =

p
∑

j=1

αj +

q
∑

k=1

βk (20)

plays a similar role to the parameter η of the Hawkes process with an exponential kernel (7).

The similarities start with the stationarity conditions (4) and (12), which require η < 1 for

the Hawkes model and ζ < 1 for the ACD, but go much deeper than the simple idea of

“effective distance” to a non-stationary regime.

As we have seen in the previous section, η defines the effective degree of endogeneity (17)

that translates the exogenous rate Rexo = µ into the total rate Rtotal = Rexo/(1 − η).

Similarly, let us study the role of endogenous feedback in the ACD model. For αj = βk = ζ =

0, the ACD(0,0) model (9),(11) reduces to a simple Poisson process with durations δti = ωǫi

having an average value of E[δti] = ω, which can be considered as the exogenous factor.

When αj > 0 and βk > 0, there is an amplification of the average durations. Considering

the average of eq. (11) in the stationary regime (E[δti−1] = E[δti] and E[ψi−1] = E[ψi]), and

taking into account eq. (9), we obtain the following expression for the mean duration in the

stationary regime:

E[δt] =
ω

1−
∑p

j=1 αj −
∑q

k=1 βk
≡

ω

1− ζ
. (21)

Equations (21) and (16) share the same functional dependence, with a divergence when the

corresponding control parameters η and ζ approach 1.

B. Empirical dependence of the effective branching ratio η̂ as a function of ζ = α+ β

for the ACD(1,1) process

In order to quantify the similarities between the ACD and Hawkes models outlined in the

previous section, we have performed the following numerical study. We simulated realizations

of the ACD(1,1) process and calibrated the Hawkes model to it. The traditional way of

fitting the Hawkes model uses the maximum likelihood method [64], which is asymptotically

normal and asymptotically efficient [60]. We have used the R package “PtProcess” [40],
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which provides a convenient framework for Hawkes models (3) with arbitrary kernel h(t)

and background intensity µ(t). Then, we maximized the likelihood function using a Newton-

type non-linear maximization [17, 75]. The B reports a study of the finite sample bias and

efficiency of the Hawkes maximum likelihood estimator. We find that the estimation error

|η̂− η| of the branching ratio (without model error) measured with the 90% quantile ranges

does not exceed 0.1 for all values η ≤ 0.9.

More precisely, we want to quantify similarities between control parameters ζ of the

model ACD(p,q) and η of the exponential Hawkes model. For this, we have simulated

realizations of the ACD process and estimated the parameter η from these realizations. The

parameter ω of the ACD(p,q) (11) model defines the time scale. Without loss of generality,

we let ω = 1, which accounts for a linear transformation of time t̃i = ti/ω in equations (9)

and (11). For the sake of simplicity, we present our results for the ACD(1,1) model, for

which the dimensionless parameter ζ reduces to ζ = α+β. However, our findings are robust

to the choice of the order of the ACD model and can be easily generalized to the case of

p, q > 1. The parameters α and β were chosen so that ζ = α + β spanned [0, 1] at 40

equidistant points. For each of the 40 values of ζ , we have generated 100 realizations of the

corresponding exponential ACD(1,1) process. Each realization of 3500 events was generated

by a recursive algorithm using eq. (13). In order to minimize the impact of edge effects that

can bias the estimation of the branching ratio [34], the first 500 points of each realization

were discarded. Then, the Hawkes model (7) was calibrated on these synthetic datasets.

For each calibration, we have performed a goodness-of-fit test based on residual analy-

sis [62], which consists of studying the so-called residual process defined as the nonparametric

transformation of the initial time-series ti into

ξi =

∫ ti

0

λ̂(t|Ft−)dt, (22)

where λ̂(t|Ft−) is the conditional intensity of the Hawkes process (7) estimated with the

maximum likelihood method. Under the null hypothesis that the data has been generated

by the Hawkes process (7), the residual process ξi should be Poisson with unit intensity [66].

Visual analysis involves studying the cusum plot or Q-Q plot and may be complemented

with rigorous statistical tests. Under the null hypothesis (Poisson statistics of the resid-

ual process ξi), the inter-event times in the residual process, δξi = ξi − ξi−1, should be

exponentially distributed with CDF F (δξ) = 1 − exp(−δξ). Thus, the random variables
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Ui ≡ F (δξi) = 1 − exp(−δξi) should be uniformly distributed in [0, 1]. We have performed

rigorous Kolmogorov-Smirnov tests for uniformity and provided the corresponding p-values.

We start with a visual comparison of realizations generated with the two models. Figure 2

presents a comparison of the conditional intensities and durations for (i) simulations of the

ACD(1,1) process and, (ii) simulations of the Hawkes process with parameters calibrated to

the corresponding ACD process realization. Visual similarities are striking for all four ACD-

Hawkes pairs: Total, average, and maximum durations are similar. Moreover, bursts of short

and long durations are of similar length. The conditional intensities fluctuate in a similar

range and show qualitatively similar clustering of events, although the ACD conditional

intensity is constant between events while the Hawkes decays exponentially. Quantitatively,

the distributions of durations also show a large degree of similarity.

[Insert Figure 2 here]

Figure 2 also reveals one important property of the ACD model. Despite the fact that

many statistical properties (such as average durations (21)) are defined by the control pa-

rameter ζ = α + β, α and β have different impacts on the effective degree of endogeneity

η. For instance, case (B) α = 0.38, β = 0.13, and case(C) α = 0.13, β = 0.38 both have the

same ζ = 0.51 but η̂ = 0.52 for (B) and η̂ = 0.22 for (C). The smaller endogeneity found in

case (C) is compensated by a higher rate of exogenous events (µ̂ = 0.38 for (C) compared

with µ̂ = 0.24 for (B)), resulting in a “flatter” conditional intensity for (C).

In order to explore this effect in simulations of the ACD model, for each value of ζ = α+β,

we considered different relations between α and β: (i) α = β (= ζ/2), (ii) β = 0 (α = ζ),

(iii) α = 0 (β = ζ), (iv) α = 3β (= 3ζ/4) and (v) β = 3α (= 3ζ/4). Figure 3 presents the

results of the fitting of the Hawkes model on realizations of the ACD(1,1) model in these five

cases. The first striking observation is the existence of two fundamentally different behaviors

observed for α = 0 (case (iii)) versus α > 0 (cases (i),(ii),(iv),(v)). For α = 0, the estimated

effective branching ratio η̂ is 0 for all values of the control parameter ζ = β, as shown in

Figure 3(B). This diagnoses a completely exogenous dynamics of the ACD process, which is

indeed the expected diagnostic given that, for α = 0, eq. (9) and (13) reduce to

δti = ψiǫi, ψi = ω + βψi−1, (23)

for which the dynamics of the conditional durations {ψi} is purely deterministic and inde-
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pendent of the realized durations δti, while the later are entirely driven by the random term

ǫi.

[Insert Figure 3 here]

For α > 0, we find similar non-trivial results. Figure 3(B) shows the effective branching

ratio η̂ as a monotonously increasing function of ζ for all combinations of α 6= 0 and β. In

cases (ii) (β = 0) and (iv) (α = 3β), the dependence of η̂ on ζ is almost linear for ζ < 0.5 and

ζ < 0.9 respectively and, for higher values of ζ , the convexity increases. In case (i) (α = β),

η̂ depends linearly on ζ for ζ > 0.4 with a very good approximation. Finally, in case (v)

(α = 3β), the curvature of η̂(ζ) is significant over the range of 0.3 < ζ < 0.9. Remarkably,

all four dependencies converge to the same value η̂ ≈ 0.9 for ζ = 1.

Figure 4 presents the dependence of the effective branching ratio η̂ on the control param-

eter ζ = α + β after correction of the bias in estimation due to finite size effects presented

in the B and summarized in figure 7). All dependencies of η̂ as a function of ζ converge to

the critical value ζ = 1.

[Insert Figure 4 here]

Figure 5 generalizes figure 3(B) by presenting the dependence of the effective branching

ratio η̂ (corrected for the finite sample bias determined in the B) on the parameters α and

β separately. As expected, the impact of a change of α is much larger than that of β. There

is a region, delineated by the dashed line, within which the Hawkes model is rejected at the

5% level for the Kolmogorov-Smirnov test. For most combinations of α and β such that

0.6 . α + β . 0.95, the Hawkes model is rejected. Interestingly, the Hawkes model is not

rejected in the case where β is kept significantly larger than α, and it is only rejected in a

small interval in the extreme opposite case where β ≡ 0. The model is often not rejected

for large values of η̂.

C. Differences between the ACD and Hawkes models

Despite similarities, the Hawkes and ACD models exhibit some important differences.

Figure 3A shows that the effective background rate µ̂ estimated by the Hawkes model is

a decreasing function of the control parameter ζ . This is an indirect consequence of the
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dependence of the expected duration on ζ given by expression (21). In contrast to the

Hawkes model (2), for which the background rate µ(t) completely describes the exogenous

impact on the system, the parameter ω of the ACD model (11) is not the only factor

embodying the exogenous activity and there is no strict decoupling between the exogenous

driver ω and endogenous level ζ as occurs for the parameters µ and η of the Hawkes model.

In other words, in contrast to the Hawkes model, the ACD in its classical form (11) does

not provide a clean distinction between exogenous and endogenous activities.

Another difference between the Hawkes and ACD models can be observed in figure 3(D),

which presents a residual analysis of the calibration of realizations of the ACD process by the

Hawkes model using the Kolmogorov-Smirnov test. The null hypothesis that the realizations

of the ACD process are generated by the Hawkes model is rejected at the 5% confidence level

for ζ > 0.6 in case (i) (α = β). For case (ii) (β = 0) and (iv) (α = 3β), the null hypothesis is

rejected for even lower ζ > 0.4. However, for case (v) (β = 3α), the null cannot be rejected

for almost all values of the control parameter ζ , except for a small interval around ζ ≈ 0.8.

D. Influence of the memory kernel h(t) of the calibrating Hawkes process

Finally, we need to discuss the choice of the kernel h(t) in the specification of the Hawkes

model (3) used in the calibration of the realizations generated with the ACG process. The use

of the exponential kernel (6) is a priori justified by the short memory of the ACD(1,1) process.

Indeed, the autocorrelation function of the ACD(1,1) model decays exponentially [7], and

the same can be shown explicitly for the GARCH(1,1) model [92]. The choice of a short-

memory exponential kernel for the Hawkes model ensures Markovian properties with a fast

decaying autocorrelation function of the durations [59]. High p-values of the goodness-of-fit

tests for parameters ζ < 0.5 (see figure 3) confirm the good mapping between the exponential

ACD(1,1) and Hawkes processes with an exponential kernel.

In order to further validate the selection of the exponential kernel of the Hawkes process,

we have compared the calibrations of realizations generated with the ACG process with the

Hawkes model with the exponential kernel (6) and with the power law kernel (5). Since these

models have a different number of parameters (k = 3 and k = 4 respectively), we compare

them using the Akaike information criterion (AIC) [2]. The AIC is by far the most popular

model comparison criterion used in the point process literature [35]. The AIC penalizes
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complex models by discounting the likelihood function L by the number k of parameters of

the model. Specifically, the AIC suggests selecting the model with a minimum AIC value,

where AIC = 2k − 2 logL.

[Insert Table 1 here]

Table 1 gives the results for the realizations presented in figure 2. In terms of likelihood,

the exponential and power law kernels give practically identical values (logLexp ≈ logLpow).

Penalizing model complexity with the AIC widens the gap, and the exponential kernel with

one fewer parameters is selected under the AIC.

Notwithstanding their apparent strong difference, the estimated background intensities

(µ̂) and branching ratios (n̂) are almost the same for both memory kernels. This can

explained by the fact that the parameters ϕ̂ and ĉ estimated for the power law kernel

(5) are such that the later remains very close to an exponential kernel over a large time

interval, as illustrated by figure 6 for case C (α = 0.13, β = 0.38), which presents a direct

comparison between the exponential kernel h̃(t) = h(t)/η = τ−1 exp(−t/τ)) and the power

law kernel h̃(t) = c1−ϕ(ϕ−1)(t+ c)−ϕ. The corresponding ML estimates of their parameters

are respectively τ̂ = 7.76, ϕ̂ = 105.17 and ĉ = 816.41. The large value of the estimated

exponent ϕ̂ (of the order of 100) implies a fast decay, similar to an exponential function.

Correlatively, the large value of the constant ĉ implies the absence of the hyperbolic range

(or “long tail”) as well. The almost perfect coincidence is observed for up to times t ≃ 30,

over which the kernels h̃(t) decay by a factor of almost 50. For t > 50 for which the relative

difference between the two kernels exceed 20%, the absolute values of h(t) is less than 2 ·10−4

so that the contribution of time scales beyond t = 50 to the total intensity (7),(8) becomes

insignificant.

[Insert Figure 6 here]

V. CONCLUSION

The present article positions itself within the neoclassical financial literature that inves-

tigates the nature of the mechanisms that drive financial prices. The benchmark, called

the “Efficient Market Hypothesis” (EMH) [27, 28, 73, 74], holds that markets only reacts
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to external inputs (information flow) and almost instantaneously reflect these inputs in

the price dynamics. This purely exogenous view on price formation has been contradicted

by many empirical observations (see for instance the original works [16, 76] and more re-

cent [26, 50, 81]), which show that only a minor fraction of price movements can be explained

by relevant news releases. This implies a significant role for internal feedback mechanisms.

Using the framework of Hawkes processes, two of us [30, 32] have used the corresponding

branching ratio to provide what is, to the best of our knowledge, the first quantitative

estimate of the degree of endogeneity in financial markets. This degree of endogeneity is

measured as the proportion of price moves resulting from endogenous interactions among

the total number of all price moves (including both endogenous interactions and exogenous

news). These works provided a solid counter-example of short-term “inefficiency” of financial

markets, which was complemented with the similar confirmation from longer time scales [38].

The later work, though, is subjected to a number of numerical biases, as shown in [34], and

triggered an ongoing discussion about the nature of long-range memory and criticality.

In this context, the present article expands the quantification of endogeneity to the class

of Autoregressive Conditional Duration (ACD) point processes. This is done by the intro-

duction of the composite parameter ζ (20) associated with the parameters αj and βk, which

control the dependence of the conditional expectated duration between events as a function

of past realized duration and past conditional expected duration. We have shown that the

parameter ζ can be mapped onto the branching ratio η that directly measures the level

of endogeneity within the framework of the Hawkes self-excited conditional Poisson model.

This result leads to a novel interpretation of the various studies that analyzed high-frequency

financial data with the ACD model.

An important conclusion derives from our mapping of the ACD onto the Hawkes process.

Both original works [21, 23, 69] as well as more recent studies reviewed in Refs. [24, 65] have

reported estimated parameters αj and βk that combine to extremely large values of ζ , often

larger than 0.5, and up to 0.95. From the perspective offered by the present work and in

particular from the mapping of ζ onto η, these empirical findings provide strong support to

the hypothesis of a dominant endogenous or “reflexive” [85] component in the dynamics of

financial markets.

The present work offers itself to a natural extension beyond point processes to the class

of discrete time processes. There are several successful models of self-excitation within
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a discrete time framework, such as AR (auto-regressive), ARMA (auto-regressive moving

average) [36] and GARCH models [8] and their siblings, as well as the recently introduced

Self-Excited Multifractal (SEMF) model [31], that extends Quasi-Multifractal models [70,

72] by introducing explicit feedback mechanism. However, until now, there has been no

framework that provides a direct quantification and estimation of the degree of endogeneity

present in a given time series. As discussed above, the ACD(p,q) model in fact belongs to the

class of GARCH(p,q) models, though not with normally distributed innovations but instead

with iid distributed innovations with a Poisson distribution. By extension, this suggests

a direct application of our present findings to GARCH models. This correspondence will

benefit from the elaborate toolbox of calibration methods and the detailed accumulated

knowledge of the statistical properties of GARCH models [55, 92].
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Appendix A: Financial applications of the Hawkes and ACD models

Both Hawkes and ACD-type models belong to a class of point processes and describe

stochastic arrival times of events of some kind. Since the key variable of these models is the

arrival time, selection of what defines an event is extremely important both for numerical

analysis and for the diagnostic of the exogenous and endogenous mechanisms. In [30], a

number of endogenous mechanisms that exist in financial markets are listed — ranging from

high frequency trading to behavioural herding at longer time scales. These mechanisms

operate on different time scales, and have different magnitudes. Thus, the appropriate

events must be defined to capture (and hopefully isolate) the dynamics of the mechanism

of interest. Below, we present a non-exhaustive review of modern financial applications of

Hawkes and ACD models.

As discussed in the introduction, high-frequency applications of Hawkes and ACD models

are by far dominant in modern financial econometrics (see also [41]). In the context of

the description of the order-book formation process, events can be naturally defined as a

sequence of individual transactions [21, 23, 46] or quotes [22], or more detailed as a set of

mutually-exciting processes of submission and cancellation of limit orders and submission of

market orders [1, 48, 51, 87]. On the aggregate level, the last transaction price change can

serve as a proxy for cross-excitation between different markets [3, 4]. Following the modern

literature on price impacts (see [10] and references therein), [32] and [30] suggested mid-

quote price as a better proxy for price movements and mid-quote price changes were used

for the estimation of the endogeneity of the price dynamics. In [11] and [5], the co-excitation

between market orders and mid-price changes was used to model market impact.

However, applications of self-excited point processes are not limited to microstructure

events (that can be defined only using complete order flow or level-1 tick data). In case of

regularly-spaced discrete time time series (such as minutely, hourly or daily price dynamics),

events can be defined as some kind of “extremes” in the dynamics. The most standard way

(see for instance [13, 19] with respect to applications to daily data) defines events using the

“peak-over-threshold” concept: for a given dynamics of financial returns, one selects those

returns that fall outside a selected quantile range (for example 10%–90%). The resulting

irregularly-spaced point process can then be calibrated using the Hawkes or ACD model.

A more accurate approach should account for potential changes of regime and volatility
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clustering, and thus should use local extreme detection methods, such as the realized bi-

power variation [6] ([9] apply this method to model co-jumps in time-series of 1-minute

returns).

Another interesting, but not yet explored application of point process models, involves

detecting regime (or trend) changes in price dynamics and defining a point process using

turning points. The simplest way is to define a local minima and maxima at a fixed time-

scale in the discrete time series, and use these extrema to construct a point process. More

accurate trend detection would involve local volatility estimation, such as method of drawup

and drawdown detection (consecutive positive or negative price changes) discussed in [49].

However, one needs to be warned that: (i) most trend detection methods are not causal and

require information about the future price dynamics, thus they are not well-suited for fore-

casting purposes; and (ii) all these methods are based on conditional statistics that should

be treated carefully in order to avoid spurious phenomena even in featureless processes [33].

A general recommendation is to always consider one or several well-known processes (such

as the uncorrelated random walk) and apply first the new method to these known processes

to check if the event defining procedure might not introduce some spurious endogeneity.

Finally, in modeling both micro- and macro-structure of financial time series, the magni-

tude of events (size of orders, size and sign of price changes or jumps) can be relevant. In this

case, a marked Hawkes model may be considered in which the size of the event determines

its expected number of offspring, such as in the ETAS model for earthquakes for which the

marks are the earthquake magnitudes [62, 90, 91].

Appendix B: Finite sample bias of the Hawkes maximum likelihood estimator

In order to optimize the calibration of the Hawkes model on the ACD(1,1), we study the

finite sample bias and efficiency of the Hawkes maximum likelihood estimator. For this, we

have simulated realizations of the Hawkes process with a modified thinning procedure [53, 61]

implemented in the same “PtProcess” package [40], and afterwards we have calibrated the

Hawkes model on this synthetic data. It should be noted that simulation (and fitting [23]) of

the ACD model is computationally easier than for the Hawkes model. Indeed, simulation of

the Hawkes process with the thinning algorithm has complexity of O(N2) (with possibility

to reduce to O(N logN) [57, 58]), compared with complexity of only O(N) for the ACD(1,1)
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model.

[Insert Figure 7 here]

We swept the parameter η in the range [0, 1], fixing other parameters to µ = 1 and τ = 1.

We generated 100 realizations of the Hawkes process of size 3500 each. To reduce the edge

effects of the thinning algorithm, we discarded the first 500 points of each realization and

afterwards calibrated the parameters of the Hawkes model on these realizations of length

3000. Figure 7 illustrates the bias and efficiency of the maximum likelihood estimator in our

framework. The definition of the Hawkes model (3) requires the kernel h(t) to be always

positive. This implies η ≥ 0, so the estimation of η is expected to have positive bias for small

values, as seen in figure 7. On the other hand, when η approaches the critical value of 1 from

below, the memory of the system increases dramatically and, for critical state of η = 1, the

memory becomes infinite. Thus, for a realization of limited length, the finite size will play a

very important role and will result in a systematic negative bias for η . 1. This reasoning

is supported by the evidence presented in figure 7, where one observes large systematic bias

for η > 0.9. For values of the branching ratio not too close to 0 or 1, the bias is very small

for almost all reasonable realization lengths (longer than 200 to 400 points). We also find

that the bias for η close to 1 strongly depends on the realization length. Finally, figure 7

illustrates the high efficiency of the maximum likelihood estimator: for values of η < 0.9,

the estimation error |η̂ − η| measured with the 90% quantile ranges does not exceed 0.1.
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TABLE 1: Estimated parameters of the Hawkes model with exponential (6) and power law (5)

kernels together with values of log-likelihood (logLexp and logLpow) and Akaike information cri-

terion (AICexp and AICpow) for cases presented in figure 2. Bold font identifies the lowest AIC

value among the two models.

α β θH,exp = (µ̂, n̂, τ̂ ) θH,pow = (µ̂, n̂, ĉ, ϕ̂) logLexp logLpow AICexp AICpow

A 0.05 0.05 (0.84, 0.07, 4.3) (0.83, 0.10, 262.77, 73.13) −343.0 −343.4 692.0 694.8

B 0.38 0.13 (0.24, 0.52, 5.6) (0.21, 0.54, 501.14, 113.41) −490.4 −491.4 986.8 990.8

C 0.13 0.38 (0.38, 0.22, 7.9) (0.36, 0.23, 816.41, 105.17) −509.3 −509.3 1023.6 1026.6

D 0.45 0.45 (0.02, 0.83, 28.4) (0.01, 0.87, 203.91, 7.70) −900.0 −901.5 1806.0 1811.0
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Time

FIG. 1: Illustration of the branching structure of the Hawkes process (top) and events on the time

axis (bottom). This figure corresponds to a branching ratio n = 0.88.
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FIG. 2: Realizations of the durations and conditional intensities of the ACD(1,1) process (left

column), and Hawkes process (right column) simulated with parameters obtained by calibrating to

the realization of the ACD process. Parameters of the ACD process θACD = (ω,α, β) and estimated

parameters of the Hawkes model θ̂H = (µ̂, η̂, τ̂) are the following: (A) θACD = (1, 0.05, 0.05),

θ̂H = (0.84, 0.07, 4.3), (B) θACD = (1, 0.38, 0.13), θ̂H = (0.24, 0.52, 5.6), (C) θACD = (1, 0.13, 0.38),

θ̂H = (0.38, 0.22, 7.9) and (D) θACD = (1, 0.45, 0.45), θ̂H = (0.02, 0.83, 28.4).
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FIG. 3: Results of the calibration of the Hawkes model on the ACD(1,1) realizations. Estimated

(A) background intensity µ̂, (B) branching ratio η̂, and (C) characteristic time of the kernel τ̂ .

Panel (D) shows the p-value from the goodness-of-fit test, where the dashed line indicates the the

10% level. (i) α = β (= ζ/2), (ii) β = 0 (α = ζ), (iii) α = 0 (β = ζ), (iv) α = 3β (= 3ζ/4) and (v)

β = 3α (= 3ζ/4). The black line corresponds to the mean p-value for case (i) (α = β), the shaded

area to the 95% quantile range for case (i), and the dotted lines depict mean p-values for cases (ii)

β = 0, (iii) α = 0, (iv) α = 3β and (v) β = 3α.
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with correction for the finite sample estimation bias determined in the B.
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ACD(1,1) realizations for a grid of values α and β with α+ β ≤ 1, corrected for the finite sample

estimation bias determined in the B. The dashed line delineates the region where the goodness-of-fit

tests rejects the null hypothesis (see text).
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FIG. 7: Illustrations of the finite sample bias and variance of the maximum likelihood estima-

tor [64] of the parameters of the Hawkes process calibrated on time series generated by the Hawkes

process itself (no model error). Panel (A): difference between the estimates of the background

intensity µ̂ and the true value µ used for the generation of the time series; Panel (B): difference

between the estimates of the branching ratio η̂ and the true value η; Panel (C): difference between

the estimates of the characteristic time of the kernel τ̂ and the true value τ . Panel (D) shows the

p-value of the Kolmogorov Smirnov test for standard uniformity of the transformed durations of

the residual process [62]. In all panels, the black lines correspond to the mean, and the shaded

areas to 90%, 50%, and 10% quantile ranges.
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