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Abstract

We study a heterogeneous duopolistic Cournotian game, in which the firms, pro-
ducing a homogeneous good, have reduced rationality and respectively adopt a
“Local Monopolistic Approximation” (LMA) and a gradient-based approach
with endogenous reactivity, in an economy characterized by isoelastic demand
function and linear total costs. We give conditions on reactivity and marginal
costs under which the solution converges to the Cournot-Nash equilibrium.
Moreover, we compare the stability regions of the proposed oligopoly to a sim-
ilar one, in which the LMA firm is replaced by a best response firm, which is
more rational than the LMA firm. We show that, depending on costs ratio, the
equilibrium can lose its stability in two different ways, through both a flip and
a Neimark-Sacker bifurcation. We show that the nonlinear, noninvertible map
describing the model can give rise to several coexisting stable attractors (multi-
stability). We analytically investigate the shape of the basins of attractions, in
particular proving the existence of regions known in the literature as lobes.

1. Introduction

Starting from the seminal book of Cournot in 1838 [1], the oligopolistic
market structures have been deeply studied and analyzed as a significant subject
of economic dynamics and game theory. In an oligopolistic framework, the
market is supplied by only a few firms, two in the particular case of a duopoly,
and each firm chooses its strategy taking into account at the same time both
its own actions and those of their competitors.
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Assuming that each firm in endowed with an high degree of rationality and
with cognitive and computational skills that allow them to exactly know the
demand curve of the produced good and their technology (represented by the
cost function), an oligopoly can be studied in a static game setting by means
of the notion of Nash equilibrium. Having each firm perfect foresight of the
next period productions, the players are able to solve a one period optimization
problem.

Weakening the degree of rationality of the firms, a dynamic adjustment arises
and new scenarios appear, as even a simple duopoly can give rise to complex
dynamic phenomena, as shown in the works of Rand [2] and Poston and Stewart
[3] in 1978. The dynamic behavior of oligopolistic models have been intensively
investigated: among all the contributions, we can mention the key work of Puu
in 1991 [4], which proposed a duopoly based on unimodal reaction functions
derived solving an optimization problem for profit functions. Studying the case
of constant marginal costs and, starting from Cobb-Douglas type preferences for
the consumer, of isoelastic demand function, Puu showed that each competitor
outputs can evolve through a period doubling sequence of flip bifurcations which
leads finally to chaos.

The work of Puu started a wide literature about duopolistic and oligopolistic
market and lead off different research strands. One of these, deeply investigated
in the last years, concerns the analysis of decisional mechanism, dissimilar to the
best response rule, based on different (usually lower) degrees of informational
and computational abilities. Among these mechanisms, we can mention the
gradient-like mechanism and “Local Monopolistic Approximation” (LMA).

The LMA is an approach which was proposed for the first time by Silvestre
in [5] with the name of “Strong Monopolistic Equilibrium”, and then reconsid-
ered by Tuinstra [6], Bischi et al. [7], Naimzada and Sbragia [8] and applied
in a monopolistic setting by Naimzada and Ricchiuti [9]. In the LMA, the
oligopolists do not know the market demand function, and conjecturing it is
linear, they proceed estimating such a linear function through the knowledge
of the local true slope of the demand curve and the knowledge of the current
market state in terms of quantities and price. We remark that Silvestre in [5]
already introduced such concept, he

In the gradient-like mechanism, the players, which are not requested to have
a complete knowledge of the demand and cost function, do not choose their
strategy solving any optimization problem, but they use a local estimate of the
marginal profit. The output level is updated by following the direction of an
increase of the corresponding profit function, which is indeed regulated by its
gradient. The reactivity of this adjustment is governed by a parameter, which
can be set in different ways. In particular, it can be constant with respect to the
produced quantity or endogenously dependent from it, to enforce its dependence
on the firm size. The constant reactivity gradient mechanism is discussed in the
book of Varian [10] and by Corchon and Mas-Colell in [11], while duopolies
involving a firm following it were studied by Angelini et al. [12] and Cavalli
et al. [13]. Conversely, the endogenous reaction was studied by Bischi and
Naimzada [14], Bischi et al. [15, 16], Agiza et al. [17], Tramontana [18] and
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more recently by Askar in [19, 20]. In the present work, we consider endogenous
reaction.

This paper belongs to the literature about heterogeneous oligopolies, in the
sense that the firms adopt different decisional mechanisms. The heterogeneous
framework was studied for example in the articles by Leonard and Nishimura
[21], Den-Haan [22], Agiza and Elsadany [23, 24], Angelini et al. [12], Tramon-
tana [18], Dubiel-Teleszynski [25], Anufriev et al. [26]. These works concern
the coupling of a best response decisional mechanism with the gradient like de-
cisional mechanism. In our work, we want to consider a duopoly made up by
two firms which adopt the gradient-like and the Local Monopolistic Approxima-
tions. This work belongs to the research strand in which we are investigating
several aspects of heterogeneous duopolies. In particular, we focus on the ef-
fect of different degrees of rationality in Cavalli and Naimzada [27], where we
compared decisional mechanisms based on best response adjustments involving
different degrees of rationality. Conversely, in Cavalli al. [13] we study the effect
of exogenous reactivity.

We remark that the economic structure in which we study our model is
similar to those proposed by Angelini et al. [12] and Tramontana [18] with
respect to the isoelastic demand function and to the constant marginal costs.
In particular, the duopoly we consider differs from that studied in [18] only for
the second firm decisional mechanism, since in [18] the second firm chooses its
output using the classical best response with static expectations, so the two
duopolies are directly comparable.

The main results of this work concern the study of the local stability of the
equilibrium; the investigation of the possible routes of destabilization for the
equilibrium point; the study of global properties of the two dimensional map
that models the oligopoly.

Concerning the first result, after obtaining the constraints on the costs ratio
to have a stable equilibrium, we compare the resulting stability region of the
Nash equilibrium with that of the duopoly studied in [18]. We prove that,
despite of the reduced rationality of one of the firms, the duopoly studied in this
work can present a larger stability region. In particular, the stability region is
larger for the duopoly studied in the present work when the costs are sufficiently
different, while it is larger for the gradient versus best response duopoly when
the costs are more comparable.

Concerning the second result, we show that the equilibrium point can be
destabilized by means of both a flip and a Neimark-Sacker bifurcation, depend-
ing on the costs ratio. In particular, it is shown that, when the cost ratio
is sufficiently favorable to the firm which adopts the gradient-like decisional
mechanism, the scenario presents a Neimark-Sacker bifurcation, while the flip
bifurcation occurs when the costs structure is favorable to the firm using linear
approximation. This result improves the knowledges about dynamics involving
gradient rule, and further confirms recent studies showing that both Neimark-
Sacker and flip bifurcations appear to be the possible destabilization, as shown
in [15, 16, 12, 18, 13]), especially when a gradient-rule dynamic is present.

Concerning the third result, we show that dealing with a nonlinear, and in
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particular noninvertible map, the only local stability analysis does not permit
to fully understand the dynamics. Several stable attractors may coexist (multi-
stability) giving rise to a situation of path dependency. The shape of the basins
of attractions can be quite complicated, especially because we deal with a two-
dimensional map characterized by a denominator that can vanish along a line,
and one component of the map takes the form 0/0 at one point. In these cases
the basins of attraction can be characterized by particular shapes known in the
literature as lobes.

The paper is organized as follows. In Section 2, we introduce the model and
the nonlinear system describing the dynamics of the productions of the firms.
In Section 3, we determine the conditions under which the Nash equilibrium is
locally stable. In Section 4, we investigate the global behavior of the system. In
Section 5 we conclude and we propose some future developments. In Appendix
we collect the proof of the propositions.

2. Model

The economic setting in which we study the duopolistic market consists of
isoelastic demand function and constant marginal costs. In particular, if we
suppose that the economy is populated by n agents, each having Cobb-Douglas
preferences, we can express the utility function of the representative jth agent by

Uj(qj) =
∏m

k=1(q
k
j )

αk
j , where qj = (q1j , q

2
j , . . . , q

m
j ) is the vector of the quantities

of the m goods. If we introduce a budget constraint
∑m

k=1 pkq
k
j ≤ yj for the

jth agent, being pk the price of commodity k and yj is the income of the jth
agent, we can solve the constrained maximization problem obtaining the demand
function

qkj =
αk
j y

j

pk
.

Focusing only on one market, suppressing the index k, and summing over all the
agents, we have the aggregated demand, from which, after setting

∑

j αjy
j = 1,

we have the constant elasticity inverse demand function

p(Q) =
1

Q
, (1)

where Q =
∑

j qj .
In the present, work we assume that the industry is composed by two firms

(indexed by i = 1, 2), which produce perfect substitute goods q1 and q2. If
ci > 0 represent the (constant) marginal costs of each duopolist, we have that
the linear cost functions are expressed by

Ci(qi) = ciqi i = 1, 2.

In this framework, the profit of the firms are

Π1(q1, q2) =
q1
Q

− c1q1, Π2(q1, q2) =
q2
Q

− c2q2 (2)
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respectively. This situation can be analyzed in a game theoretic context, in
which the players are the two duopolist, the strategies are given by the set of all
the productions (qi ≥ 0) and the payoff functions are the profit functions (2).
It is easy to see that, as in Puu [4], we have one Nash equilibrium given by

E = (qN1 , qN2 ) =

(

c2
(c1 + c2)2

,
c1

(c1 + c2)2

)

. (3)

It is worth noticing that the Nash equilibrium notion can be very demanding
in terms of rationality and information set possessed by the players. In this
work, we consider two different mechanisms which imply a reduced degree of
rationality, the “Local Monopolistic Approximation” (LMA) and the gradient
adjustment mechanism. The description of these two mechanism can be found
in [13]. For the sake of completeness, we briefly summarize them.

Under the gradient adjustment mechanism, which we assume that is adopted
by the first boundedly rational firm, the firm increases or decreases its output
according to the information given by the last period profit variation. Such
variation is represented by the derivative of the profit function with respect to
its strategy q1, namely the marginal profit φ1(q1, q2) = ∂q1Π1(q1, q2)

φ1(q1, q2) =
q2

(q1 + q2)2
− c1.

If we assume that the relative variation in production quantities is proportional
to the marginal profits,

q1,t+1 − q1,t
q1,t

= αφ1(q1,t, q2,t)

where α > 0 represents the speed of adjustment, the resulting dynamic is given
by

q1,t+1 = q1,t + αq1,t

(

q2,t
(q1,t + q2,t)2

− c1

)

. (4)

We remark that trajectories of (4) may become negative. In what follows, we
only focus on such initial data and parameters for which q1,t stays positive for
t > 0. Otherwise, the maximum between q1,t+1 and 0 should be taken.

The “Local Monopolistic Approximation”, which is assumed to be the deci-
sional mechanism of the second firm, is a bounded rational adjustment process
in which the firm possesses only a limited knowledge of the demand function.
It was studied in [7, 28], and it is founded on a best response mechanism with
respect to a linear approximation of the true demand function. Suppose that
the firm knows at time t the market price p(Qt) and the corresponding pro-
duced quantity Qt. By means of market research, studying market values in
a neighborhood of (p(Qt), Qt), the firm can correctly compute the slope of the
price function

∂q1,tf(q1,t, q2,t) = f ′(Qt), (5)
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estimating, for example, the effects of small quantity or price variations, as
detailed in [7, 28]. Then, using (5) and the price pt, the firm conjectures a
linear price function

pe(Qe) = p(Qt) + p′(Qe)(Qe
t+1 −Qt), (6)

where we set Qe = qe1,t+1 + q2,t+1. With qe1,t+1 we indicate the output that the
second oligopolists expects that its opponent i = 1 produces at time t + 1. If
we consider static expectations (qe1,t+1 = q1,t), we can rewrite (6) as

pe(Qe) =
1

q1,t + q2,t
− 1

(q1,t + q2,t)2
(q2,t+1 − q2,t),

where we used (1). Maximizing the expected profit (2) at time t+ 1

q2,t+1 = arg max
q2,t+1

[pe(Qe)q2,t+1 − c2q2,t+1], (7)

we can obtain the output assumed for time t+ 1. To this end, we notice that

pe(Qe)q2,t+1−c2q2,t+1 = −
q22,t+1

(q1,t + q2,t)2
+q2,t+1

(

1

q1,t + q2,t
+

q2,t
(q1,t + q2,t)2

− c2

)

,

so that solving ∂q2,t+1
(pe(Qe)q2,t+1 − c2q2,t+1) = 0 we find

q2,t+1 =
1

2
q2,t +

1

2

(

1− c2(q1,t + q2,t)

)

(q1,t + q2,t), (8)

which, as it can be easily checked, satisfies second order condition too. We
remark that if q1,t ≥ 1/c2, then pe ≤ c2 and the previous maximization problem
would provide q2,t+1 ≤ 0 and the production level of the firm would be null.
As we only focus on positive trajectories, we avoid to take into account such
situation.

The resulting duopoly game is obtained matching the gradient firm (4) and
the LMA firm (8), obtaining the following discrete dynamical system

T1(q1, q2) :



















q1,t+1 = q1,t + αq1,t

(

q2,t
(q1,t + q2,t)2

− c1

)

,

q2,t+1 =
1

2
q2,t +

1

2

(

1− c2(q1,t + q2,t)

)

(q1,t + q2,t).
(9)

We remark that the main difference between the present model (9) and
that studied in [13] lies in the gradient adjustment mechanism, which in [13] is
considered with exogenous reaction. When the reactivity depends on the output
level, it allows taking into account the size of the firm. In fact, larger firms can
increase their production more rapidly, as they can make larger investments
when the profits increase, as well as in the presence of a negative profit signal,
they need to reduce their production in a short time, to avoid bankruptcy risks.
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3. Local analysis

In this section we analyze the local properties of the steady states of system
(9), whose relation with the Nash equilibrium (3) is made precise in the following
proposition.

Proposition 1. The Nash equilibrium (3) is the unique steady state of system
(9).

The proof is straightforward, also noticing that (9) is not defined for (q1, q2) =
(0, 0).

The local stability of the Nash equilibrium is studied in the next proposition,
where we make use of

αf =
8c1 + 4c2

c2(7c1 − c2)
, (10)

and

αns =
2

c2 − 3c1
. (11)

Proposition 2. Equilibrium (3) is stable provided that

0 <
c1
c2

≤ 1

4
and α < αns,

c1
c2

>
1

4
and α < αf .

(12)

The equilibrium can become unstable by means of either a flip or Neimark-
Sacker bifurcation. In fact when c1/c2 > 1/4, for α = αf , the fixed point
E of system (9) becomes unstable by means of a flip bifurcation. Actually, the
scenario is more complex, as trajectories can behave differently depending on the
initial data. In Figure 1, we report two bifurcation diagrams both corresponding
to c1 = 0.9, c2 = 1.62, but obtained with (q1(0), q2(0)) = (0.28, 0.11) (the red
one) and (q1(0), q2(0)) = (0.1, 0.9) (the black one), on varying α. We can see
that, even before the bifurcation threshold αf ≈ 1.8044, we can have a period-2
cycle (black diagram) which coexists with the fixed point (red diagram). This
suggests the coexistence of different attractors. This will be investigated further
in Section 4.

In Figure 2 we report the attractors for (q1(0), q2(0)) = (0.28, 0.11) and
several choices of α. The dynamic starts with a period-2 cycle, which evolves in
period-4 and period-8 cycles. Then, chaotic unconnected areas appear, which
finally evolve in a chaotic attractor.

Conversely, when c1/c2 < 1/4, a Neimark-Sacker bifurcation takes place for
α = αns, as shown in Figure 3 for c1 = 1 and c2 = 8, with (q1(0), q2(0)) =
(0.0889, 0.0111), as α increases. Above the critical value αns a Neimark-Sacker
bifurcation starts, and lasts until α ≈ 0.48552, when the quasi-periodic motion
is replaced by a periodic one, which then undergoes a sequence of flip bifur-
cations leading to chaos. In Figure 4, we report some phase plane diagrams,
which show the initial quasi-periodic dynamic with attracting invariant closed
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Figure 1: Bifurcation diagram for c1 = 0.9, c2 = 1.62 and α ∈ [1.75, 1.8] for (q1(0), q2(0)) =
(0.28, 0.11) (red) and (q1(0), q2(0)) = (0.1, 0.9) (black). The black trajectory converges for
α > 1.77 to a two point attractor, while the red trajectory converges to the equilibrium.

curves, a successive period-12 cycle and the following 12 unconnected cyclical ar-
eas. Increasing further α, the previous regions start gathering into four chaotic
areas, which finally connect into a quadrilateral shaped area, which becomes
increasingly chaotic.

The previous considerations and simulations remark the destabilizing role
of the reactivity parameter α, which means that output levels of reactive firms
follow unstable evolutions.

For ratios c1/c2 belonging to (1/7, 1/3), the scenarios are similar to those of
the neighboring regions.

We remark that the previous considerations can be read in terms of the
way each firm uses to decide its next time output. First of all we notice that
when the marginal cost ratio is relatively small (c1/c2 < 1/4), i.e. when the
firm that adopts the gradient mechanism is relatively more efficient, we have a
quasi-periodic motion, at least for α ∈ (αns, α̃) (for example, in the simulation
of Figure 3 we have α̃ ≈ 0.48552). Such dynamic results in a macro predictable
behavior of the output level. Conversely, when the cost ratio is relatively large
(c1/c2 > 1/4), i.e. when the firm that adopts the linear reconstruction mecha-
nism is relatively more efficient, or when c1/c2 ∈ (0, 1/4) and α is much larger
than αns, the dynamic shows first oscillations between two or more different
output levels, then it becomes chaotic.

Model (9) is similar to the model studied in [18], in which the second firm
uses a naive best reply strategy to maximize its profit. In this case, the resulting
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Figure 2: From left to right, top to bottom. Phase plane diagrams for several values of
parameter α and marginal costs such that c1/c2 > 1/3. The Nash equilibrium is represented
by the circle.
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Figure 3: Bifurcation diagram for c1 = 1 and c2 = 8 and α ∈ [0.36, 0.51].

discrete dynamical system is

T2(q1, q2) :















q1,t+1 = q1,t + αq1,t

(

q2,t
(q1,t + q2,t)2

− c1

)

,

q2,t+1 =

√

q1,t
c2

− q1,t.
(13)

We want to compare the two models, in particular with respect to their
stability region. We underline that the main difference between (9) and (13)
lies in the degree of rationality and information implemented by the second firm.
As proved in [18], model (13) is stable provided that

0 <
c1
c2

≤ 1

3
∪ c1

c2
≥ 3 and α < αT

ns,

1

3
<

c1
c2

< 3 and α < αT
f ,

(14)

where

αT
f =

4(c1 + c2)

4c1c2 − (c2 − c1)2
, (15)

and

αT
ns =

2(c1 + c2)

(c2 − c1)2
. (16)

The comparison between the stability regions of (9) and (13) is investigated in
the following theorem.

10



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.42

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.484

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.487

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.492

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.497

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

q
1

q 2

α=0.499

Figure 4: From left to right, top to bottom. Phase plane diagrams for several values of
parameter α and marginal costs such that c1/c2 < 1/7. The Nash equilibrium is represented
by the circle.

11



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α

c 1

 

 

Flip T
2

N.S. T
2

Flip T
1

N.S.T
1

α
ns

α
ns
T

α
f
T

α
f

0.5 1 1.5 2 2.5 3 3.5 4

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

α

c 1

 

 

Flip T
2

N.S. T
2

Flip T
1

N.S.T
1

α
f

α
f
T

α
f
T

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

3

α

c 1

 

 

Flip T
2

N.S. T
2

Flip T
1

N.S.T
1

α
f
T

α
f

α
ns
T

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

α

c 1

 

 

Flip T
2

N.S. T
2

Flip T
1

N.S.T
1

α
f
T

α
f

α
ns

α
ns
T

Figure 5: Comparison of the stability regions in space (α, c1) for model (9) described by map
T1 and for model (13) described by map T2. The curves represent the values (10),(11),(15),(16)
above which the bifurcations take place. In particular, the solid and the dashed lines respec-
tively represent the flip and the Neimark-Sacker bifurcation curves for map T2, while the
dotted and the dash-dotted lines respectively represent the flip and the Neimark-Sacker bi-
furcation curves for map T1. The dark color is used for the region in which both models are
stable. The intermediate color is used for the region in which the equilibrium is stable for
model (13) and unstable for model (9) is unstable. The light color is used for the region in
which the opposite situation occurs. White color represents region in which both models are
unstable.

Proposition 3. The stability region of model (9) is larger than the stability
region of model (13) for c1/c2 < s1 and c1/c2 > s2, while it is smaller for
s1 < c1/c2 < s2, where s1 = 0.3108 and s2 = 3.6081.

In Figure 5 we compare the stability regions of the two models for the par-
ticular choice c2 = 0.9. The plot illustrates the result of Theorem 3. As we can
see, the presence of the more rational firm following the best response rule with
static expectations does not always guarantee a wider stability region.

4. Global analysis

The considerations we have made until now, in particular the comments
about the bifurcation diagram reported in Figure 1, suggest that the local anal-
ysis alone does not permit understanding what may happen to the trajectories
of (9).
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Figure 6: Phase plane corresponding to α = 1.8, c1 = 0.9 and c2 = 1.62. The gray color
indicates divergence and unfeasible trajectories, the pink color indicates the basin of attraction
of the Nash equilibrium and the orange color denotes the basin of attraction of a cycle of period
2 coexisting with the Nash equilibrium.

In order to see that, let us consider the same set of parameters used in the
previous section for the case of c1/c2 > 1/4 ( c1 = 0.9 and c2 = 1.62) and
set α = 1.8. We recall that for these marginal costs the Nash equilibrium can
become unstable through a flip bifurcation (see conditions (12)). The threshold
value of the speed of adjustment is αf = 1.804, so the Nash equilibrium is locally
stable.

Nevertheless, Figure 6 shows a quite complicated phase plane. First of all,
in addition to the pink color characterizing the basin of attraction of the Nash
equilibrium and the gray color characterizing divergence (or unfeasible trajecto-
ries), there is a third color (orange) denoting the basin of attraction of a cycle of
period 2 coexisting with the Nash equilibrium. Multistability is a consequence
of the nonlinearity of map T1. Moreover, if we want to examine in depth the
shape of the basins of attractions to get an insight in the global properties of
(9), we must take into consideration two further characteristics of our map: it
is non invertible and one of its components has also a denominator vanishing
along a one-dimensional subset of the plane, on which a so-called focal point
exists.

4.1. Non invertible maps and Critical curves

The first element we need to consider is the noninvertibility of T1. This
means that a point can be characterized by several rank-1 preimages. The
rank-1 preimages of a point P = (q1, q2) are points which are mapped in P
in one iteration of the map. Technically speaking, the inverse map T−1

1 is in
general the union of more than one inverse maps of the phase plane. In such
cases, the action of the map T1 consists in folding and pleating the phase plane,
while the inverse map T−1

1 unfolds it.
Following the notation introduced by Mira et al. in [29] and Abraham et

al. in [30], we can subdivide the phase plane into several regions Zi, where i is

13



Figure 7: Critical lines for α = 1.8, c1 = 0.9 and c2 = 1.62

the number of rank-1 preimages characterizing the points of the corresponding
region of the phase plane. The general rule is that two contiguous regions Zi

are characterized by a number of preimages that differs by two. This means
that, when a point (q′1, q

′
2) of the phase plane crosses a boundary that separates

two different regions Zi, two real preimages appear or disappear. In particular,
the boundary is the locus of points having two (or more) coincident preimages.
This locus is a critical curve called LC (from the French Ligne Critique) and
the coincident preimages are located on a set called LC−1. A critical curve LC
generalizes the one-dimensional critical value (local minimum or maximum) to
the two-dimensional framework. Similarly, the set LC−1 extends the notion of
critical point, that is a local extremum point.

Our map (9) does not permit calculating the inverse of each point of the
phase plane. Nevertheless, it is still possible to compute the LC curves, by
knowing that, for a continuously differentiable map, the set LC−1 is included
in the set of points where the determinant of the Jacobian matrix J associated
to the system (9) vanishes, that is

LC−1 ⊆
{

(q1, q2) ∈ R
2
∣

∣ detJ(q1, q2) = 0
}

,

and the critical curves easily come from LC = T1(LC−1).
For the same parameters used in Figure 6, we report in Figure 7 the numer-

ical computation of the critical lines.
We still don’t know which number of rank-1 preimages must be associated

to each region Zi. Even if we are not able to calculate the number of inverses of
each possible point of the phase plane, we can use a subset of it as representative
for the other points. In particular, if we calculate the number of preimages of
the points of the vertical axis (q1 = 0), we can extend the results to all the point
belonging to the same region Zi.
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0 2 4
αc1 ≥ 1 + αc2 q2 > y1 q2 ≤ y1
1 < αc1 < 1 + αc2 q2 > max [y1, y2] min [y1, y2] < q2 ≤ max [y1, y2] q2 ≤ min [y1, y2]
αc1 < 1 q2 < y1 q2 ≥ y1

Table 1: The rows correspond to the different scenarios according to the values of marginal
costs and speed of adjustment. The columns correspond to the number of preimages. The
entries are the conditions that must be satisfied to have a certain number of preimages in a
certain scenario.

The result is the following

Proposition 4. A point of the vertical axis of the phase plane (0, q2) can have

from 0, 2 or 4 real rank-1 preimages. Setting y1 =
1

2c2
and y2 =

α

8 [α (c2 − c1) + 1]
,

if αc1 ≥ 1 + αc2, then

• if y1 ≤ q2, the point has 4 real preimages;

• if q2 > y1, the point has 2 real preimages.

Instead, if 1 < αc1 < 1 + αc2, then

• if q2 ≤ min [y1, y2], the point has 4 real preimages;

• if min [y1, y2] < q2 ≤ max [y1, y2], the point has 2 real preimages;

• otherwise the point has no real preimage.

Finally, if αc1 < 1, then

• if y1 ≤ q2, the point has 2 real preimages;

• otherwise the point has no real preimages.

Table 1 further summarizes the results of Proposition 4.
In the case of Figures 6 and 7, we are in the second situation mentioned in

the proposition, so we have that the lower portion of the vertical axis (the one
containing the origin) is made up by points with 4 real rank-1 preimages. The
points of the middle portion have 2 rank-1 preimages, while the points of the
highest portion of the vertical axis have no real preimage. As these points are
representative of the whole regions they belong to, we have identified regions
Z4, Z2 and Z0, respectively.

These considerations help to understand the peculiar triangular shape of the
basins of attraction drawn in Figures 6 and 7. The origin appears to be a key
point, in a sense that will be made precise in the next section. It belongs to the
region Z4, so it has 4 real preimages. It can be easily proved that two of them
are coincident and one is the origin itself, so the origin has only two distinct
preimages. They are labeled Q−1

a and Q−1
b . These two points are the other
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vertexes of the pseudo-triangle bounding feasible trajectories. The structure of
the basins of attraction around the origin explains also the structure around its
preimages.

In order to understand this structure, we need to analyze another feature of
our map, the presence of a vanishing denominator.

4.2. Focal points and lobes

The two-dimensional map T1 is defined in the whole plane except for the line
δS : q2 = −q1 (and its preimages of any order), where the denominator in the
first difference equation of system (9) vanishes. There is a particular point of the
plane where both numerator and denominator of the first difference equation
vanish and the map takes the form 0/0. This point is the origin Q(0, 0) and it
is called focal point. A focal point is defined as follows:

Definition 1. (Bischi et al. [31]). A point Q = (x0, y0) is a focal point if
at least one component of the map T takes the form 0/0 in Q and there exist
smooth simple arcs γ(t), with γ(0) = Q, such that limτ→0 T (γ(τ)) is finite. The
set of these finite values, obtained with different arcs γ(t) through Q, is the
prefocal set δQ.

We have seen in the previous subsection how important it is to understand
what happens in this point for explaining the basins structure in Figures 6 and
7. From Bischi et al. [31, 32, 33] we know that to each focal point a prefocal
curve δQ is associated, that is a set of points that are all mapped into the focal
point by at least one of the inverses of the map. In our case the prefocal curve
is a prefocal line and in particular it is the horizontal axis

δQ : q2 = 0.

If the focal point is simple, then there is a one-to-one correspondence between
the slope m of an arc γ through Q and the point (x′, 0) in which its image
crosses the prefocal line δQ. One consequence, that is quite relevant to explain
our basins configuration, is that if we consider an arc crossing δQ in two points,
then there exists one rank-1 preimage forming a loop with a knot in Q, called
lobe when this loop is the boundary of a basin of attraction. The two branches
that issue from Q have two different slopes, corresponding to the two points of
the prefocal curve crossed by their images.

Our case is even more complicated than the one just described. In fact,
our point is not simple (see the Appendix for details) and this implies that the
correspondence between arcs through Q and points of the prefocal line δQ is
not one-to-one but two-to-one (see Bischi et al. [16, 33]). Then we have the
following result.

Proposition 5. For any given point (q1, 0) ∈ δQ, the two slopes of the arcs
through Q are the following

m±(q1) =
α− 2q1 ±

√

α2 − 4αq1
2q1

. (17)
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The lobes through Q are clearly visible in Figures 6 and 7. In the enlarged
portion of the phase plane displayed in Figure 6, we can see that the number of
these lobes is high and they seem to accumulate on the borders of the basins of
attraction of feasible trajectories. This is a consequence of another feature of
our map. In fact, our focal point Q also belongs to the prefocal line δQ and so
we have the following

Corollary 6. Any arc transverse to δQ has infinitely many preimages which
are arcs through Q.

Now we are ready to explain the emergence of the complicated basins con-
figuration of Figure 6.

4.3. The emergence of lobes

In this subsection we explain the emergence of lobes in our map. We focus
on the gray lobes in Figure 6, that is the lobes corresponding to the basin of
diverging trajectories ß(∞).

We have that the q2-axis is invariant (or a trapping set), in fact

T1(0, q2) =

(

0, q2 −
1

2
c2q

2
2

)

.

In particular, the q2-axis (denoted by ω0 in Figure 8, in accordance with the
notation of Bischi et al. [16]) and its preimages of any rank separate the basin
of diverging trajectories ß(∞) from the basin of feasible trajectories ß(f). The
lower curve side of the pseudo-triangle is one of the preimages of rank-1 of the
q2-axis (denoted by ω−1). This curve can be analytically computed, obtaining

ω−1 : q1 = h(q2) =

√

αq2
αc1 − 1

− q2,

which represents a function in the (q1, q2) plane.
The main gray lobe issuing from the focal point Q is formed by the preimages

of rank-1 of the portion of ß(∞) located between ω−1 and the prefocal line δQ,
namely those points not located in the region Z0, that are dark gray in Figure
7.

If the portion of ω−1 delimiting the pseudo-triangle were located below the
prefocal line, then we should not see any gray lobe inside the pseudo-triangle.
This means that we can exactly calculate the value of the parameters charac-
terizing the birth of the gray lobe (we recall that, thanks to Corollary 6, once
a lobe is born, other infinite lobes are also born with it). In fact we know the
coordinates of the vertex Q−1

b and by considering the concavity plane we can
state the following proposition

Proposition 7. The lobes corresponding to the basin of diverging trajectories
ß(∞) exist provided that α > 1

c1

17



Figure 8: Left plot: for α = 0 the preimage Q−1

b
of the focal point is below the q1 axis, and

there are no gray lobes in the basins configuration. Right plot: for α ≈ αg the preimage Q−1

b
of the focal point is located on the q1 axis.

By applying this proposition to our example, we get the global bifurcation
value of the speed of reaction

αg = 1.1,

where the vinculum (i.e. the horizontal bar over a decimal number) denotes a
repeating group of digits (or a single digit as in our case).

The next set of figures gives a numerical confirmation of these results. In
Figure 8a, we used a value α = 1 and actually we can see that the preimage of
the focal point Q−1

b is below the prefocal line and the portion of ω−1 delimiting
the basin of feasible trajectories is below δQ too. As expected there are no gray
lobes in the basins configuration (actually there are no lobes at all because the
Nash Equilibrium is the only attractor).

In the next figure (Figure 8b) we used α ≃ αg and we can see that Q−1
b is

located on the q1-axis and the lower boundary of ß(f) is linear (a portion of the
q1-axis itself).

In Figure 9a, we used a value of the speed of adjustment slightly above
the global bifurcation value (α = 1.2). Q−1

b has now positive coordinates and
the lower boundary of ß(f) is above the prefocal line. At first glance there
are no significant differences in the basins configuration. Instead, by enlarging
the region around the focal point, we can see a small gray lobe issuing from
Q (Figure 9b). This lobe is made up by preimages of rank-1 of the portion
of ß(∞), which is above the prefocal line (and does not belong to region Z0).
Figure 9c further magnifies the region around Q. Moreover, from Corollary 6
we know that in our case a lobe cannot appear as a single one, as necessarily
infinitely many lobes appear simultaneously. In Figure 9d, we can see one of
these lobes located between the main lobe (denoted by lM ) and the q2-axis.
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Figure 9: From top to bottom, left to right. (a) the value of the speed of adjustment slightly
over the global bifurcation value (α = 1.2). (b) Around the focal point there is a small gray
lobe issuing from Q (c) Further magnification of the region in (b) around Q. (d) Lobes located
between the main lobe (denoted by lM ) and the q2-axis.
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5. Conclusions

In this work, we introduced and studied a duopolistic market consisting of
a firm following a gradient rule with endogenous reactivity and a firm following
LMA. We showed that the steady state coincides with the Nash equilibrium
and we provided conditions under which the equilibrium is stable. The duopoly
we considered is comparable to that studied in [18], since in both cases one of
the agents follows the gradient rule with endogenous reaction speed. However,
in our contribution, the remaining player uses the LMA mechanism, while in
[18] he computes the best response with static expectations, resulting more
rational. This allowed us to compare the respective stability regions, and we
found that, depending on the costs ratio, the stability region of the competition
we proposed, involving the least rational players, can be larger than that of
the duopoly studied in [18]. This scenario already emerged comparing different
homogeneous oligopolies. Here we provided an example in which we have the
same behavior for a heterogeneous competition. Moreover, we gave a further
example for which two different roues toward chaotic dynamics, Neimark-Sacker
and flip bifurcations, are possible. In the literature, this scenario seems to be
connected to the presence of an agent adopting the gradient rule. In future
works, we aim to study couplings of other decisional mechanisms, to investigate
whether the appearance of the Neimark-Sacker bifurcation be necessarily linked
to the presence of the gradient rule or not.

Finally, this particular combination of heuristics allowed us to provide a
concrete example of a two dimensional dynamical system for which the theory
developed by Bischi et. al about the maps with denominator can be applied and
analytically studied. We have been able to investigate global properties such as
multistability and appearance of lobes. The local analysis alone does not permit
understanding the behavior of the trajectories, but through the analysis of the
focal point, which in the present case is not simple, we provided analytical proof
of the appearance of infinitely many lobes in the phase diagram.

In a future work we intend to study the same coupling of decisional rules
but for an oligopoly consisting of more than 2 firms, considering both the sit-
uation in which the fractions of the firms that choose a specific rule is fixed
and the situation in which each oligopolist can adapt over time the decisional
rule to follow. Concerning this last goal, we remark that Droste et al. in [34]
and Anufriev et al. in [26] proposed and studied a way to allow the firms to
choose between different heuristics, which we aim to investigate in our future
contribution.
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Appendix

Proof of Proposition 2. The proof is similar to that of Proposition 2 in [13]. To
prove stability we introduce the Jacobian matrix of system (9)

J(q1, q2) =







1− αc1 + αq2

[

q2 − q1
(q1 + q2)3

]

αq1

[

q1 − q2
(q1 + q2)3

]

1

2
− c2(q1 + q2) 1− c2(q1 + q2)






,

which, evaluated at (3), becomes

JE = J(qN1 , qN2 ) =







1− 2α
c1c2

c1 + c2
αc2

(

c2 − c1
c1 + c2

)

c1
c1 + c2

− 1

2

c1
c1 + c2






. (18)

The usual conditions for the local stability of the fixed point of a two-
dimensional discrete dynamical system are











1− Tr(JE) + det(JE) > 0,

1 + Tr(JE) + det(JE) > 0,

1− det(JE) > 0,

(19)

where

Tr(JE) =
2 (1− αc2) c1 + c2

c1 + c2
,

and

det(JE) =
(2− 3αc2) c1 + αc22

2(c1 + c2)
,

are respectively the trace and the determinant of matrix (18). After some
algebraic manipulations, the first condition of (19) reduces to c2α/2 > 0, which
is indeed fulfilled for all positive α, c1, c2. Likewise, the second and the third
condition of (19) reduces to

αc2(c2 − 7c1) + 8c1 + 4c2
2(c1 + c2)

> 0 (20a)

and
c2(α(3c1 − c2) + 2)

2(c1 + c2)
> 0. (20b)

To solve system (20), we divide the proof in two steps. First, we analyze the
case in which either (20a) or (20b) is satisfied for all α. Then we take into
account the remaining cases. The final solution is obtained by the union of the
two intermediate solutions.

We start noticing that denominators of (20a) and (20b) are both positive,
so we need to check the positivity of numerators. When 0 < c1/c2 ≤ 1/7, all
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the terms of the numerator of (20a) are positive, while, for the numerator of
(20b), condition c2(α(3c1 − c2) + 2) > 0 can be easily rewritten as α < αns.

Similarly, when c1/c2 ≥ 1/3 all the terms of the numerator of (20b) are
positive, while, for the numerator of (20a), condition αc2(c2−7c1)+8c1+4c2 > 0
straightforwardly gives α < αf . Summarizing such conditions, we have that if

0 <
c1
c2

≤ 1

7
and α < αns,

c1
c2

≥ 1

3
and α < αf ,

(21)

then conditions (20a) and (20b) are both satisfied. Now, we need to check
positivity of system (20a)-(20b) for c1/c2 ∈ (1/7, 1/3). In this case, we already
proved that condition (20a) is equivalent to α < αf and that condition (20b) is
equivalent to α < αns, so that system (20) requires α < min{αns, αf}. To find
min{αns, αf}, we check conditions for which αns ≤ αf , namely

2

c2 − 3c1
− 8c1 + 4c2

c2(7c1 − c2)
=

2c2(7c1 − c2)− (8c1 + 4c2)(c2 − 3c1)

c2(7c1 − c2)(c2 − 3c1)

=
6(c21 + 3c1c2 − c22)

c2(7c1 − c2)(c2 − 3c1)
.

Factorizing c21 + 3c1c2 − c22, we have

6(c1 + c2)(c1 − c2/4)

4c2(c2 − 3c1)(7c1 − c2)
≤ 0. (22)

Since c1/c2 ∈ (1/7, 1/3), the denominator of the l.h.s. of (22) is positive, so (22)
is satisfied for c1/c2 ≤ 1/4. This means that if c1/c2 ∈ (1/7, 1/4], conditions
(20) require α < αns, while if c1/c2 ∈ (1/4, 1/3), conditions (20) require α < αf .
Combining (21) with such conditions we have (12).

Proof of Proposition 3. Let us suppose that c1/c2 ≤ 1/4. Model (9) is stable
for α < αns while model (13) is stable for α < αT

ns. We have that

αT
ns − αns =

2(c1 + c2)

(c2 − c1)2
− 2

c2 − 3c1
=

8c21
(c2 − c1)2(3c1 − c2)

is negative since (3c1 − c2) < 0 for c1/c2 < 1/4. This says that αT
ns < αns

and then the stability region of (9) is larger than that of model (13) when
c1/c2 ≤ 1/4.

Let us consider 1/4 < c1/c2 < 1/3. Model (9) is stable for α < αf while
model (13) is again stable for α < αT

ns. We have that

αT
ns − αf =

2(c1 + c2)

(c2 − c1)2
− 8c1 + 4c2

c2(7c1 − c2)
=

−8c31 + 26c21c2 + 12c1c
2
2 − 6c32

c2(c2 − c1)2(7c1 − c2)
, (23)

where the denominator is positive for 1/4 < c1/c2 < 1/3, while

−8c31 + 26c21c2 + 12c1c
2
2 − 6c32 = −8c32(c1/c2 − s0)(c1/c2 − s1)(c1/c2 − s2) (24)
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where
s0 < 0 < s1 < 1/4 < 1/3 < 3 < s2.

Then (24) is negative for 1/4 < c1/c2 < s1 ≈ 0.3108 and positive for s1 <
c1/c2 < 1/3, so that (23) is negative for 1/4 < c1/c2 < s1 ≈ and positive for
s1 < c1/c2 < 1/3, which allows concluding that the stability region of (9) is
larger than that of model (13) when 0 < c1/c2 ≤ s1.

When 1/3 < c1/c2 < 3, model (9) is stable for α < αf while model (13) is
stable for α < αT

f . We have that

αT
f − αf =

4(c1 + c2)

4c1c2 − (c2 − c1)2
− 8c1 + 4c2

c2(7c1 − c2)
= − 8c1(c2 − c1)

2

c2(7c1 − c2)(c21 − 6c1c2 + c22)

which is positive since the numerator is positive, −c2(7c1 − c2) < 0 for 1/3 <
c1/c2 < 3 and c21 − 6c1c2 + c22 < 0 for

3− 2
√
2 <

1

3
<

c1
c2

< 3 < 3 + 2
√
2.

This implies that αT
f ≥ αf and the stability region of (9) is smaller than that

of (13).
The last situation concerns c1/c2 > 3, in which model (9) is stable for α < αf

while model (13) is stable for α < αT
ns. We have that (23) is positive provided

that 3 < c1/c2 < s2 ≈ 3.6081, since both its denominator and (24) are positive.
This allows concluding that αT

ns ≥ αf and the stability region of (9) is smaller
than that of (13) for 3 < c1/c2 < s2. Conversely, we have that (23) is negative
when c1/c2 > s2, and this implies that the stability region of (9) is again larger
than that of (13). Combining this last result with the previous one, can we
conclude.

Proof of Proposition 4. In order to calculate the number of preimages of points
belonging to the q2-axis of the phase plane, we consider a generic point (0, q2).
We use these two coordinates in system (9) to replace q1(t + 1) and q2(t + 1),
respectively. We obtain the system















0 = q1 + αq1

[

q2

(q1 + q2)
2
− c1

]

q2 =
1

2
q2 +

1

2
[1− c2 (q1 + q2)] (q1 + q2)

(25)

and we must find the coordinates (q1, q2) of the points that solve it. We can
rearrange the first equation as follows

q1

[

1− αc1 +
αq2

(q1 + q2)
2

]

= 0. (26)

Equation (26) is a product that becomes zero when at least one of the factors
is zero. So, we must consider two cases.
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• Case q1 = 0
By substituting q1 = 0 in the second equation of the system (25), after some
algebraic calculations we obtain the following second degree equation in q2

1

2
c2q

2
2 − q2 + q2 = 0,

whose roots are

q∗2 =
1±√

1− 2c2q2
c2

.

These roots are real provided that

q2 ≤ y1 (27)

where y1 = 1/2c2. In such a case, the two preimages of the point (0, q2) are
given by

(

0,
1 +

√
1− 2c2q2
c2

)

and

(

0,
1−√

1− 2c2q2
c2

)

.

• Case 1− αc1 +
αq2

(q1 + q2)
2
= 0

The condition characterizing this case cannot be immediately used in the second
equation of system (25). We can rearrange this condition as follows

(q1 + q2)
2 =

αq2
αc1 − 1

. (28)

Since the l.h.s. of (28) is positive, the r.h.s. has to be positive as well, and this
requires

αc1 ≥ 1. (29)

If (29) is false, then we can conclude the third part of the thesis.
Similarly with the second equation of system (25) we can write

(q1 + q2)
2 =

2q2 + q1 − 2q2
c2

. (30)

By combining the right sides of equations (28) and (30) and by solving the
consequent equation for q1 we get

q1 =
αc2q2
αc1 − 1

− 2q2 + 2q2,

under condition (29). We can use it in the second equation of system (25)
obtaining a second degree equation in q2

aq22 + bq2 + c = 0 (31)
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with

a = − α2c32
2(αc1 − 1)2

− c2
2

+
αc22

αc1 − 1
,

b =
αc2

2(αc1 − 1)
+ 2c2q2 − 2

αc22q2
αc1 − 1

,

c = −2c2q
2
2.

The discriminant of equation (31) is

∆ =
α2c22

4(αc1 − 1)2
+ 2

αc22q2
αc1 − 1

− 2
α2c32q2

(αc1 − 1)2

which is positive if αc22(α − 8q2 + 8αc1q2 − 8αc2q2) ≥ 0. The last inequality
is satisfied for all the q2 ≥ 0 when α(c1 − c2) ≥ 1, and for q2 ≤ y2 when
α(c1−c2) < 1. We recall that each of these last inequalities have to be considered
under condition (29).

To evaluate the total number of preimages, we notice that when α(c1−c2) >
1 is true, then automatically αc1 > 1, so condition (29) is satisfied. Then, for
αc1 > 1+αc2 we always have at least two preimages, and we have four preimages
when (27) is satisfied.

Conversely, when 1 < αc1 < 1 + αc2 both y1 < y2 and y2 < y1 are possible.
In particular, we have y1 < y2 if 1 + 3/4αc1 < αc1 < αc2. Conversely, we have
y2 < y1 if 1 < αc1 < 1 + 3/4αc2. Recalling that in this case the discriminant
of (31) is positive provided that q2 < y2 and recalling (27), we can obtain the
second part of the thesis.

Proof of Proposition 5. Our map (9) belongs to the family of maps (x′, y′) =
(N(x, y)/D(x, y), G(x, y)), called maps with denominator in Bischi et al. [31,
32, 33]. These maps are defined in the whole phase plane except for the points
in which D(x, y) = 0 and their preimages of any rank. These points form a set
called set of non-definition δS and in our a case it is the line of equation

δS : q2 = −q1.

If a point Q = (x0, y0) belonging to the set of non-definition is such that
N(x0, y0) = 0 then we are in presence of a focal point (see Definition 1). It
is immediate to see that our map T1 owns one focal point Q given by

Q = (0, 0)

and its prefocal set can be obtained by substituting the coordinates of the focal
point into the first equation of the system (9), obtaining

δQ : q2 = 0.

A focal point Q is simple provided that NyDx−NxDy 6= 0, where the subscripts
indicate partial derivatives calculated in Q. In this case there exists a one-to-
one correspondence between the slope m of an arc γ through Q and the point
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(x,G(Q)) in which its image crosses δQ

m → (x(m), G(Q)), with x(m) =
Ny +mNx

Dy +mDx

. (32)

This result can be proved if we consider a simple arc γ transverse to δS , that
we can write as follows:

γ(τ) :

{

x(τ) = x0 + ξ1τ + ξ2τ
2 + ...

y(τ) = y0 + η1τ + η2τ
2 + ...

τ 6= 0.

If N(x, y) and D(x, y) are both smooth functions, so that

N(x, y) = Nx(x− x0) +Ny(y − y0) +O2

D(x, y) = Dx(x− x0) +Dy(y − y0) +O′
2

with O2 and O′
2 terms of higher order, and the arc crosses through the simple

focal point Q we get

lim
τ→0

N(γ(τ))

D(γ(τ))
=

η1Ny + ξ1Nx

η1Dy + ξ1Dx

from which (32) follows if we define m = ξ1/η1.
The focal point of our map is not simple. In fact we have that all the partial

derivatives (N q1 , N q2 , Dq1 , Dq2) vanish when they are calculated at the focal
point.

As shown in Bischi et al. [33], in such a case the correspondence between
the slopes of arcs through Q and the points of δQ is two-to-one. So we need the
second order terms in the expansions of N and D for deriving the x-coordinate
of the point (x,G(Q)) in which the image of the arc crosses δQ, obtaining

m → (x(m), G(Q)), with x(m) =
Nyy + 2mNxy +Nxxm

2

Dyy + 2mDxy +Dxxm2
. (33)

From (33) we can get the two values of the slopes

m±(x) =
−(Nxy − xDxy)±

√
∆

(Nxx − xDxx)

that exist when ∆ =
[

(

Nxy − xDxy

)2 −
(

Nxx − xDxx

) (

Nyy − xDyy

)

]

> 0.

The second derivatives of our map (6) are the following

N q1q1 = 0 N q1q2 = α Nq2q2 = 0
Dq1q1 = 2 Dq1q2 = 2 Dq2q2 = 2

that permit us to obtain the two slopes

m±(q1) =
α− 2q1 ±

√

α2 − 4αq1
2q1

.
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Proof of Corollary 6. The proof comes from Bischi et al. (2001), in which it is
noted that any arc through Q and transverse to δQ like all other arcs crossing
δQ has two rank-1 preimages again crossing δQ in Q. Any arc through Q,
according to the relation (17), has two preimages through Q again. We can go
on iteratively ad infinitum.

Proof of Proposition 7. The proof is a direct consequence of the fact that ω−1

is a continuous function in the (q2, q1) plane. Then, if the vertex Q−1
b of the

pseudo-triangle is above the prefocal line δQ, the whole side is above it (and
the opposite if the vertex is below it). So the gray lobes appear when the q2
coordinate of Q−1

b is equal to 0, that is when α = 1/c1 and the portion of ω−1

delimiting the pseudo-triangle is above the prefocal line when α > 1
c1
, q.e.d.
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