
ar
X

iv
:1

50
9.

03
59

0v
1 

 [
m

at
h.

O
C

] 
 1

1 
Se

p 
20

15

Deterministic global optimization using space-filling curves

and multiple estimates of Lipschitz and Hölder constants

Daniela Lera∗ and Yaroslav D. Sergeyev†

Abstract

In this paper, the global optimization problem miny∈S F (y) with S being
a hyperinterval in RN and F (y) satisfying the Lipschitz condition with an
unknown Lipschitz constant is considered. It is supposed that the function
F (y) can be multiextremal, non-differentiable, and given as a ‘black-box’.
To attack the problem, a new global optimization algorithm based on the
following two ideas is proposed and studied both theoretically and numerically.
First, the new algorithm uses numerical approximations to space-filling curves
to reduce the original Lipschitz multi-dimensional problem to a univariate
one satisfying the Hölder condition. Second, the algorithm at each iteration
applies a new geometric technique working with a number of possible Hölder
constants chosen from a set of values varying from zero to infinity showing so
that ideas introduced in a popular DIRECT method can be used in the Hölder
global optimization. Convergence conditions of the resulting deterministic
global optimization method are established. Numerical experiments carried
out on several hundreds of test functions show quite a promising performance
of the new algorithm in comparison with its direct competitors.

Key Words. Global optimization, Lipschitz functions, space-filling curves,
Hölder functions, deterministic numerical algorithms, DIRECT, classes of test
functions.

1 Introduction

Let us consider the following global optimization problem

min{F (y) : y ∈ S = [a, b]}, (1.1)
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where [a, b] is a hyperinterval in RN . It is supposed that the objective function
F (y) can be multiextremal, possibly non-differentiable and it satisfies the Lipschitz
condition

|F (y′)− F (y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ [a, b], (1.2)

with an unknown constant L, 0 < L < ∞, in the Euclidean norm. This statement
can very frequently be met in applications where each evaluation of F (y) can be very
expensive from the computational point of view (see, e.g., [3, 5, 10, 19, 28, 35, 40, 42],
etc.). Due to this reason, in the literature there exist numerous methods dedicated to
the problem (1.1), (1.2) (together with references indicated above we can mention
such recent publications as [2, 4, 5, 17, 18, 26, 27, 43, 44]). It should be also
mentioned that methods for problems where the gradient of the objective function
satisfies the Lipschitz condition were also studied (see, e.g., [4, 13, 20, 24, 34, 35, 37],
etc.).

One of the main issues regarding the problem (1.1), (1.2) is related to the treat-
ment of the Lipschitz constant L. In the literature, there exist several approaches
for acquiring the Lipschitz information that can be distinguished with respect to
the way the Lipschitz constant is estimated during the process of optimization. For
instance, there exist algorithms (see, e.g., [4, 10, 11, 27, 29]) that use an a priori
given estimate L̃ of L (it should be mentioned that usually in practice it is difficult
to obtain valid estimates) or an adaptive estimate L̃i that is recalculated at each
iteration i of the method (see, e.g., [28, 37, 38, 40]).

It is well known that estimates of the Lipschitz constant have a significant in-
fluence on the convergence and the speed of the global optimization algorithms (see
[37, 38, 40]). Namely, tight estimates can accelerate the search, overestimates can
slow it down, and underestimates can lead to losing the global solution. Algorithms
that use in their work a global estimate L̃i or an a priori given estimate L̃ do not take
into account any local information about the behavior of the objective function over
small subregions of the domain S. It has been shown in [16, 21, 25, 32, 34, 38, 40]
that a smart usage of local estimates L̃i(Dj) of the local Lipschitz constants L̃(Dj)
over subregions Dj ⊂ S allows one to significantly accelerate the global search.
Naturally, a balancing between the local and global information must be performed
in an appropriate way in order to avoid missing the global solution. Another in-
teresting approach that has been introduced in [15] uses at each iteration several
estimates of the Lipschitz constant L. This algorithm works by partioning the hy-
perinterval S in subintervals (called hereinafter also subboxes) and due to this reason
it has been called by its authors DIRECT (DIviding RECTangles).

We can see therefore that in the literature there exist four practical strategies
to obtain a Lipschitz information for its subsequent usage in numerical methods:
a) to consider the real constant L, if it is given, or to use its overestimate when it is
possible; b) to calculate dynamically a global a global (i.e., the same for the whole
search region) adaptive estimate of L; c) to consider estimates of local Lipschitz
constants related to subintervals of the search region S; d) to take into consideration
a set of estimates of L selected among all possible values varying from zero to infinity.
In this paper, our attention will be dedicated to this fourth alternative.
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Figure 1: Approximation of the Peano curve (Hilbert’s version of its construction is
used here) in dimension N=2.

As was mentioned above, in the literature there exists a variety of numerical
methods dedicated to the problem (1.1), (1.2). One of non trivial views on the
problem consists of the reduction of the dimension of (1.1), (1.2) with the help of
space-filling curves. These curves, first introduced by Peano (1890) and Hilbert
(1891) (see [1, 31, 38, 39, 40, 41]), emerge as the limit objects generated by an
iterative process. They are fractals constructed using the principle of self-similarity.
Peano-Hilbert curves fill in the hypercube [a, b] ⊂ RN , i.e., they pass through every
point of [a, b], and this gave rise to the term space-filling curves. Examples of
construction of these curves in two dimensions are given in Fig. 1.

It has been shown (see [1],[39],[40]) that, by using space filling curves, the mul-
tidimensional global minimization problem (1.1), (1.2) can be turned into a one-
dimensional problem. In particular, Strongin has proved in [39] that finding the
global minimum of the Lipschitz function F (y), y ∈ RN , over a hypercube is equiv-
alent to determining the global minimum of the function f(x) in an interval, i.e., it
follows

f(x) = F (p(x)), x ∈ [0, 1], (1.3)

where p(x) is the Peano curve. Moreover, the Hölder condition

|f(x′)− f(x′′)| ≤ H|x′ − x′′|1/N , x′, x′′ ∈ [0, 1], (1.4)

holds (see [40]) for the function f(x) with the constant

H = 2L
√
N + 3, (1.5)
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where L is the Lipschitz constant of the original multidimensional function F (y)
from (1.1), (1.2).

Thus, one can try to solve the problem (1.1), (1.2) by using algorithms proposed
for minimizing Hölderian functions (1.3), (1.4) in one dimension. To do this in prac-
tice, three main steps should be executed if one wishes to use methods that partition
the search region and try to obtain and to use a Lipschitz/Hölder information (see
[28, 33, 37] for a general description of this kind of methods, their convergence
properties, etc.). First, in order to realize the passage from the multi-dimensional
problem to the one-dimensional one, computable approximations to the Peano curve
should be employed in the numerical algorithms. Second, the Hölder constant H
from (1.4) should be estimated. Finally, a partition strategy of the search region
should be chosen.

We have already seen above that in the Lipschitz global optimization there exist
at least four ways to obtain estimates of the Lipschitz constant. When we move
to the Hölder global optimization the situation is different. In the literature (see
[12, 21, 22, 23, 24, 38]), there exist methods that use strategies a), b), and c)
discussed above. However, inventing for the Hölder global optimization a strategy
similar to the technique d) was an open problem since 1993 when the article [15]
showing how to use simultaneously several estimates of L has been published. In
this paper, we close this gap and propose an algorithm that uses several estimates
of the Hölder constant at each iteration employing space-filling curves, central point
based partition strategies, and Hölderian minorants.

The rest of the paper has the following structure. In Section 2, difficulties re-
garding the usage of the strategy d) in the Hölderian framework and the proposed
solution are presented. In Section 3, a new algorithm for solving the problem (1.1),
(1.2) and its convergence properties are described. The new method uses numerical
approximations to Peano space-filling curves and the scheme of representation of
intervals with Hölderian minorants from Section 2. Section 4 presents results of nu-
merical experiments that compare the new method with its competitors on 800 test
functions randomly generated by the GKLS-generator from [9]. Finally, Section 5
contains a brief conclusion.

2 Lipschitz and Hölder minorants in one dimen-

sion

Let us consider a one-dimensional function f(x) satisfying the Lipschitz condition
with a constant L over the interval [0, 1]. Then it follows from the Lipschitz condition
that

f(x) ≥ Ck(x) = ci(x), x ∈ [ai, bi], 1 ≤ i ≤ k, (2.1)

ci(x) =

{

c−i (x) = f(mi)− L(mi − x), x ∈ [ai, mi],
c+i (x) = f(mi)− L(x−mi), x ∈ [mi, bi],

(2.2)
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Figure 2: Lipschitz (left) and Hölder (right) support functions.

where Ck(x) is (see Fig. 2, left) a piece-wise linear discontinuous minorant (called
often also support function) for f(x) over each subinterval di = [ai, bi], 1 ≤ i ≤ k,
and

mi = (ai + bi)/2. (2.3)

The values Ri, 1 ≤ i ≤ k, called characteristics and being lower bounds for the
function f(x) over each interval di, 1 ≤ i ≤ k, can easily be calculated. In fact, if
we suppose that an overestimate L1 ≥ L of the Lipschitz constant L is given, then
it follows

Ri = Ri(L1) = min
x∈[ai,bi]

ci(x) = f(mi)− 0.5L1(bi − ai). (2.4)

However, in order to solve the multidimensional problem (1.1), (1.2) by using
space-filling curves, instead of working with Lipschitz functions, we should focus
our attention on the one-dimensional Hölderian function f(x) from (1.3). It follows
from (1.4) that, for all x, z ∈ [0, 1] we have

f(x) ≥ f(z)−H|x− z|1/N . (2.5)

If a point z ∈ [0, 1] is fixed, then the function

Z(x) = f(z)−H|x− z|1/N

is a minorant for f(x) over [0, 1]. Then, analogously to (2.1)–(2.3), we obtain that
the function

Zk(x) = li(x), x ∈ [ai, bi], 1 ≤ i ≤ k, (2.6)

li(x) =

{

l−i (x) = f(mi)−H(mi − x)1/N , x ∈ [ai, mi],
l+i (x) = f(mi)−H(x−mi)

1/N , x ∈ [mi, bi],
(2.7)

is a discontinuous nonlinear minorant for f(x) (see Fig. 2, right). The values Ri,
1 ≤ i ≤ k, are lower bounds for the function f(x) over each interval di, 1 ≤ i ≤ k,
and can be calculated as follows if an overestimate H1 ≥ H of the Hölder constant
H is given

Ri = Ri(H1) = min
x∈[ai,bi]

li(x) = f(mi)−H1|(bi − ai)/2|1/N . (2.8)
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Figure 3: Representation of intervals in the Euclidean metric in the framework of
the DIRECT algorithm.

As it was discussed above, the DIRECT algorithm works simultaneously with
several estimates of the Lipschitz constant at each iteration. One of the key features
that allow it to do this is a smart representation of intervals [ai, bi], 1 ≤ i ≤ k, in the
two-dimensional diagram shown in Fig. 3. In this Figure, we have intervals dA, dB,
dC , dD, and dE that are represented by the dots A, B, C, D, and E, respectively.
The horizontal coordinate of each dot is equal to 0.5(bi − ai), i.e., half of the length
of the respective interval [ai, bi], and the vertical coordinate is equal to f(mi) where
mi is from (2.3) (see, e.g., the dot B and its coordinates). Let us consider now
the intersection of the vertical coordinate axis with the line having the slope L1 and
passing through each dot representing subintervals in the diagram shown in Fig. 3. It
is possible to see that this intersection gives us exactly the characteristic Ri = Ri(L1)
from (2.4), i.e., the lower bound for f(x) over the corresponding subinterval [ai, bi]
if L1 ≥ L (note that the points on the vertical axis (di = 0) do not represent any
subinterval).

It can immediately be seen that the diagram allows one to determine very easily
an interval with the minimal characteristic (in Fig. 3 this interval is represented
by the dot E, its characteristic is RE(L1)). In the Lipschitz global optimization
(see, e.g., [28, 33, 37, 38, 40]), the operation of finding an interval with the minimal
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characteristic (that can be calculated in different ways in different algorithms) is an
important one. It is executed at each iteration, the found interval is then subdivided
and f(x) is evaluated at new points belonging to this interval. Moreover, since we
do not know the exact value of the real Lipschitz constant L, the scheme presented
in Fig. 3 allows one (see [15]) to take into consideration all possible values of L from
zero to infinity1 and to choose a set of promising intervals for partitioning (this issue
will be discussed in detail later).

Let us try now to construct a similar diagram in the framework of the Hölder
optimization where the nonlinear support functions li(x) from (2.7) shown in Fig. 2,
right, are built over each subinterval. In Fig. 4, intervals dA, dB, dC, dD, and dE are
again represented by dots A, B, C, D, and E, respectively. If we take an estimate H1

of the Hölder constant H , then characteristic RB(H1) of the interval dB represented
by the dot B is given by the vertical coordinate of the intersection point of the
auxiliary curve (2.7) passed through the point B and the vertical coordinate axis.

We can see in Fig. 4 that the curves constructed using the estimate H1 and rep-
resenting the nonlinear support function (2.7) can intersect each other in different
ways. The procedure of the selection of subintervals for producing new trials (trial
is an evaluation of f(x) at a point x that is called trial point) is based on estimates
of the lower bounds of the objective function over current subboxes. Subintervals
for the further subdivision are chosen taking into account all possible values of the
Hölder constant H . Due to numerous possible intersections of the curves at the rep-
resentation shown in Fig. 4, it becomes unclear how to select, for all possible values
of H , the set of promising intervals that must be partitioned at each iteration k.

This difficulty that seemed unsolvable since 1993 did not allow people to con-
struct global optimization algorithms working in the framework of the Hölder global
optimization with all possible Hölder constants. This problem is solved in the next
section that proposes an algorithm that uses, on the one hand, Peano space-filling
curves to reduce the multi-dimensional problem (1.1), (1.2) to one dimension and,
on the other hand, multiple estimates of the Hölder (Lipschitz) constant. The algo-
rithm for solving one-dimensional Hölder global optimization problems in the spirit
of the DIRECT method is a part of it.

3 The new algorithm

In order to construct a procedure allowing one to select, at each iteration k of the
algorithm, a set of intervals to be partitioned with respect to all possible values of the

1In fact, it is easy to see that if we connect the points A and E by a line and indicate its slope
by Lmax then for all constants L ≥ Lmax the interval dA will have the minimal characteristic and,
therefore it should be subdivided. Analogously, for all constants L ≤ Lmax the interval dE will
have the minimal characteristic. Then, if we subdivide both intervals, dA and dE , then the interval
corresponding to the real constant L will be subdivided even though we are not know this value L.
Thus, the diagram really allows one to consider all possible values of the Lipschitz constant from
zero to infinity and to choose a small group of intervals for the subsequent subdivision ensuring
that the interval corresponding to the correct Lipschitz constant belongs to this group.
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Figure 4: Due to numerous possible intersections of nonlinear Hölderian minorants,
the attempt to use the representation of intervals analogous to that shown in Fig. 3
does not give the desired effect.

constantH we proceed as follows. First, we introduce a new graphical representation
of subintervals di by using instead of Euclidean metric the Hölderian one. Namely, we
propose to represent each interval di = [ai, bi] ∈ {Dk} by a dot Pi with coordinates
(hi, Fi), where Dk is the current partition of the one-dimensional search interval
during the kth iteration and coordinates of the point Pi are calculated as follows

hi = |(bi − ai)/2|1/N , (3.1)

Fi = f(mi), (3.2)

where mi is from (2.3), i.e., mi is the central point of the interval di = [ai, bi].
The introduction of the Hölderian metric allows us (see Fig. 5) to avoid the

non-linearity and the intersection of minorants giving as a result a diagram similar
to that from Fig. 3. In Fig. 5 we can see the representation of the same intervals
considered in Fig. 4. Notice that in Fig. 5 the values in the horizontal axis are
calculated in the Hölderian metric, while the vertical axis values coincide with those
of Fig. 4. In this new representation, the intersection of the line with the slope H1

passing through any dot representing an interval in the diagram of Fig. 5 and the
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Figure 5: Representation of intervals with the Hölderian metric.

vertical coordinate axis gives us exactly the characteristic (2.8) of the corresponding
interval.

We can proceed now with the development of the new one-dimensional global
optimization method following the spirit of the DIRECT algorithm and keeping
in mind that we deal with the Hölderian metric. Each subinterval di of a current
partition Dk is characterized by a lower bound of the objective function over di.
An interval di is selected for a further partitioning if for some value H̃ > 0 of the
possible Hölder constant it has the smallest lower bound for f(x) with respect to
the other intervals present at this iteration. By changing the value of H̃ from zero
to infinity, at each iteration k, we select a set of intervals that will be partitioned.

Let us consider how this set of intervals is chosen during each iteration k. The
following definitions state a relation of domination between every two subintervals
of the current partition of D.

Definition 3.1 Given an estimate H̃ > 0 of the Hölder constant H from (1.4), an
interval di ∈ {Dk} dominates the interval dj ∈ {Dk} with respect to H̃ if

Ri(H̃) < Rj(H̃).
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Definition 3.2 An interval dt ∈ {Dk} is said to be nondominated with respect to
H̃ > 0 if for the chosen value H̃ there is no other interval in {Dk} which domi-
nates dt.

In order to be sure to subdivide the nondominated interval corresponding to the
real constant H , we can select the set of nondominated intervals with respect to all
possible estimates 0 < H̃ < ∞. By using the new graphical representation shown
in Fig. 5 it is easy to determine whether an interval dominates, with respect to an
estimate of the Hölder constant H , some other interval from the partition {Dk}.
For example, in Fig. 5 we can see that for the estimate H1 we have

RD(H1) < RC(H1) < RB(H1),

so, the interval dD dominates both intervals dC and dB with respect to H1. Further-
more, RA(H1) < RD(H1), i.e., the interval dA dominates the interval dD. Finally,
the characteristic RE(H1) is the smallest one, and the interval dE dominates all
others intervals with respect to H1, i.e., it is nondominated with respect to H1 (see
Fig. 5).

If a different value H2 > H1 of the Hölder constant is considered (see Fig. 5), the
interval dD still dominates the interval dB with respect to H2, because RD(H2) <
RB(H2), but dD is dominated by the interval dC, since RD(H2) > RC(H2). Moreover,
we have that RA(H2) < RE(H2) < RC(H2), thus, for the chosen estimate H2 the
unique nondominated interval is dA. As we can see from this example, some intervals
(dB, dC , and dD in Fig. 5) are always dominated by other intervals, independently
on the chosen estimate of the Hölder constant. Other intervals (dE and dA in Fig. 5)
can be nondominated for one value and dominated for another one. The following
definition will be very useful hereinafter.

Definition 3.3 An interval dt ∈ {Dk} is called nondominated if there exists an
estimate 0 < H̃ < ∞ of the Hölder constant H such that dt is nondominated with
respect to H̃.

In other words, nondominated intervals are intervals over which the objective
function f(x) has the smallest lower bound from (2.8) for some particular estimate
of the Hölder constant H . Note that in the two-dimensional diagram (hi, Fi), where
hi and Fi are from (3.1), (3.2), the nondominated intervals are located at the bottom
of each group of points with the same horizontal coordinate. For example in Fig. 6
these points are designated as A, B, C, D, E, F , and G. Not all of these intervals
are nondominated: in fact, in Figure 6 the interval dC is dominated either by the
interval dB (for example, with respect to H1 ≥ HBD, where HBD corresponds to the
slope of the line passed through the points B and D), or by the interval dD (with
respect to H2 < HBD). The interval dF is dominated by dD and dE , with respect
to any positive estimate of the constant H . The interval dG is dominated by dF .
In Figure 6, dots A, B, D, and E represent nondominated intervals. The following
theorem allow us to easily identify the set of nondominated intervals.
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Figure 6: The nondominated intervals dA, dB, dD, and dE are represented by dots
A, B, D, and E.

Theorem 3.1 Let each interval di = [ai, bi] ∈ {Dk} be represented by a dot with
horizontal coordinate hi and vertical coordinate Fi defined in (3.1), (3.2). Then,
intervals that are nondominated in the sense of Definition 3.3 are located on the
lower-right convex hull of the set of dots representing the intervals.

Proof. The proof of the Theorem 3.1 is analogous to the proof of Theorem 2.2
from [36]. ✷

In practice, nondominated intervals can be found by applying algorithms for
identifying the convex hull of the dots (see, e.g., the algorithm called Jarvis march,
or gift wrapping, see [30]).

We describe now the partition strategy adopted by the new algorithm for dividing
subintervals in order to produce new trial points. When, at the generic iteration
k, we identify the set of nondominated intervals, we proceed with the subdivision
of each of these intervals only if a significant improvement on the function values
with respect to the current minimal value fmin(k) is expected. Once an interval dt ∈
{Dk} becomes nondominated, it can be subdivided only if the following condition
is satisfied:

Rt(H̃) ≤ fmin(k)− ξ, (3.3)

11



where the lower bound Rt = Rt(H̃) is from (2.8). This condition prevents the
algorithm from subdividing already well-explored small subintervals.

Let us suppose now that at the current iteration k of the new algorithm a subin-
terval dt = [at, bt], represented in the two-dimensional diagram of Fig. 6 by the dot
(ht, Ft) from (3.1), (3.2), has been chosen for partitioning. The subdivision of this
interval is performed in such a way that three new equal subintervals of the length
(bt − at)/3 are created, i.e.,

[at, bt] = [at, pt] ∪ [pt, qt] ∪ [qt, bt], (3.4)

pt = at + (bt − at)/3, qt = bt − (bt − at)/3. (3.5)

The interval dt is removed from the two-dimensional diagram representing the cur-
rent partition {Dk} of the search interval, and the three newly generated subinter-
vals are introduced both into {Dk} and the diagram. Finally, two new trials f(c1)
and f(c2) are performed at the points c1 and c2 of the intervals [at, pt] and [qt, bt],
respectively, i.e.,

c1 =
at + pt

2
, c2 =

qt + bt
2

. (3.6)

The central interval [pt, qt] inherits the point at+bt
2

= pt+qt
2

at which the objective
function has been evaluated when the original interval dt = [at, bt] has been created.

Until now we have described the strategies assuming to work with a function
in one dimension. As was stated above, Strongin has shown that multidimensional
optimization problems can be solved by using modified algorithms proposed for
minimizing functions in one dimension, and therefore in order to solve the global
optimization problem in N dimensions (1.1), (1.2) we can use the above developed
one-dimensional global optimization method together with the space-filling curves.
For an effective use of the Peano curve in our algorithm we need computable ap-
proximations of the curve (see [38, 40] for a detailed discussion and a code allowing
one to implement such approximations). Hereinafter we denote by pM(x) the ap-
proximation of level M of the Peano curve. In Fig. 1 we can see examples of Peano
curve approximations of the levels M = 2, 3, 4, 5 in dimension N = 2.

Suppose now that a global optimization method uses an approximation pM(x) of
the Peano curve to solve the multidimensional problem and provides a lower bound
U∗
M for the corresponding one-dimensional function f(x). Then the value U∗

M will
be a lower bound for the function F (y) in dimension N only along the curve pM(x).
The following theorem establishes a lower bound for the function F (y) over the
entire multidimensional search region [a, b] given the value U∗

M .

Theorem 3.2 Let U∗
M be a lower bound along the space-filling curve pM(x) for a

multidimensional function F (y), y ∈ [a, b] ⊂ RN , satisfying Lipschitz condition with
constant L, i.e.,

U∗
M ≤ F (pM(x)), x ∈ [0, 1].

Then the value
U = U∗

M − 2−(M+1)L
√
N

is a lower bound for F (y) over the entire region [a, b].

12



Proof. See [23] or the recent monograph [38]. ✷

By using the space-filling curves we are able to work with a one-dimensional
function in the interval [0, 1] ⊂ R1. The level M of the approximation of the Peano
curve pM(x), is crucial for a good performance of the method. If M is too small,
the domain in N dimensions may not be well “filled” and we risk losing the global
solution. When M grows, the reduced function in one dimension becomes more and
more oscillating and the number of local minima increases when N increases (see
[23] for a detailed discussion on this topic). Then, due to the facts that we are in
[0, 1] and that we use the metric of Hölder, it happens that the width of the non-
dominated interval dt ∈ {Dk} to be partitioned at a generic iteration k can become
very small. When the dimension N increases, the width of the subintervals can
reach the computer precision. In order to avoid this situation another condition in
addition to (3.3) is required. Namely, when an interval dt = [at, bt] ∈ {Dk} becomes
nondominated, it can be subdivided only if the following condition is satisfied:

bt − at > η, (3.7)

where η is a parameter of the method.
Now, let us present the new algorithm called MGAS (Multidimensional Global

optimization Algorithm working with a Set of estimates of the Hölder constant).

Algorithm MGAS

Step 0. (Initialization). Set the current iteration number k := 1.

Split the initial interval D = [0, 1] in three equal parts and set x1 = 1/6, x2 =
1/2, x3 = 5/6 and compute the values of the function zj = f(xj) = F (pM(xj)),
j = 1, 2, 3, where pM(x) is the M-approximation of the Peano curve.

Set the current partition of the search intervalD1 = {[0, 1/3], [1/3, 2/3], [2/3, 1]}.
Set the current number of intervals J = 3 and the current number of trials
T = 3.

Set fmin(1) = min{z1, z2, z3}, and xmin(1) = argmin{f(xj) : j = 1, 2, 3}.
After executing k iterations, the iteration k+1 consists of the following steps.

Step 1. (Nondominated intervals) Identify both the set Sk, Sk ⊂ Dk, of nondom-
inated intervals, according to Definition 3.3, that satisfy conditions (3.3) and
(3.7), and the corresponding set Ik of their indices. Dk denotes the partition
of the search interval D = [0, 1] at iteration k.

Step 2. (Subdivision of nondominated intervals) Set Dk+1 = Dk, and perform the
following Steps 2.1-2.3:

13



Step 2.1 (Interval selection). Select a new interval dt = [at, bt] from Sk such
that

t = argmax
j∈Ik

{bj − aj}.

Step 2.2 (Subdivision and sampling). Subdivide interval dt in three new
equal subintervals, named dt1, dt2, dt3, of the length (bt − at)/3, following
(3.4), (3.5), and produce two new trial points accordingly to (3.6).
Eliminate the interval dt from Dk+1, i.e., set Dk+1 = Dk+1 \ {dt}, and update
Dk+1 with the insertion of the three new intervals, i.e.,

Dk+1 = Dk+1 ∪ {dt1} ∪ {dt2} ∪ {dt3}.

Increase both the current number of intervals J = J + 2, and the current
number of trials T = T + 2.
Update the current record fmin and the current record point xmin if necessary.

Step 2.3 (Next interval). Eliminate the interval dt from Sk, i.e., set
Sk = Sk \ {dt} and Ik = Ik \ {t}.
If Sk 6= ∅, then go to Step 2.1. Otherwise go to Step 3.

Step 3. (End of the current iteration). Increase the iteration counter k = k + 1.
Go to Step 1 and start the next iteration.

Different stopping criteria can be used in the algorithm introduced above. One
of them will be introduced in the next section presenting numerical experiments.

We proceed now to the study of convergence properties of the algorithm. Theo-
rem 3.2 linking the multidimensional global optimization problem (1.1), (1.2) to the
one-dimensional problem (1.3), (1.4) allows us to concentrate our attention on the
convergence properties of the one-dimensional method. We shall study properties of
an infinite sequence {xj(k)} of trial points generated by the algorithm MGAS when
we suppose that the number of iteration k goes to infinity (i.e., in this case the al-
gorithm does not stop). The following theorem establishes the so-called everywhere
dense convergence of the method, i.e., convergence of the infinite sequence of trial
points to any point of the one-dimensional search domain.

Theorem 3.3 If η = 0 in (3.7), then for any point x ∈ D = [0, 1] and any δ > 0
there exist an iteration number k(δ) ≥ 1 and a point x′ ∈ {xj(k)}, k > k(δ), such
that |x− x′| < δ.

Proof. The interval partition scheme (3.4), (3.5) used for each subdivision of intervals
produces three new subintervals of the length equal to a third of the length of the
subdivided interval. Since η = 0, to prove the Theorem it is sufficient to prove that
for a fixed value δ > 0, after a finite number of iterations k(δ), the largest subinterval
of the current partition {Dk(δ)} of the domain D will have the length smaller than δ.
In such a case, in the δ-neighborhood of any point of D there will exist at least one
trial point generated by the algorithm. ✷

14



To see this, let us fix an iteration number k′ and consider the group of the
largest intervals of the partition {Dk′} having the horizontal coordinate hmax (in
the diagram of Fig. 6 this group consists of two points: the dot A and the dot
above it). As can be seen from the scheme of the algorithm MGAS, for any k′ ≥ 1
this group is always taken into account when nondominated intervals are looked
for. In particular, an interval dt ∈ {Dk′} from this group, having the smallest value
Ft, must be partitioned at each iteration of the algorithm. This happens because
there always exists a sufficiently large estimate H∞ of the Hölder constant H for the
function f(x) such that the interval dt is the nondominated interval with respect to
H∞ and condition (3.3) is satisfied for the lower bound Rt(H∞).

Three new subintervals having the length equal to a third of the length of dt
are then inserted into the group with a horizontal coordinate hj < hmax. Since
each group contains a finite number of intervals, after a sufficiently large number
of iterations all the intervals of the group hmax will be divided and the group will
become empty. As a consequence, the group of the largest intervals will now be
identified by hj , where the difference hmax − hj > 0 is finite. The same procedure
will be repeated with this new group of the largest intervals, and the next new group,
etc.

This means that there exists a finite iteration number k(δ) such that after per-
forming k(δ) iterations of the algorithm MGAS, the length of the largest interval of
the current partition {Dk(δ)} is smaller than δ and, therefore, in the δ-neighborhood
of any point of the search region there will exist at least one trial point generated
by the algorithm.

In Fig. 7, an example of convergence of the sequence of trial points generated
by the algorithm MGAS in dimension N = 2 using the approximation of the level
M = 5 to the Peano curve is given. The zone with the high density of the trial
points corresponds to the global minimizer.

Fig. 8 shows how this problem was solved in the one-dimensional space. In the
upper part of Fig. 8, the one-dimensional function corresponding to the curve shown
in Fig. 7 and the respective trial points produced by the MGAS at the interval [0, 1]
are presented. The lower part of the Figure shows the dynamics (from bottom to
top) of 40 iterations executed by the MGAS. It can be seen that each iteration
contains more than one trial. The piece-wise line connects points with the best
function value obtained during that iteration.

In order to conclude this section it should be noticed that Theorem 3.3 estab-
lishes convergence conditions of infinite sequences of trial points generated by the
algorithm MGAS to any point of the domain [0, 1] and therefore to the global min-
imum points x∗ of the one-dimensional function f(x). The Peano curves used for
reduction of dimensionality establish a correspondence between subintervals of the
curve and the N -dimensional subcubes of the domain [a, b] ⊂ RN . Every point
on the curve approximates an ε-neighborhood in [a, b], i.e., the points in the N -
dimensional domain may be approximated differently by the points on the curve in
dependence on the mutual disposition between the curve and the point in [a, b] to
be approximated (see [38, 40]). Here by approximation of a point y ∈ [a, b] we mean
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Figure 7: Trial points produced by the MGAS and Peano curve approximation of level
5 while optimizing Function no. 6, class 1, generated by the GKLS-generator; Table
1 describes this and other classes of test functions used in the numerical experiments.

the set of points (called images) on the curve minimizing the Euclidean distance
from y. It was shown in [38, 40] that the number of the images ranges between 1
and 2N . These images can be located on the curve very far from each other despite
their proximity in the N -dimensional space. Thus, by using the space-filling Peano
curve pM(x), the global minimizer y∗ in the N -dimensional space can have up to 2N

images on the curve, i.e., it is approximated by n, 1 ≤ n ≤ 2N , points y∗i such that

y∗i = pM(x∗i), ‖y∗i − y∗‖ ≤ ε, 1 ≤ i ≤ n,

where ε > 0 is defined by the space-filling curve. Obviously, in the limiting case,
when M → ∞ and the iteration number k → ∞, all global minimizers will be found.
But in practice we work with a finite M < ∞ and k < ∞, i.e., with a finite trial
sequence, then to obtain an ε-approximation y∗i of the solution y∗ it is sufficient to
find only one of the images x∗i on the curve. This effect may result in a serious
acceleration of the search (see [40] for a detailed discussion).

4 Numerical experiments

In this section, we present results of numerical experiments performed to compare
the new algorithm MGAS with the original DIRECT algorithm proposed in [15] and
its locally biased modification LBDirect introduced in [7, 8]. These methods have
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Figure 8: The one-dimensional function corresponding to the curve shown in Fig. 7
and the respective trial points produced by the MGAS at the interval [0, 1]; The lower
part of the Figure shows the dynamics of 40 iterations executed by the MGAS.

been chosen for comparison because they, just as the MGAS method, do not require
the knowledge of the objective function gradient and work with several Lipschitz
constants simultaneously. The Fortran implementation of the two methods described
in [7] and downloadable from [6] have been used in both methods.

To execute numerical experiments with the algorithm MGAS, we should define
its parameter ξ from (3.3). In DIRECT (see [15]), where a similar parameter is used,
the value ξ is related to the current minimal function value fmin(k) and is fixed as
follows:

ξ = ǫ|fmin(k)|, ǫ ≥ 0. (4.1)

The choice of ǫ between 10−3 and 10−7 has demonstrated good results for DIRECT
on a set of test functions (see [15]). Since the value ǫ = 10−4 has produced the

17



−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 9: A function produced by the GKLS-generator shown together with a
piecewise-linear approximation to Peano curve used for optimization.

most robust results for DIRECT (see, e.g., [7, 8, 15]), exactly this value was used in
(4.1) for DIRECT in our experiments. The same formula (4.1) and the same value
ǫ = 10−4 were used in the new algorithm, too.

The series of experiments involves a total of 800 test functions in the dimensions
N = 2, 3, 4, 5 generated by the GKLS-generator described in [9] and download-
able from http://wwwinfo.deis.unical.it/∼yaro/GKLS.html. More precisely, eight
classes of 100 functions have been considered. The generator allows one to con-
struct classes of randomly generated multidimensional and multiextremal test func-
tions with known values of local and global minima and their locations. Each test
class contains 100 functions and only the following five parameters should be defined
by the user:

N – problem dimension;
m – number of local minima;
f ∗ – value of the global minima;
r∗ – radius of the attraction region of the global minimizer;
d – distance from the global minimizer to the vertex of the paraboloid.
The generator works by constructing in RN a convex quadratic function, i.e., a

paraboloid, systematically distorted by polynomials. In our numerical experiments
we have considered classes of continuously differentiable test functions with m = 10
local minima. The global minimum value f ∗ has been fixed equal to −1.0 for all
classes. An example of a function generated by the GKLS can be seen in Fig. 9.

By changing the user-defined parameters, classes with different properties can be
created. For example, a more difficult test class can be obtained either by decreasing
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Class Difficulty N m f∗ d r∗

1 Simple 2 10 -1.0 0.90 0.20
2 Hard 2 10 -1.0 0.90 0.10
3 Simple 3 10 -1.0 0.66 0.20
4 Hard 3 10 -1.0 0.90 0.20
5 Simple 4 10 -1.0 0.66 0.20
6 Hard 4 10 -1.0 0.90 0.20
7 Simple 5 10 -1.0 0.90 0.40
8 Hard 5 10 -1.0 0.90 0.30

Table 1: Description of 8 classes of test functions used in experiments

Class 1 Class 5

η Average Maximal η Average Maximal

10
−4

174.24 565 10−8 12174.20 171561

10−6 227.60 889 10
−10

10674.30 95467

10−8 268.98 1279 10−12 15145.12 143075

Table 2: Sensitivity analysis for the parameter η from (3.7)

the radius r∗ of the attraction region of the global minimizer or by increasing the
distance, d, from the global minimizer to the paraboloid vertex. In this paper, for
each dimension N = 2, 3, 4, 5, two test classes where considered: a simple one and
a difficult one, see Table 1 that describes the classes used in the experiments. Since
the GKLS-generator provides functions with known locations of global minima, the
experiments have been carried out by using the following stopping criteria.

Stopping criteria. If y∗i denotes the global minimizer of the i-th function of
the test class, 1 ≤ i ≤ 100, then the search terminates either when the maximal
number of trials Tmax, equal to 1000000, was reached or when a trial point falls in a
ball Bi having a radius ρ and the center at the global minimizer of the i-th function
of the class, i.e.,

Bi = {y ∈ RN : ‖y − y∗i ‖ ≤ ρ}, 1 ≤ i ≤ 100. (4.2)

All the methods under comparison can execute p(k) > 1 trials in the course of
each k-th iteration, therefore, when condition (4.2) is satisfied at an iteration k∗

the number of trials executed to solve the problem is calculated as
∑k∗

k=1 p(k). The

radius ρ from (4.2) in the stopping rule was fixed equal to 0.01
√
N for classes 1–6

and 0.02
√
N for classes 7 and 8.

In order to show the influence of the parameter η introduced in (3.7) on the
search, a sensitivity analysis has been performed. Two different classes of test
functions have been considered: class 1 in N = 2 and class 5 in N = 4 (see Table 1).
Three different values of the parameter η were used for each class. In Table 2,
the average and the maximal number of function evaluations calculated in order to
satisfy the stopping rule for all 100 functions of each class are reported. Notice that
the best results (shown in bold) were obtained for η = 10−4 for the class 1, and for
η = 10−10 for the class 5. In the case of dimension N = 2, values of η smaller than
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Class Average number of trials Maximal number of trials
DIRECT LBDirect MGAS DIRECT LBDirect MGAS

1 208.54 304.28 174.24 1159 2665 565
2 1081.42 1291.70 622.60 3201 4245 1749
3 1140.68 1893.02 1153.64 13369 20779 5267
4 >42334.36 5245.72 2077.60 1000000(4) 32603 9809
5 >47768.28 21932.94 9961.70 1000000(4) 179383 95467
6 >95908.99 74193.53 21687.76 1000000(7) 372633 319493
7 >33878.09 31955.06 7306.04 1000000(3) 146623 36819
8 >149578.61 >93876.77 23460.00 1000000(13) 1000000(1) 96287

Table 3: Results of experiments

10−4 produce an intensification of the search in subintervals already well-explored.
Conversely, when the dimension N increases the reduced function in one dimension
becomes more oscillating and it is necessary to reduce the value of the parameter η.
In general, if a too small value of the parameter is applied, the algorithm continues
the search in parts of the domain that were already well-explored during the previous
iterations. Obviously, if a too large value of η is used it happens that from a certain
iteration onward, no interval is selected for the subdivision and the global solution
can be lost.

Taking into account results of the sensitivity analysis, the following values have
been chosen: η = 10−4 for classes 1 and 2, η = 10−7 for the class 3, η = 10−8 for the
class 4 and η = 10−10 for the classes 5–8.

In the algorithm MGAS, an M-approximation of the Peano curve has been con-
sidered. In particular the level M of the curve must be chosen taking in mind the
constraint NM < G, where N is the dimension of the problem and G is the number
of digits in the mantissa depending on the computer that is used for the implemen-
tation (see [34] for more details). In our experiments we had G = 52, thus the value
M = 10 has been used for all the classes of test functions.

Results of numerical experiments with the eight GKLS test classes from Table 1
are shown in Table 3. The columns “Average number of trials” in Table 3 report the
average number of trials performed during minimization of the 100 functions from
each GKLS class. The simbol “>” reflects the situations when not all functions of
a class were successfully minimized by the method under consideration: that is the
method stopped when 1000000 trials had been executed during minimizations of
several functions of this particular test class. In these cases, the value 1000000 was
used in calculations of the average value, providing in such a way a lower estimate of
the average. The columns “Maximal number of trials” report the maximal number of
trials required for satisfying the stopping rule for all 100 functions of the class. The
notation “1000000 (j)” means that after 1000000 function evaluations the method
under consideration was not able to solve j problems.

Table 4 reports the ratio between the maximal (and average) number of trials
performed by DIRECT and LBDirect with respect to the corresponding number of
trials performed by the new algorithm MGAS. It can be seen from Table 4 that
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the algorithm MGAS outperforms both competitors significantly on the given test
classes.

Class Average number of trials Maximal number of trials
DIRECT/MGAS LBDirect/MGAS DIRECT/MGAS LBDirect/MGAS

1 1.20 1.75 2.05 4.72
2 1.74 2.07 1.83 2.43
3 0.99 1.64 2.54 3.95
4 >20.38 2.52 >101.95 3.32
5 >4.80 2.20 >10.47 1.88
6 >4.42 3.42 >3.13 1.17
7 >4.64 4.37 >27.16 6.82
8 >6.38 >4.00 >10.39 >10.39

Table 4: Speed up obtained by MGAS with respect to its competitors

Figure 10 shows a comparison of the three methods using the so called operating
characteristics introduced in 1978 in [14] (see, e.g., [40] for their English-language
description). These characteristics show very well the performance of algorithms
under the comparison for each class of test functions. On the horizontal axis we have
the number of function evaluations and the vertical coordinate of each curve shows
how many problems have been solved by one or another method after executing
the number of function evaluations corresponding to the horizontal coordinate. For
instance, the first graph in the right-hand column (N = 2, class 2) shows that
after 1000 function evaluations the LBDirect has found the global solution at 33
problems, DIRECT at 47 problems, and the MGAS at 84 problems. Thus, the
behavior of an algorithm is better if its characteristic is higher than characteristics
of its competitors. In Figure 10, the left-hand column of characteristics, the behavior
of algorithms MGAS, DIRECT, and LBDirect on the classes 1, 3, 5, and 7 is shown.
The right-hand column presents the situation when the more difficult classes 2, 4,
6, and 8 have been used.

5 A brief conclusion

The global optimization problem of a multi-dimensional, non-differentiable, and
multiextremal function has been considered in this paper. It was supposed that the
objective function can be given as a ‘black-box’ and the only available information
is that it satisfies the Lipschitz condition with an unknown Lipschitz constant over
the search region being a hyperinterval in RN .

A new deterministic global optimization algorithm called MGAS has been pro-
posed. It uses the following two ideas: the MGAS applies numerical approximations
to space-filling curves to reduce the original Lipschitz multi-dimensional problem to
a univariate one satisfying the Hölder condition; the MGAS at each iteration uses a
new geometric technique working with a number of possible Hölder constants chosen
from a set of values varying from zero to infinity evolving so ideas of the popular
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Figure 10: Operating characteristics for the methods MGAS, DIRECT, and LBDi-
rect for the eight classes from Table 1. The left-hand column presents results for the
simple classes 1,3,5,7, from top to bottom. The right-hand column shows results for
the difficult classes 2,4,6,8. 22



DIRECT method to the field of Hölder global optimization. Convergence conditions
of the MGAS have been established. Numerical experiments carried out on 800 of
test functions generated randomly have been executed.

It can be seen from the numerical experiments that the new algorithm shows
quite a promising performance in comparison with its competitors. Moreover, the
advantage of the new technique becomes more pronounced for harder problems.
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tions, BIT, 42(1), 119–133 (2002).

[22] Lera D. and Sergeyev Ya.D., An information global minimization algorithm
using the local improvement technique, J. of Global Optimization, 48, 99–112
(2010).

[23] Lera D. and Sergeyev Ya.D., Lipschitz and Hölder global optimization using
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