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Abstract

Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-
state operation. The evolution of the current spatial profile is related to the evolution of the poloidal
magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial
differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the
dynamic optimization problem of attaining the best possible current spatial profile during the ramp-
up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary
differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the
control parameterization method with a novel time-scaling transformation to obtain an approximate
optimal parameter selection problem, which can be solved using gradient-based optimization techniques
such as sequential quadratic programming (SQP). This control parameterization approach involves
approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points
are decision variables to be optimized. We show that the gradient of the objective function with respect
to the decision variables can be computed by solving an auxiliary dynamic system governing the state
sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based
on experimental data from the DIII-D tokamak in San Diego, California.

Keywords: Nuclear Fusion, Current Profile Control, Control Parameterization, Time-scaling

Transformation

1. Introduction

Fusion is a nuclear reaction in which multiple atomic nuclei collide under very high energy and
join together to form a combined atomic nucleus that is lighter than the total mass of the reactants,
with the excess mass converted into energy according to Einstein’s mass-energy theory. Nuclear fusion
reactions occur naturally in the core of the Sun and generate a continuous supply of energy for the
universe. Nuclear fusion was first accomplished in the laboratory in the 1950s, and since then has
shown considerable promise as a safe, clean and potentially inexhaustible energy production method.

As such, it could become the best compromise between nature and the energy needs of mankind.
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Figure 1: Schematic of a tokamak chamber and magnetic profile (Source: EFDA-JET).

In the core of the Sun, gravitational forces can compress matter (mostly hydrogen) up to very high
densities and temperatures, high enough to ignite fusion reactions. The Sun’s gravitational field can
maintain the thermonuclear reactions at a controlled and steady rate, by keeping the enormous thermal
expansion forces balanced. However, fusion on Earth must be controlled by means other than gravity,
as it is impossible to attain in the laboratory density levels near those in the center of the Sun. Hence,
for nuclear fusion reactors, it is necessary to work at low gas densities, but at temperatures considerably
higher than the temperature in the center of the Sun. At these extremely high temperatures, all matter
is in the plasma state, which is considered the fourth state of mass. Fortunately, a torus-shaped device
called a tokamak (shown in Figure 1) can be used to confine the plasma via a helical magnetic field.

Control engineering is considered one of the three critical technologies for achieving viable nuclear
fusion power?. Accordingly, it has become an important area for multidisciplinary collaboration in the
fusion research community. Many exciting research topics are surveyed in the book [2] and two special
issues of IEEE Control Systems Magazine*. Among various challenging research issues, the control of the
current profile in tokamak plasmas is known to be critical to plasma confinement, magnetohydrodynamic
stability and effective steady-state operation (e.g., [17] and [22]).

The evolution in time of the current profile is related to the evolution of the poloidal magnetic flux,
which is modeled by the magnetic diffusion equation, a parabolic partial differential equation (PDE)
in the normalized cylindrical coordinate system. The problem of manipulating the current profile to
achieve high performance while satisfying safety requirements has attracted considerable attention in

the literature.

Refer to E. Synakowski’s presentation titled “Fusion Energy Research: On Our Science, Leverage and Credibility” at
the University Fusion Association General Meeting, held during the 51st Annual Meeting of the American Physical
Society Division of Plasma Physics (November 2-6, 2009, Atlanta, Georgia, USA).

4 Refer to papers in the special issues titled “Control of Tokamak Plasmas: Part I” (October 2005) and “Control
of Tokamak Plasmas: Part II” (April 2006) in IEEE Control Systems Magazine, organized by A. Pironti and M.
‘Walker.



Ramp-up Phase Flat-top Phase

Current

Plasma Current

Time

Figure 2: The plasma current evolution can be divided into two phases — ramp-up phase and flat-top phase.

The pioneering work in this area is due to Moreau, who in [15] derived empirical models for current
profile evolutions using system identification techniques, and then used these models to synthesize a
controller for safety factor profile manipulation. This approach, called the data-driven modeling method,
does not rely on first principles to derive the model, but rather involves constructing the model by
fitting observed data from experiments (e.g., JT-60 in Japan and DIII-D in the USA [16]), where the
observed data is generated by input signals covering a sufficiently broad range of frequencies. As an
alternative approach, it is also possible to use PDE models derived from first principles for the control
and optimization of internal spatial profiles. This was a popular method in the 1970s and 1980s; one
can refer, for example, to the books [4] and [26]. From the viewpoint of distributed parameter systems
governed by PDEs, several advanced control and optimization approaches have been discussed based
on new developments in internal diagnostics and plasma actuation. Simplified distributed parameter
system models have been studied in [18] and [27] toward current profile control at DIII-D and Tore
Supra, respectively. In order to achieve an optimal current evolution in the plasma discharges of the
ramp-up phase, various dynamic optimization techniques are applied to obtain numerical solutions in
an open loop fashion, such as [7], [8], [19], [28]. For online implementations of optimized actuation
commands, feedback strategies (e.g.,[5, 6, 20, 29]) are necessary to attenuate external perturbations
and system uncertainties. However, many challenging research problems still remain open.

The plasma transport is governed by a set of PDEs (magnetic flux, temperature and density profiles
of both electrons and ions) that are nonlinearly coupled (with coupling strength depending on plasma
scenarios). In the papers by Witrant [27] and Ou [18], the mathematical formulation for the distributed
parameter system framework is discussed, for both the Tore Supra and the DIII-D experimental toka-
maks. In these papers, only the magnetic flux PDE is considered and scaling laws are used to account
(in an approximate fashion) for the effects of the other PDEs. In the present work, using the framework
proposed by Witrant [27] and Ou [18], we consider the problem of obtaining a specific desired output

current profile at the end of the current ramp-up phase, as shown in Figure 2. This problem can be



formulated as a finite-time dynamic optimization problem for the magnetic flux diffusion PDE system,
which is a type of a bilinear infinite-dimensional system, i.e., the diffusivity control term appears in
the second-order elliptic operator. We first discretize the PDE model over the state space using the
finite element method to yield a finite-dimensional system of ODEs. The motivation for performing this
discretization procedure is that, in general, it is much easier to solve the ODE-constrained optimiza-
tion problem rather than the original PDE-constrained optimization problem. After using the finite
element method to obtain a finite-dimensional system of ODEs, we then apply the control parameter-
ization approach to obtain an optimal parameter selection problem [23]. This involves approximating
the control function by a linear combination of temporal basis functions (usually simple characteristic
functions, polynomials or splines) with the constant coefficients to be determined by numerical opti-
mization procedures such as sequential quadratic programming (SQP). This methodology follows the
discretize-then-optimize approach [24] rather than the optimize-then-discretize approach. More specifi-
cally, discretization techniques are first applied to derive an approximate optimization problem, which is
then solved using various optimization techniques. The numerical convergence of suboptimal solutions
generated by the discretize-then-optimize approach remains a challenging issue, much more difficult
than the convergence analysis for the numerical discretization of PDEs [11, 14].

This paper is organized as follows. The formulation of the PDE optimization problem for the cur-
rent profile system is introduced in Section 2. In Section 3, we use the Galerkin method to obtain
a finite-dimensional model derived from the original PDE system. In Section 4, we use the control
parameterization technique and the time-scaling transformation to approximate the control input vari-
ables by linear combinations of basis functions, thereby obtaining an approximate problem that can
be solved using numerical optimization methods such as SQP. In Section 5, numerical results for a
plasma discharge from the DIII-D tokamak (under shot #129412) are presented. Finally, in Section 6,

we conclude the paper by summarizing our results and suggesting topics for further research.

2. Problem Formulation

The dynamic behavior of the magnetic-flux profile ¥ (p,t) is described by the following parabolic
PDE [28]:

L ov(pt)  wi(t) [ . 0Y(p,t) .
T =0 2 an() 2] 4 valpa) )
with the Neumann boundary conditions
op(0,t) - OP(Lt)
Tﬁ =0, T[) = u3(t), (2)

where ¢ denotes time; p denotes the normalized radius; and (p,t) denotes the poloidal magnetic flux
around the tokamak. Moreover, ¥1(p), ¥2(p) and D(p) are given functions of p that depend on the
particular tokamak device under consideration and can be identified offline using experimental data.

The auxiliary functions wu;(t), us(t) and ug(t) depend on the total power P(t), the total plasma current



1(t), and the average density 7i(¢) according to the following equations:

ui(t) = n(t)2I(t) 2 P(t)" 4, (3a)
us(t) = I(t) "L P(t)?, (3b)
us(t) = KI(t), (3¢)

where k is a given constant. Note that 7(t), I(t), and P(t) are the open-loop input signals for the

physical actuators in the tokamak. Furthermore, the initial condition for the magnetic flux profile is

given by
¥(p,0) = tho(p)- (4)
For notational simplicity, we define
o) au(pt)
qpt(th) - 6t 9 pr(p?t) - aﬁ

Then, the PDE system defined by equation (1) with boundary conditions (2) and initial condition (4)

can be written as

Ye(p:t) _ w(t)

R~ PP@HB ]+ V2(P)ua(h), (52)
Up(0,6) =0, Yp(L,t) = us(t), tel0,T], (5b)
$(p,0) = to(p), pe01]. (5¢)

In [21], we proposed a numerical optimization approach that involves solving (5) using the finite element
method. However, this approach sometimes struggles to handle the Neumann boundary conditions (5b).

Thus, in this paper, we introduce a new variable w(p,t) defined by

w(p.t) = pD(p) L.
Then the PDE system (5) becomes
! 0,t) = u ﬁl(ﬁ)cw D u D D) ~ a
5000 =00 | MP.0] ) 1200, (69)
w(oat) =0, w(lat) = D(l)u3(t)a (6b)
oy aryga O%0(P)
w(p,0) = pD(p) 60,6 : (6¢)
where A )
apyt) = 2R .0 = P00

In this new system, the boundary conditions (6b) are Dirichlet conditions rather than Neumann condi-

tions.



Our aim is to choose the open-loop input signals 7i(t), I(t) and P(t) judiciously so that the output
profile w(p, t) at the terminal time ¢ = T is as close as possible to a given target profile wq(p), which is
related to the desired output poloidal flux derivative. Thus, the problem is to minimize the following

objective functional:

7= 5 [ D)~ ) (7)

The open-loop actuator input signals must satisfy the following bound constraints:

ﬁmin S ﬁ(t) S max» Imin S I(t) S Imaxa Pmin S P(t) S Pmaxa (8)

3l

where the lower and upper bounds fimin, Tmax, Imins Imax, Pmin, Pmax are given constants. Furthermore,

the actuator input signals must also satisfy the initial conditions

FL(O) :ﬁ’Oa I(O) :IOa P(O) :P07 (9)
and the terminal conditions
ﬁgin S ﬁ(T) é ﬁﬁax? Ir,lrzln < I( ) < Irﬂaxv Prz:m S P( ) < Prz:axv (10)

r It . PL

min? max’ min’ “max’ min’

PT

where the initial values fg, Iy, Py and the terminal bounds n., e

are given.
Any vector-valued continuous function 8 = (7, I, P) : [0,T] — R3 that satisfies constraints (8)-(10) is
called an admissible control. Let © denote the class of all such admissible controls.

We now state our dynamic optimization problem formally as follows.

Problem Py. Given the PDE system (6), find an admissible control @ = (i, I, P) € © such that the

cost functional (7) is minimized.

3. Finite Element Approximation

In this section, we apply the Galerkin finite element scheme [25] to approximate the PDE model (6)
by a finite-dimensional ODE system [1, 24]. This yields a new dynamic optimization problem governed
by ODEs, for which an efficient computational technique will be developed in Section 4.

Let n(p) be a trial function. Multiplying both sides of (6a) by pn(p) and then integrating the

resulting equation over [0, 1] gives

(Dt~ fmmﬂf?m@mmﬂ

@fémwwmwxnzmm (11)

F



Using integration by parts to simplify the first integral on the right-hand side of (11), we obtain

Dp Hdp = (191 (Vs ()wp(1,£) — (00 (s (E)esp (0.
oy ﬁl;ﬁ)wﬁm, Hin(d) + ol ()dp (12)

) [ (o) 190200 4p

Now, consider the partition [(i — 1)/N, i/N], i = 1,2,..., N, of the spatial domain [0,1]. We assume
that the magnetic flux profile w(p,t) can be approximated by a linear combination of basis B-spline

functions B;(p), i = 1,2,..., N, where §;(p) corresponds to the ith partition point. Mathematically,

N
w(ﬁv t) ~ wN([)’ t) = sz(t)ﬁz(ﬁ)v (13)

where z;(t),i = 1,2,..., N, are weighting functions. We impose the conditions 8;(0) =0,i=1,2,..., N,
to ensure that the approximation (13) satisfies the left boundary condition in (6b). For the right

boundary condition in (6b), we apply the well-known penalization method [3], which involves replacing
w(1,t) = D(1)us(t),

with
w(1,t) + ews(1,t) = D(1)us(t), (14)

where € is a small perturbation coefficient. By substituting (14) into (12), we obtain

DG p )dp = 177(1)191(1)”&1 () [D(1)us(t) — w(1,t)] — n(0)d1(0)us (t)ws(0,t)

~uo) | D). 000(0) + ol (9 (15)
+unt) [ on(a) 9190200 40

Hence, by choosing n(p) = 8;(p), j = 1,2,..., N, as the trial functions and applying approximation
(13), equation (15) becomes

Z [/0 Dzﬁ)ﬁi(ﬁ)ﬁj(ﬁ)dﬁ} oi(t) = éﬁj(l)ﬂl(l)m(t) D(1)us(t) — in(t)/@i(l)]

N 1
—unt Z[/ A )[ﬂj()+ﬁﬁj(ﬁ)}dﬁ] r0)-+ ) [ 085(0) 1 (2)90), 0o

(16)




We introduce the following notation:

where 4, = 1,..., N. Then equation (16) can be rewritten in matrix form as follows:
Az(t) = —(B+ C + F)ui(t)x(t) + ua(t)d + up (t)us(t)e,

where
x(t) = [z1(t), ..., xn(t)],

A=[Ay], B=[Byl, C=I[Cy], F=][Fy,
d=[di,...,dy]", e=les,...,en]".
Recalling the initial condition (6¢), we must have

N

= 3" #(0)8:(7)- (17)

i=1

0o (p)

w(p.0) = PD() 5

We multiply both sides of (17) by ;(5) and then integrate over p € [0, 1] to obtain

N 1 1 N
S| [ s0800d0| w0y = [ 50018, 222 g, (18)
i 0 0 3[)

Define 1
A, = / B:(9)B;(5)dp,

o(p) ..
Y dp,

1
by = /0 D)5 (5)

where 4,5 = 1,2,...,N. Then equation (18) can be written as Az(0) = b, where A = [4;;] and
b = [bo,b1,...,bx]". By following the same arguments as in [10], it can be shown that matrices A
and A are nonsingular. Consequently, under approximation (13), the PDE system (6) reduces to the

following finite-dimensional ODE system:

()= —A Y B+ C + F)uy(t)z(t) +ua(t) A~ d + up (us(t) A e, (19a)

z(0) = A~ 'b. (19b)



Substituting (3) into (19), we obtain

@(t) = —n)2I(t) 2 P{#) TA Y B+ C + F)z(t)
+ I PP AT N+ ka(t)2I(H) 2 P(t) T A e, (20a)
z(0) = A~ 1p. (20b)

Now, based on (13), consider the following expansion for the desired output profile wq(p):

N
wa(p) = ={B:(p), (21)
i=1
where z¢, i = 1,2,..., N, are weighting coefficients. To obtain the values of x¢, we multiply both sides

of (21) by B;(p) and then integrate over p € [0,1] to obtain

1 N 1
[ asiorio =3 | [ 6:018,000] . (22)
i=1
Define
1
by = [ walp)8(p)dp,
0
where j =1,2,..., N. Then we can rewrite (22) as
b= Az
where b = [51,52, .. .,EN]T, and z¢ = [z{,24,...,24]T. Therefore, the weighting coefficients for the
desired output profile are given by
x? = A 1h. (23)

Using the expansion (13), the actual output profile w(p,T") at the terminal time 7" is approximated as

follows:

wl(p.T) = Y wi(T)5i(p) (24)

Substituting (21) and (24) into the cost functional (7), we obtain

1 2
smrp =g [ [Zm(ﬂ—x?mi(m] @

3 | 3w (T) (8, (D) — i

i=1 j=1

—_

N N 1
=522 (@(1) —ai) { /O ﬂxﬁ)ﬂj(ﬁ)dﬁ] (a;(T) — z).

i=1 j=1



Hence, the cost functional (7) can be rewritten as
J(.1,P) = S [2(T) — ] Alz(T) — 2, (25)

where ¢ = A~'b as in (23). Problem Py, the original PDE dynamic optimization problem, is now

approximated by the following ODE dynamic optimization problem, which we call Problem P .

Problem Py. Given the ODE system (20), find an admissible control @ = (7, I, P) € © such that the

cost functional (25) is minimized.

4. Numerical Solution Procedure

4.1. Piecewise-Linear Control Parameterization

To solve Problem Py, we will apply the control parameterization method [9, 23], whereby the
tokamak open-loop input signals 7(t), I(t), P(t) are approximated by piecewise-linear functions. More
specifically, we first subdivide the time horizon [0, T into p subintervals [yx_1,7%), K = 1,2,...,p, where
v = 0 and ~, = T, and the interior knot points v;, £ = 1,2,...,p — 1, are free decision parameters.

We impose the following constraints:
Tmin < Ve — Vk—1 < Tmax, k= la 25 Y 2 (26)

Here, mmin > 0 and Typax > 0 are the minimum and maximum subinterval durations, respectively. We

approximate the derivative of the vector-valued control function 8 = (7, I, P) as follows:

é(t)zak7 te [’ykflﬂlyk)7 k:1727"'7p’ (27)

where o = [0}, 0k, 0k]T. Here, o} is an approximation of the derivative of n(t) on [yr_1,7%), 0% is an

approximation of the derivative of I(t) on [yx_1,7%), and o¥ is an approximation of the derivative of

P(t) on [yk—1,7%). We can express (27) as follows:

p
0(t) = > 0" X1 (t), tE€[0,T], (28)
k=1

where x| : R — R is the indicator function defined by

Ve—157k)

17 lfte [7/@—177/@)7

Xpyi—r.) (8) =
0, otherwise.

According to (28), 6(t) is approximated by a piecewise-constant function with discontinuities at the
internal knot points v1,7z,...,vp—1. Thus, 8(t) is piecewise-linear with jumps in the derivative at

V15Y2s - - Yp—1. We introduce new state variables vn11(t) = (t), vn12(t) = I(t) and vn43(t) = P(t)

10



governed by the following dynamics (for i = 1,2, 3):

p
®N+i(t) = Z fo['m—l,w)(t% te [O’T]’ (293)
k=1
uN+i(0) = U?V«H” (29b)

where U?VH = 7 is the initial value of n, UJOVJFQ = Iy is the initial value of I, and U?V+3 = P, is the
initial value of P (recall the initial conditions (9)). Let v}, (:|o,7), v} 5 (-lo,7), v} 5(-|o, ) denote

the solution of system (29), where

Y= [717725"-a7p—1]—r

Then, the dynamic system (20) becomes

(t) = —uns1(tlo,y) 2onsa(tlo,y) " Fonis(tlo,y) TATY B + C + F)z(t)
+onsa(tlo,y) tunis(tlo,v) T AT

3
2

_1 _3 4
+ ronp(tlo,v)2onta(tlo,v) " 2ungs(tlo,v) T A e, (30a)

xz(0) = A~ 'b. (30b)

Let «P(-|o, ) denote the solution of system (30). To determine x(-|o,~), we can solve (29) and (30)
sequentially over the subintervals [yg—1,7%), K =1,2,...,p.

Recall that the open-loop actuator input signals 7(t), I(t), and P(t) must satisfy the bound con-
straints (8). Thus, we impose the following continuous state inequality constraints on the new state

variables vy 41, Uny2 and vy43:

Timin < Vx4 (El0,Y) < Aimax,  t € [0,7T7, (31a)
Lnin < Uﬁuz(ﬂa,'y) < Inax, t€1[0,7], (31b)
Pmin < U%+3(t|0',’7) S Pmaxa te [OvT] (31C)

We also impose the following constraints corresponding to (10):

nin < Vi1 (T107,77) < Tiaes (32a)
Ir]r:in S U%+2(T|077) S Irﬂax? (32b)
Pr,z;in S U]R/'+3(T|U77) S Pnz;ax' (32C)
Clearly, since un11(t), vn+2(t) and vyy3(t) are piecewise-linear with break-points at t = v1, 72, ..., Yp—1,

11



constraints (31) and (32) can be combined to yield

Timin < V41 (W0, Y) < fimax, E=0,1,...,p—1, (33a)
Inin S OR 5 (Wk10,Y) € Imax, k=10,1,...,p—1, (33b)
Prin < VR4 3(W16,Y) < Puax, k=0,1,...,p—1, (33¢)
MaX (nins Tnin) < VR 1(T107,77) < Min(Tomax, Fax): (33d)
max(Iiin, Irjr:in) < U;;VJFQ (Tlo,v) < min(/max, Iiax)’ (33e)
max(Prin, Phin) < VR 53(T|o,y) < min(Prax, Phax)- (33f)

These constraints are special cases of the well-known canonical form in the optimal control literature
(see 9)).

Now, under the approximation (28), the cost functional (25) becomes
1 _
T (o,7) = 5[2"(Tlo,v) - 2] Ala? (T]e, ) — 2. (34)

We now state the approximate optimal parameter selection problem as follows.

Problem P%,. Given the ODE system (29)-(30), find a control parameter vector o and a switching
time vector v such that the cost functional (34) is minimized subject to constraints (26) and (33).

Convergence results showing that the optimal cost of Problem PX; converges to the optimal cost of

Problem Py as p — oo are given in [11, 14].

4.2. Time-scaling Transformation

In the standard control parameterization method, Tmin = Tmax, 1-€., the subinterval durations (and
therefore the control switching points) are fixed. For more accurate results, the control switching points
should be variable along with the control parameters [9]. However, it is well known that variable
switching points cause computational difficulties [12]. To overcome these difficulties, we will employ
the so-called time-scaling transformation [9, 12] to map the variable switching points to fixed points in
a new time horizon. This yields a new optimization problem in which the switching times are fixed.

To apply the time-scaling transformation, we first introduce a new time variable s € [0,p]. Then,

we relate the new time variable s to the old time variable ¢ through the following equations:

dfj(;) =C, selk—1k), k=12_..p, (35)
£0) = 0, (36)
Hp) =T, 37)

where ( = v — k-1, k = 1,2,...,p, are new decision parameters. Note that equations (35)-(37) define

t = t(s) as a non-negative and non-decreasing piecewise-linear function of s.

12



Integrating (35)-(37) gives

s Ls]
t(s):/o d?il(n) = Clajra(s = [3)) +ng, s € [0,p)].

Hence,

ZQ Z —e1) =, k=0,1,....p. (38)

1=1
This shows that s = k in the new time horizon corresponds to ¢ = t; in the original time horizon.

Let ¢ = [(1,(a,- - ,CP]T. Clearly, the vector ¢ € RP must satisfy the following constraints:

Tmin < Ck < Tmax, k= ]-7 23 Y 2 (3934)

G+t +G=T. (39b)

Let &(s) denote x(t(s)). Then under the time-scaling transformation (35)-(37), the dynamics (30)

become
Z(s) = —CkﬁN+1(S)%@N+2(S)_%5N+3(s)_%A_l(B +C + F)&(s) + ChOni2(s) onia(s)2 A7
+ KCON41(5) 2 On42(s) 2Onya(s) TAe, s€k—1,k), k=1,2,...,p, (40a)
z(0) = A~ 'b. (40b)

Moreover, the dynamics (29) become (for i = 1,2, 3):

Onyi(s) =Gk, selk—1,k), k=12,...,p, (41a)

On4i(0) = VR4 (41b)

In view of (38), the canonical constraints (33) become

Aimin < On+1(k) < fimax, k=0,1,...,p—1, (42a)
Inin < Ong2(k) < Ipax, k=0,1,....,p—1, (42b)
Poin < On13(k) < Poax, k=0,1,...,p—1, (42c¢)
max(Mmin, mm) <ons1(p) < min(ﬁmax,ﬁflax)7 (42d)
max(lnin, Iyin) < On-42(p) < min(lnas, L), (42e)
max(Prin, PLi) < On13(p) < min(Poax, PL,.). (42f)

Let @P(-|o,¢) and O, (-0, C), 0} 45(0,C), DR 5(-|o,{) denote the solutions of systems (40) and
(41) corresponding to o € RP" and ¢ € RP.

Under the time-scaling transformation defined by (35)-(37), the cost functional (34) becomes

JP(e,¢) = [fv”(plo Q) — 2" Al* (plo, ) — =). (43)

13



The following optimal parameter selection problem is equivalent to Problem P%;.

Problem QY. Given the ODE system (40)-(41), find a control parameter vector o and a duration
vector ¢ such that the cost functional (43) is minimized subject to the constraints (39) and (42).

4.3. Solving Problem QY

Problem QX is an optimal parameter selection problem in the so-called canonical form [23]. In
principle, such problems can be solved as nonlinear optimization problems using the SQP method.
However, to do this, we need the gradients of the cost functional (43) and the canonical constraints (42)
with respect to the decision parameters. Since (42) and (43) are implicit, rather than explicit, functions
of o and ¢, computing their gradients is a non-trivial task. We now show that these gradients can be
computed using the sensitivity method described in [13].

We first define the state variations with respect to oF and (. as follows:

§(slor,¢) = 22 LITC). (44)
and
P
P (50, ¢) = P, (15)
Furthermore, define
9(&(s), On11(5), On42(s), On4a(s) = —On11(5) 2 Onsa(s) 2 Onps(s) T AT (B + C + F)a(s)

+ kN 11(8) 2 ON42(8) 2 ON43(s) T A e,
and
g(slo.¢) = g(@(slo, Q). Uy 11 (50, €), U 42 (sl0, ), Uy 5(slo, €))-
Then
og(s|o, . 3. 3 3
% - _UN+1(3)3UN+2(3) gUN+3(=‘>‘) iA (B+C+F),
0 , 3. 1 3. 3 .
0919.8) 35 i)t sa(s) Fonaals) 1A (B + C + F)als)
6UN+1 2
3K 1. 1. _3 .1
+ ?UN+1(5)2UN+2(5) 20n43(s) 1A e,
0 , 3. 3 5. s .
9C102C) 2 s(9) owsals) Finaa(s) 1A (B +C + Fa(s)
a’UN+2 2
~ L. _q R _ 3 . _3 . _3 41
— On+2(8) TON+3(8)2 AT — SON41(5)2 On42(8) 2 ON4s(s) T A e,
9] , 3. 3 _ 3. 1o _
09010 ) 1 (5) o) Fowas () FAT (B + € + F)2(s)
UN+3 4
- 1~ 1 3K _ 3 . 1 7 .1
+ 5 ON+2(5) 7 On+3(5) "2 AT — - On+1(5) 2 On+2(5) 2 Onv4a(s) T A e,
where we have omitted the o and ¢ arguments on the right-hand side for clarity. Foreachl =1,2,...,p,
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it follows from (40) that
#(6le.¢) = (= 1o O+ [ GgliloOdn. € fi=1.) (46)

If k <, then differentiating (46) with respect to UZ’-“ yields

o0xP(sle,¢)  o0zP(l —1|o,¢)
ook ook (
zs 1 ~ _p 47)
) / {Qagma,o 0a(1fo.C) . Vglile, Q) aUN“(mU’C)}dn, seli—1,).
l

oz 80? OUN 14 60?

-1

Since oF is the ith control value on the subinterval s € [k — 1,k), it does not affect the state at time
instants before s € [k — 1, k). Hence, if k > [, we can obtain

92" (slo, €)

k
Oo;

=0, sell—1,0). (48)

By differentiating (47) with respect to s, we obtain

dg(slo,¢) 00y ,i(slo, )
87~7N+i 8crf

d [0 (s|o,¢)\ _ . 9g(slo, ) 9z (s|a,¢)
ds{ dok }_Cl 0z dok

(2

+ G , sEl-11. (49)

Moreover, from (40b),

0x? (0|0, 0 - 1=

It follows from (48)-(50) that, for each £k =1,2,...,p and i = 1,2, 3, the state variation defined in (44)

satisfies the following dynamic system:

‘i 99(slo, ) 1 dg(slo, ¢) 00y i(sle,¢)
ki ) ki ) +1
=" [—1,1 l=Fkk+1,...
d) (S) Cl O% ¢) (S) + Cl aﬁN-Q—i 6Uf ’ s € [ ) )7 k41, » Dy
(51)
with the initial condition
P(s)=0, s<k-1. (52)
Similarly, the state variation defined in (45) satisfies the following dynamic system:
) dg(s|o, dg(sl|o, ¢) 9%, (slo. ¢ dg(s|o, ¢) 0%, 5(slo, ¢
Sok(s):Cl g( ‘N C)on(5)+Cl g(~| C) N-‘rl( | )+<l g(~| C) N+2( | )
ox OUN 41 OCk OUN 42 OCk
9g(s|a, ¢) 0%y, 4(slo, €) (53)
+ LD TN T L Gag(slo,C), sell-10), L=kk+1,....p,
OUN 43 Ik
with the initial condition
@(s)=0, s<k-1, (54)

where J;; denotes the Kronecker delta function. The next two results give explicit formulas for the

derivatives 90}, (-|o,¢)/0a¥ and 00, (|, {)/0C in (51) and (53).

Theorem 1. For eachl =1,...,p, the state variation of O%+i(~|a, ¢) with respect to a¥ on the interval

15



[l —1,1] is given by
Gls— (-1, ifk=1,

VY4 4(slo,
Psilslen0) _ ) k<l "

ok
0, if k> 1

Proof. The theorem is proved by induction. For [ = 1, it follows from (41) that
ﬁ%+i(8|0', C) = U?\H—i + Claz‘l(s - 0) = U?V-i—i + Claz’ls) s € [Ov 1]'

Clearly, for all s € [0, 1],

8U;1.<l+i(5|0-7 C) C157 lf k = 17
Rkt E=T VAL AR
% 0, ifk>1,

which shows that (55) is satisfied for I = 1. Now, suppose that (55) holds for | = g. Then for all

s € [q_1>Q]>
Cls = (g —1)], ifk=q,

00, (sl ¢)
e =1 G, itk <q,

30{?

0, if k> q.

For | = ¢+ 1, we have from (41a),

@%H(SMC) = ﬁﬁeri(q‘O',C) + Cq+103+1(3 —q), sE€ [(Lq + 1]~

Hence, for all s € [¢,q + 1],

<q+1(3_Q)7 1fk:q+17

~p
90y (s, €) _ ) 9% . (dloQ)
dok dof ’

0, ifk>q+1.

ifk<qg+1,

Applying the inductive hypothesis yields

~ Cq+1(87Q)7 lkaQ+17
O0(slo,€)

Dok =4 Cks ifk<q+1,

0, ifk>qg+ 1.

This shows that (55) holds for [ = ¢ + 1. Thus, the result follows from mathematical induction. O

Theorem 2. For eachl=1,...,p, the state variation of 5ﬁr+i('|0'» ¢) with respect to (j, on the interval

16



[l —1,1] is given by

vy ,(slo, €)
. — | ifk <1,

Proof. Similar to the proof of Theorem 1. O

Using Theorems 1 and 2, we can solve (51)-(52) and (53)-(54) numerically to determine the state
variations (44) and (45). The gradient of the canonical constraints (42) can then be immediately

evaluated. For the gradient of the cost functional (43), we have

OI12.C) _ (& (pler, ) — 2T A pler, ).
0o;
and -
91 C) _ ar(plor, ¢) — 2T At (ol €),
9k

where ¢*(-|o,¢) and @*(:|o,¢) denote, respectively, the solutions of (51)-(52) and (53)-(54) corre-
sponding to (o, ). These gradient formulas can be incorporated into existing nonlinear programming
algorithms to solve Problem QX;. In the next section, we validate this approach numerically.

Note that SQP and other nonlinear programming algorithms are designed to find local optima,
and there is no way of guaranteeing that the solutions generated by such algorithms are globally op-
timal. This problem can be addressed by running the optimization algorithm from different starting
points. The time-scaling transformation provides increased optimization flexibility, often allowing for
a reduction in the number of decision variables needed to achieve a desired level of accuracy. With
less decision variables, it becomes much easier to determine good starting points and thus mitigate the
issues caused by local optima. One strategy that works well in practice is to first solve the problem
with fixed switching times and then use the solution obtained as the starting point for the problem with

variable switching times.

5. Numerical Simulations

This section reports computational results from applying the method described in Sections 3 and
4 to the example problem in reference [28]. For this example, the functions D(p), ¥1(p), and 92(p)
are constructed using experimental data from the DIII-D tokamak in San Diego, California; see Fig-
ures 3-5. Moreover, the initial magnetic flux profile is taken from shot #129412 from the DIII-D
tokamak; see Figure 6. For the input bounds and initial conditions, we have fiyi, = 1.0 [1019m~3],
max = 2.95 [10°m~3], Lnin = 0.06 [MA], Imax = 1.18 [MA], Poin = 1.90 [MW], Prax = 4.7 [MW],
np = 2.0282 [101%m=3], Iy = 0.7299 [MA], Py = 4.6773 [MW]. Our simulation study was carried out
within the MATLAB programming environment. The MATLAB code implements the gradient-based
optimization procedure described in Section 4 by combining FMINCON with MATLAB’s non-stiff dif-
ferential equation solver ODE45 to integrate the state system (40) and the sensitivity systems (51)-(52)
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Figure 3: Diffusivity coefficient function D(p). Figure 4: Coefficient function 9¥1(p).

and (53)-(54). We considered two target profiles wq(p) in our simulations: the first target profile is
generated using the experimental input data in [28]; the second target profile is generated using the

experimental output flux data in [19] (see Figure 20(a) in [19]).

5.1. Model Validation

Our first numerical experiment was designed to validate the finite element scheme by simulating the
approximate ODE model under the experimental input data in [28]. For the spatial discretization of

the PDE system, we used the first-order basis functions 5;(p), i = 1,2,..., N, defined by

1+Np—i, ifpelS &)
Bi(p) =41 —Np+i, ifpe L, S, (56)

0, otherwise,

where N is the number of subintervals in the spatial domain. A comparison of the results from our finite
element scheme with N = 10 and the MATLAB function PDEPE is shown in Figure 7. The maximum
error is less than 6%. Thus, by using just ten first-order spatial basis functions, we can capture over
94% of the original PDE dynamics, as shown in Figure 7. The numerical results in Sections 5.2 and 5.3

were also generated using first-order basis functions defined by equation (56).

5.2. Optimal Control for Target Profile 1

To apply the control parameterization technique, we subdivide the time interval [0,7] = [0, 1.2]
into p subintervals. The control input functions are approximated by piecewise-linear functions with
break-points at yi,72,...,Vp—1, where v9 = 0 and ~y, = 1.2. For our simulations with target profile 1,

we set N = 10 as the number of spatial intervals and ¢ = 0.001 as the right boundary penalization

parameter. Moreover, we set the terminal bounds as IX, = IT = 1.18 [MA], al, = PL. = —c0,
nl =PI = +co. Thus, n(T) and P(T) are free while the input current is subject to the terminal

constraint I(T) = 1.18 [MA].
We first considered equidistant switching times in which Ty, = Tmax = 1}‘72. The optimal controls and

optimal flux profiles generated by our method for p = 6,8, 10 are shown in Figure 8. The results show
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Figure 7: State trajectory corresponding to the experimental input data in [28].
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Figure 8: Optimal controls for target profile 1 (fixed switching times).
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Figure 9: Optimal controls for target profile 1 (variable switching times).

Table 1: Optimal cost values for target profile 1.
Optimal Cost

p  Fixed Switching Times Variable Switching Times

6 7.1477 x 1078 6.6488 x 10~8
8 6.1294 x 10~8 6.1085 x 10~8
10 5.6701 x 10~8 5.6697 x 10~8

that the proposed numerical optimization method can drive the final w-profile to within close proximity
of the desired target profile. Note that increasing p yields reduced matching error, as expected. However,
increasing p from p = 8 to p = 10 does not result in any significant change in the objective functional
value, despite a significant increase in the overall computation time.

We next used the time-scaling transformation to allow for variable switching times. We again
considered p = 6,8, 10 subintervals over a time horizon of [0, 1.2], with 7, = 0.12 and Typax = 0.2. Our
results are shown in Figure 9. Compared with the results in Figure 8, the final w-profile is closer to the
desired wg-profile. That is, the optimal solutions in Figure 9 have lower costs than the corresponding
solutions in Figure 8, thus demonstrating that the time-scaling transformation is a useful tool for
improving matching accuracy via adaptive optimization of the control break-points. Table 1 provides

a comparison of the optimal costs for fixed versus variable switching times.
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Figure 10: Optimal controls for target profile 2 (fixed switching times).
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Figure 11: Optimal controls for target profile 2 (variable switching times).
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Table 2: Optimal cost values for target profile 2.
Optimal Cost

p Fixed Switching Times Variable Switching Times
4 4.5588 x 1074 2.7403 x 1074
6 3.1073 x 1074 2.3765 x 1074
8 2.3757 x 1074 2.3466 x 10~

5.8. Optimal Control for Target Profile 2

For our simulations with target profile 2, we allowed the terminal states n(T"), I(T) and P(T) to
be free. As in Section 5.2, we used € = 0.001 as the boundary penalization parameter. Target profile 2
is more challenging numerically and thus we used N = 25 spatial intervals compared with N = 10 for
target profile 1. For p = 4,6,8 and equidistant switching times, the optimal open-loop actuator input
trajectories and associated terminal w-profile are shown in Figure 10. From the simulation results, we
can see that, as with target profile 1, the numerical optimization method is successful at driving the
output profile w(p, T') towards the given target wy(p). The matching accuracy is especially high during
the interval [0,0.9]. The reason for the matching discrepancy near p = 1 is because the given target is
not reachable for the simplified PDE model. We next allowed the switching times to vary and applied
the time-scaling transformation. We again considered p = 4, 6,8 subintervals over a time horizon of
[0,1.2]. The optimal time evolutions for the three input signals 7(t), I(t), P(t) and the corresponding
output trajectory w(p,T) are shown in Figure 11. These results are improvements over the results in
Figure 10, although there is still some matching discrepancy near p = 1. In Table 2, the optimal costs

are compared for fixed and variable switching times.

6. Conclusion and Future Work

This paper has presented an effective computational method for solving a finite-time optimal control
problem arising during the ramp-up phase of a tokamak plasma. The method is based on a combination
of the Galerkin finite element method and the control parameterization technique. Simulation results
using experimental data from the DIII-D tokamak demonstrate that the method is effective at driving
the plasma profile to a predefined desired profile at the terminal time. Nevertheless, there is still room

for improvement. We list several opportunities for future research below.

e QOur problem formulation in Section 2 only considers bound constraints on the control variables.
However, real tokamaks may also be subject to state constraints. These constraints are more

difficult to handle than control bounds, but effective computational methods do exist (see [9, 14]).

e Our numerical simulations focused on the ramp-up phase of the tokamak. In future work, we will

apply our method to the flat-top phase for steady-state operation.

e The time-scaling transformation used in this work is the critial tool for dealing with optimal
control problems with free terminal times such as time-optimal control problem. We will explore

this challenging issue for tokamak operation in future work.
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e We used fixed knot points for the spatial discretization in Section 3. More accurate results may

be obtained by using an adaptive mesh refinement scheme.

e Our method follows the discretize-then-optimize approach, whereby the PDE system is first dis-
cretized to obtain a system of ODEs, and then computational optimal control techniques for ODEs
are applied. An alternative approach would be to optimize the original PDE system directly, i.e.,

optimize-then-discretize.
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