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Abstract

This paper provides a complete probabilistic description of SIS-type epidemiological models
where all the input parameters (contagion rate, recovery rate and initial conditions) are assumed
to be random variables. By applying the Random Variable Transformation technique, the first
probability density function, the mean and the variance functions, as well as confidence intervals
associated to the solution of SIS-type epidemiological models, are determined. It is done under
the general hypothesis that model random inputs have any joint probability density function. The
distributions to describe the time until a given proportion of the population remains susceptible
and infected are also determined. Lastly, a probabilistic description of the so-called basic repro-
ductive number is included. The theoretical results are applied to an illustrative example showing
good fitting.

Keywords: Random SIS-type epidemiological models, first-order nonlinear random differential
equations, Random Variable Transformation technique, first probability density function

1. Motivation and Preliminaries

This paper is a continuation of the recent contribution [1] by some of the authors. In [1], a
comprehensive probabilistic description of the solution to random SI-type epidemiological mod-
els is provided. The study is based on the Random Variable Transformation (RVT) technique.
SI-type epidemiological models are appropriate to describe the dynamics from susceptible (S) to
Infected (I) for some stages of epidemics. For example, SI model has been used to describe the
early stages of the AIDS disease and epidemics with a long incubation period. For these kind
of diseases, births and deaths or other transitions have no significant effect on the epidemics [2].
They are also useful to model the spread of new technologies, where potential customers are
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identified with the susceptible subpopulation and, the remainder of the individuals who have al-
ready adopted the new technology, corresponds to the infected subpopulation [3, 4, 1]. However,
SI-models are not appropriate for most epidemics which involve transitions from infected to sus-
ceptible. As it shall be justified below, this has motivated the consideration of the so-called SIS-
type epidemiological models [5]. The aim of this paper is to extend the results obtained in [1] but
now for the SIS-type epidemiological models taking again advantage of the RVT method. This
extension entails, among other aspects, the extension to the random framework of the so-called
reproductive number which does not appear in dealing with SI-type epidemiological models. Our
approach is based on RVT technique, and its consideration is justified because a full probabilistic
description of the solution stochastic process for random SIS-type epidemiological models can
be obtained under very general assumptions. Indeed, as it shall be seen later in the theoretical
development, statistical dependence of all the input parameters involved into the SIS-model via
any plausible joint probability density function will be considered. As it will be pointed out later,
this is a significant advantage that other available approaches, such as SIS-type epidemiological
models based on Itô stochastic differential equations, do not possess.

SIS-type epidemiological models constitute mathematical representations to describe the
spread by individual-to-individual contact of infectious diseases [6, 7]. SIS models are useful
for modelling diseases whose infection does not confer immunity, that is, any susceptible (S)
who has been infected (I) can recover from the disease and then becoming susceptible (S) again.
This is usually represented as S → I → S (Susceptible-Infected-Susceptible). Examples of dis-
eases that have been modelled by SIS models include gonorrhea, meningitis, streptococcal sore
throat, etc. [8, 9, 5]. SIS epidemiological models have also been used to model the dynamics
of unhealthy lifestyle habits such as the excess of weight [10]. In spite of their mathematical
simplicity, SIS models constitute the basis of more refined and sophisticated models where, for
instance, mode of transmission, resistance, environmental and cultural factors, and further dis-
eases characteristics can be considered.

SIS models are formulated as initial value problems based on nonlinear systems of differential
equations of the form {

S ′(t) = −βS (t)I(t) + γI(t) ,
I′(t) = βS (t)I(t) − γI(t) , t > 0, (1)

with initial conditions
S (0) = S 0, I(0) = I0, (2)

where, S (t) and I(t) denote the proportion, or equivalently, the percentage of susceptibles and in-
fected at the time instant t, respectively. At the initial time instant, t = 0, these values correspond
to S 0 and I0, respectively. It is assumed that

S (t) + I(t) = 1, ∀t ≥ 0, (3)

which means that all the individuals of the population are classified as either susceptible or
infected. The parameters β > 0 and γ > 0 denote the rate of decline in the percentage of
susceptibles and the rate of infected that recover from the disease, respectively. In Figure 1, a
flow diagram of the SIS model is depicted.

The consideration of births and deaths, usually referred to as vital dynamics, could be in-
cluded in the model (1)–(3). However, the behaviour of solutions of the new corresponding
model is similar when vital dynamics are omitted in deterministic models [5]. This motivates
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the analysis of the simpler model (1)–(3) as a first step. The inclusion of vital dynamics using
random variables to model births and deaths is a very interesting problem that requires its own
subsequent development, although it would probably benefit from the ideas presented here.

S
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γ
ll

Figure 1: Flow diagram representation of the SIS model (1)–(2).

From a practical point of view, it is more realistic to regard that the input parameters S 0, γ and
β are random variables (r.v.’s) rather than deterministic values due to the inherent complexity and
uncertainty that involve their determination and interpretation. The initial condition S 0 represents
the percentage of susceptibles at the beginning. In practice, this value is usually set after sampling
the target population, hence it has got variability. Since S 0 represents a percentage, it lies between
0 and 1, and it could be better modelled by a r.v. like a uniform r.v. on the interval (0, 1), or a
beta r.v., which is more flexible and generalizes (0, 1)-uniform r.v. The positive parameters γ and
β embed complex factors related to the recovery rate from the disease and the contagion rate,
respectively. Notice that, in practice, they are both not known with certainty. This motivates
that positive probability distributions, such as exponential, gamma, or even Gaussian truncated
on positive domain, might be adequate candidates for modelling input parameters γ and β. As
it will be seen later, these kind of probability distributions will be assumed in the illustrative
example shown in this paper.

The consideration of randomness in SIS-type epidemiological models has been undertaken
mainly using Itô-type stochastic differential equations [11, 12]. Under this approach, randomness
is introduced by means of a stationary and Gaussian stochastic process (s.p.), usually called white
noise, which is the derivative, in a generalized sense, of Brownian motion (or Wiener process).
Brownian motion belongs to an important class of s.p.’s termed semimartingales. The resulting
stochastic differential equations are handled using a special calculus for semimartingales, usually
referred to as Itô stochastic calculus, whose cornerstone result is the Itô Lemma [13, 14]. Al-
ternately to this approach, and based on the previous motivation, uncertainty can be considered
directly by assuming that the model input parameters are r.v.’s. Hence, a wide range of probabil-
ity distributions can be assigned to them such as uniform, beta, exponential, gamma, Gaussian,
etc. rather than limiting the introduction of randomness to Gaussian patterns. Therefore, under
this approach the transition from the deterministic ordinary and partial differential equations to
their random formulation, usually referred to as random differential equations (r.d.e.’s), appears
in a natural way. The rigorous treatment of r.d.e.’s requires the application of Mean Square Cal-
culus [15, 16]. Solving a r.d.e. means to compute its solution s.p. including its mean and variance
functions, which provide valuable information about its statistical behaviour. The determination
of its first probability density function (1-p.d.f.) is more recommendable since from it one gets
a full description of the solution in each time instant. In particular, from the 1-p.d.f. one can
compute not only the mean and the variance but also any unidimensional statistical moment as-
sociated to the solution s.p. In addition, the 1-p.d.f. permits to calculate the probability that the
solution lies within a certain set of interest.

As it has been underlined previously, the key result that will be applied in this paper in
order to determine the 1-p.d.f. of the solution of the SIS model (1)–(3) is the RVT method.
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This technique will also be applied to calculate the p.d.f. of time until a given proportion of
the population remains susceptible/infected and, an important epidemiological quantity called
the basic reproductive number, usually denoted by R0. The RVT method constitutes a powerful
tool to determine the 1-p.d.f. of a s.p. [17]. In the context of r.d.e.’s, this technique has been
successfully applied to compute the 1-p.d.f. of the solution of ordinary and partial r.d.e.’s [18,
19, 20, 21, 22, 23, 24]. Regarding epidemiological models, in [2] authors apply RVT method
to investigate the effect of the random initial condition on a deterministic SI-type model, where
both subpopulations are given in percentages. In this interesting paper, the study is limited to the
case where the initial condition has a beta distribution, hence representing a percentage. Based
on the approach initiated in [2], recently a full probabilistic analysis of SI-type models has been
done by some of the authors in [1].

As we have previously indicated, Itô-type stochastic differential equations constitute an alter-
native to random differential equations in order to deal with modelling with uncertainty. In regard
to the main objective of this paper, which is the determination of the 1-p.d.f. of the solution s.p.
to SIS model (1)–(3) under general hypotheses, it is important to point out that following the Itô
approach it is also possible to determine the p.d.f. of the solution by solving the so-called for-
ward Fokker-Planck-Kolmogorov equation. This is a deterministic partial differential equation
satisfied by the transition p.d.f. of a diffusion stochastic process [25, 26]. The key fact that per-
mits to take advantage of this result is that solutions of Itô-type stochastic differential equations
are Markov diffusion processes [15, Th. 5.2.5]. This is a mathematical requirement which does
not need to be satisfied under the approach proposed in this paper.

Below, we state the RVT technique in its general version as well as several particular cases
that will be required later. Throughout our exposition all the random variables/vectors are as-
sumed to be absolutely continuous in order to guarantee the existence of their associated p.d.f.’s.

Theorem 1. (Multidimensional version, [15, pp. 24–25]). Let U = (U1, . . . ,Un)T and V =

(V1, . . . ,Vn)T be two n-dimensional absolutely continuous random vectors. Let g : Rn → Rn be
a one-to-one deterministic transformation of U into V, i.e., V = g(U). Assume that g is contin-
uous in U and has continuous partial derivatives with respect to U. Then, if fU(u) denotes the
joint probability density function of vector U, and h = g−1 = (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn))T

represents the inverse mapping of g = (g1(u1, . . . , un), . . . , gn(u1, . . . , un))T, the joint probability
density function of vector V is given by

fV(v) = fU (h(v)) |J| , (4)

where |J| is the absolute value of the Jacobian defined by the determinant

J = det
(
∂uT

∂v

)
= det


∂h1(v1,...,vn)

∂v1
· · ·

∂hn(v1,...,vn)
∂v1

...
. . .

...
∂h1(v1,...,vn)

∂vn
· · ·

∂hn(v1,...,vn)
∂vn

 . (5)

In the particular case that n = 1 and g is linear, Theorem 1 reads

Proposition 1. (Scalar linear transformation, [18, Proposition 2]). Let U be an absolutely con-
tinuous random variable defined on the domain DU = {u : u1 ≤ u ≤ u2} and with probability
density function fU(u). Let us consider the random variable V = aU + b, a , 0. Then, the
probability density function of V is given by

fV (v) =
1
|a|

fU

(
v − b

a

)
,

{
v1 = au1 + b ≤ v ≤ au2 + b = v2 if a > 0 ,
v1 = au2 + b ≤ v ≤ au1 + b = v2 if a < 0 .

4



If a = 0, then V = b with probability 1 and

fV (v) = δ(v − b) , −∞ < v < +∞ ,

being δ(·) the Dirac delta function.

Let U = (U1,U2)T be an absolutely continuous random vector with joint p.d.f. fU(u1, u2)
such that P[{ω ∈ Ω : U1(ω) , 0}] = 1. Let us consider the r.v. V1 = U2/U1. Then, introducing
the auxiliary r.v. V2 = U1 and denoting by V = (V1,V2)T, one can define the mapping

V = g(U) , g : R2 → R2, g(U1,U2) = (g1(U1,U2), g2(U1,U2))T = (V1,V2)T ,

whose inverse transformation, h = g−1, is defined as

U = h(V) , h : R2 → R2, h(V1,V2) = (h1(V1,V2), h2(V1,V2))T = (V2,V1V2)T = (U1,U2)T .

Notice that the Jacobian of h is J = −V2 = −U1 , 0 with probability 1. Then, according to (4)
the joint p.d.f. of the random vector V = (V1,V2)T is given by

fV1,V2 (v1, v2) = fU1,U2 (v2, v1v2)|v2| .

Hence, the p.d.f. of the quotient V1 = U2/U1 is obtained as the V2-marginal p.d.f. of fV1,V2 (v1, v2),
i.e.,

fV1 (v1) =

∫
D(U1)

fU1,U2 (u1, v1u1)|u1|du1,

whereD(U1) denotes the domain of U1 and the relationship V2 = U1 has been used.
Summarizing, the following result has been established:

Proposition 2. (RVT technique: quotient of two r.v.’s). Let (Ω,F ,P) be a probability space and
U = (U1,U2)T an absolutely continuous random vector with joint p.d.f. fU1,U2 (u1, u2) such that
P[{ω ∈ Ω : U1(ω) , 0}] = 1. Then, the p.d.f. fV (v) of the quotient V = U2/U1 is given by

fV (v) =

∫
D(U1)

fU1,U2 (ξ, vξ)|ξ| dξ. (6)

If U1 and U2 are independent r.v.’s with p.d.f.’s fU1 (u1) and fU2 (u2), respectively, then (6) becomes

fV (v) =

∫
D(U1)

fU1 (ξ) fU2 (vξ)|ξ| dξ.

This paper is organized as follows. Section 2 is devoted to provide a complete probabilistic
description of random SIS-type epidemiological model (1)–(3) under general hypotheses regard-
ing the probability distribution of the random inputs. For the sake of clarity, this section is divided
into several pieces. Subsection 2.1 deals with the computation of the first probability distribu-
tions of the percentages of susceptibles and infected. The determination of mean and variance
functions as well as confidence intervals for the percentages of susceptibles is established in
Subsection 2.2. Subsection 2.3 is addressed to compute the distributions of time until a given
proportion of the population remains susceptible and infected, respectively. Section 2 ends by
providing a probabilistic description of the basic reproductive number, which plays a key role in
dealing with the behaviour of a disease in the long run. In Section 3, all the theoretical results
obtained in Section 2 are applied to study, using available real data, the evolution of Spanish
non-smokers men older than 16 years old under the SIS model approach. Conclusions are drawn
in Section 4.
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2. Probabilistic solution of the random SIS model

This section is devoted to determine the probabilistic solution of the random SIS model (1)–
(3). This means the computation of the 1-p.d.f. of each component, S (t) and I(t), of its solution,
(S (t), I(t))T, as well as its main statistical properties, such as the mean and variance functions
and confidence intervals. To complete useful information in practical situations, the p.d.f.’s of
the time until a given proportion of the population remains susceptible/infected and the so-called
reproductive number will also be investigated.

To achieve these goals, first, taking into account (3), it is convenient to rewrite (1)–(2) as the
following random nonlinear initial value problem (i.v.p.){

S ′(t) = β(S (t))2 − (γ + β)S (t) + γ , t > 0,
S (0) = S 0 .

(7)

As it has been motivated in the previous section, throughout the exposition we will assume that
the input parameters S 0, γ and β are r.v.’s, and

DS 0 =
{

s0 = S 0(ω), ω ∈ Ω : 0 ≤ s0,1 ≤ s0 ≤ s0,2 ≤ 1
}
,

Dγ = { γ = γ(ω), ω ∈ Ω : 0 ≤ γ1 ≤ γ ≤ γ2} ,
Dβ = { β = β(ω), ω ∈ Ω : 0 ≤ β1 ≤ β ≤ β2} ,

(8)

will denote their respective domains. Hereinafter, fS 0,γ,β(s0, γ, β) will indicate the joint p.d.f.
of the input random vector (S 0, γ, β). At this point, it is important to underline that in order
to provide more generality at the results that will be obtained later, we will handle the joint
p.d.f. fS 0,γ,β(s0, γ, β), although in the example the input parameters S 0, γ and β will be assumed
pairwise independent r.v.’s. For the sake of clarity in the presentation, we have assumed that the
domain of fS 0,γ,β(s0, γ, β) is the product of intervals given by (8) rather than any arbitrary subset
of R3.

From a theoretical point of view is important to guarantee the uniqueness of the solution
to the system of r.d.e.’s (1)–(3), or equivalently, the uniqueness of the solution S (t) to initial
value problem (7) on a finite interval, t ∈ [0, a], a > 0. To achieve this goal, we will apply
Theorem 5.1.2. [15, p.118], which is a natural generalization of the classical Picard theorem
based upon convergence of successive approximations. This result is stated in terms of a strong
stochastic convergence, namely, mean square convergence. This type of stochastic convergence
is defined on the Hilbert space (L2, ‖·‖) of the second-order r.v.’s, where the norm is defined in
terms of the expectation operator: ‖X‖ =

(
E

[
X2

])1/2
. Following the standard notation introduced

in Theorem 5.1.2. [15, p.118], let us consider the right-hand side of r.d.e. (7), i.e., f (S , t) =

βS 2 − (γ + β) S + γ, and the pair defining the random initial condition (t0, X0) = (0, S 0). In
accordance with (8), let us assume that β and γ have bounded realizations, hence they are second-
order r.v.’s. Moreover, observe that S is also a second-order r.v. because 0 ≤ S (ω) ≤ 1 for each
ω ∈ Ω. First, we need to check the following mean square Lipschitz condition

‖ f (S 1, t) − f (S 2, t)‖ ≤ k(t) ‖S 1 − S 2‖ , where
∫ a

0
k(t)dt < ∞. (9)

For convenience, let us denote by δ = max{β2, γ2}, being β2 and γ2 the upper bounds defined in
(8). Since S 1 and S 2 are functions of the random inputs S 0, β and γ, and by (3), 0 ≤ S 1(ω) +
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S 2(ω) ≤ 2 for all ω ∈ Ω, one gets

‖ f (S 1, t) − f (S 2, t)‖2 =
∥∥∥β((S 1)2 − (S 2)2) − (γ + β)(S 1 − S 2)

∥∥∥2

= ‖(β(S 1 + S 2) − (γ + β)) (S 1 − S 2)‖2

= E
[
(β(S 1 + S 2) − (γ + β))2 (S 1 − S 2)2

]
=

∫
DS 0

∫
Dγ

∫
Dβ

(β(S 1 + S 2) − (γ + β))2 (S 1 − S 2)2 fS 0,γ,β(s0, γ, β) dβ dγ ds0

≤
∫
DS 0

∫
Dγ

∫
Dβ

(2β − (γ + β))2(S 1 − S 2)2 fS 0,γ,β(s0, γ, β) dβ dγ ds0

=
∫
DS 0

∫
Dγ

∫
Dβ

(β − γ)2(S 1 − S 2)2 fS 0,γ,β(s0, γ, β) dβ dγ ds0

≤ δ2
∫
DS 0

∫
Dγ

∫
Dβ

(S 1 − S 2)2 fS 0,γ,β(s0, γ, β) dβ dγ ds0

= δ2E
[
(S 1 − S 2)2

]
= δ2 ‖S 1 − S 2‖

2 .

(10)

Therefore, Lipschitz condition (9) holds true taking k(t) = δ. Notice that∫ a

0
k(t)dt =

∫ a

0
δ dt = δa < ∞.

The second condition to be checked is that the function f (S , t) transforms second-order r.v.’s
into second-order r.v.’s. This is a direct consequence of the previous development, the triangular
inequality and the fact that γ and S are also second-order r.v.’s

‖ f (S , t)‖ =
∥∥∥βS 2 − (β + γ)S + γ

∥∥∥ ≤ ∥∥∥βS 2 − (β + γ)S
∥∥∥ + ‖γ‖ ≤ δ ‖S ‖ + ‖γ‖ < ∞.

2.1. First probability density function (1-p.d.f.)

The aim of this subsection is to obtain the 1-p.d.f., f1(s, t), of the solution s.p., S (t), of the
random i.v.p. (7). This function provides a full probabilistic description of the percentage of
susceptibles at every time instant t. Once this goal has been achieved, using (3), the 1-p.d.f. of
the percentage of infected I(t) will also be provided.

First, notice that the solution s.p. S (t) of the random i.v.p. (7) is given by

S (t) =
γ(1 − S 0) + (S 0β − γ)e(γ−β)t

β(1 − S 0) + (S 0β − γ)e(γ−β)t , t ≥ 0. (11)

Now, we fix t ≥ 0 and we apply the R.V.T. method with the following choice in Theorem 1,

U = (S 0, γ, β)T, V = (X,Y,Z)T, V = g(U)T ,
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g : R3 → R3, g(S 0, γ, β) = (g1(S 0, γ, β), g2(S 0, γ, β), g3(S 0, γ, β))T = (X,Y,Z)T ,

being

X =
γ(1 − S 0) + (S 0β − γ)e(γ−β)t

β(1 − S 0) + (S 0β − γ)e(γ−β)t , Y = γ , Z = β .

Isolating S 0, β and γ, one gets

S 0 =
Y + e(Y−Z)t(−1 + X)Y − XZ
Y + e(Y−Z)t(−1 + X)Z − XZ

, γ = Y, β = Z. (12)

Thus, in accordance with (4)–(5), the joint p.d.f. of the random vector (X,Y,Z)T is given by

fX,Y,Z(x, y, z) = fS 0,γ,β

(
y + e(y−z)t(−1 + x)y − xz
y + e(y−z)t(−1 + x)z − xz

, y, z
)

e(y−z)t(y − z)2

(y + e(y−z)t(−1 + x)z − xz)2 , (13)

where J =
(
e(y−z)t(y − z)2

)
/
(
y + e(y−z)t(−1 + x)z − xz

)2
> 0 is the Jacobian obtained from the

inverse mapping of g,

h : R3 → R3, h(X,Y,Z) = (h1(X,Y,Z), h2(X,Y,Z), h3(X,Y,Z))T = (S 0, γ, β)T,

defined according to (12).
Therefore, the p.d.f of the r.v. S = S (t) with t fixed, is the (γ, β)-marginal p.d.f. of the joint

p.d.f. (13), i.e.,

fS (s) =

∫
Dγ

∫
Dβ

fS 0,γ,β

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

, ξ, η

)
e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2 dη dξ . (14)

As the previous development is valid for every t ≥ 0, the 1-p.d.f. of the solution s.p. S (t) of the
i.v.p. (7) is given by

f1(s, t) =

∫
Dγ

∫
Dβ

fS 0,γ,β

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

, ξ, η

)
e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2 dη dξ .

(15)
Now, denoting S = S (t) and I = I(t) with t fixed, using the relationship (3) and Proposition 1

with the identification U = S , V = I, a = −1 , 0 and b = 1, from (14) one obtains the p.d.f. of
the r.v. I and, hence straightforwardly the 1-p.d.f. of the percentage of infected

I(t) =
(β − γ)(1 − S 0)e(β−γ)t

β(1 − S 0)e(β−γ)t + S 0β − γ
, t ≥ 0 , (16)

which is given by

f1(i, t) =

∫
Dγ

∫
Dβ

fS 0,γ,β

(
ξ − η − e(ξ−η)tiξ + iη
ξ − η − e(ξ−η)tiη + iη

, ξ, η

)
e(ξ−η)t(ξ − η)2

(ξ − η − e(ξ−η)tiη + iη)2 dη dξ . (17)
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2.2. Mean and variance functions. Confidence intervals

In the context of the applications, the usefulness of the 1-p.d.f. is manifested in dealing
with the computation of the main statistical information associated to the solution (S (t), I(t))T.
Specifically, the mean and the variance functions of S (t) are defined by

µS (t) = E[S (t)] =

∫ ∞

−∞

s f1(s, t) ds, (σS (t))2 = V[S (t)] =

∫ ∞

−∞

s2 f1(s, t) ds − (µS (t))2 , (18)

where f1(s, t) is given by (15). The same can be stated to regard the computation of µI(t) and
σI(t) changing f1(s, t) by f1(i, t), which has been determined in (17). Apart from computing the
mean statistical behaviour of the solution stochastic process of the SIS model and its variability,
for t̂ ≥ 0 fixed, we might be interested in determining the probability that the percentage of
susceptibles lies within a specific interval, say, [s1(t̂), s2(t̂)] = [ŝ1, ŝ2]. It can be easily determined,
once f1(s, t) has been computed, by the following integral

P
({
ω ∈ Ω : S (t̂;ω) ∈ [ŝ1, ŝ2]

})
=

∫ ŝ2

ŝ1

f1(s, t̂) ds . (19)

Regarding model validation and predictions, the 1-p.d.f. is also very useful to construct proba-
bilistic intervals for any (1 − α) × 100% confidence level. For instance, fixed α ∈ (0, 1), for each
t̂ ≥ 0 fixed, one can determine s1(t̂) and s2(t̂) such that∫ s1(t̂)

0
f1(s, t̂) ds =

α

2
=

∫ 1

s2(t̂)
f1(s, t̂) ds , (20)

where

1 − α = P
({
ω ∈ Ω : S (t̂;ω) ∈

[
s1(t̂), s2(t̂)

]})
=

∫ s2(t̂)

s1(t̂)
f1(s, t̂) ds . (21)

Commonly α = 0.05, which means that 95% confidence intervals are built.
Notice that analogous expressions to (19)–(21) can be given for the percentage of infected

simply interchanging f1(s, t̂) by f1(i, t̂), where the latter function is defined by (17).

2.3. Distribution of time until a given proportion of the population remains susceptible

So far we have determined the distribution for the percentage of susceptibles (and infected)
at every time instant t. From an applied standpoint, it is very helpful to compute when the
percentage of susceptibles in the population will attain a specific level. With this end, let us
denote by TS the time until a given proportion of the population, ρS , remains susceptible, i.e.,
ρS = S (T ). Then, isolating TS from the exact solution (11) of the i.v.p. (7) one gets

TS =
1

γ − β
ln

(
(1 − S 0)(β ρS − γ)
(1 − ρS )(βS 0 − γ)

)
.

Now, we apply Theorem 1 to

U = (S 0, γ, β)T, V = (X,Y,Z)T, V = g(U) ,

g : R3 → R3, g(S 0, γ, β) = (g1(S 0, γ, β), g2(S 0, γ, β), g3(S 0, γ, β))T = (X,Y,Z)T ,
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being

X =
1

γ − β
ln

(
(1 − S 0)(β ρS − γ)
(1 − ρS )(βS 0 − γ)

)
, Y = γ , Z = β .

Isolating S 0, γ and β, one gets

S 0 =
Y(1 + eX(Y−Z)(−1 + ρS )) − ZρS

Y + Z(eX(Y−Z)(−1 + ρS ) − ρS )
, γ = Y, β = Z. (22)

Then, by applying expressions (4)–(5) and considering that ρS ∈ (0, 1), the joint p.d.f. of the
random vector (X,Y,Z)T is given by

fX,Y,Z(x, y, z) = fS 0,γ,β

(
y(1 + ex(y−z)(−1 + ρS )) − zρS

y + z(ex(y−z)(−1 + ρS ) − ρS )
, y, z

)
ex(y−z)(y − z)2(1 − ρS )

(y + z(ex(y−z)(−1 + ρS ) − ρS ))2 |y − zρS | ,

(23)
where J =

(
ex(y−z)(y − z)2(−1 + ρS )(y − zρS )

)
/
(
y + z(ex(y−z)(−1 + ρS ) − ρS )

)2
is the Jacobian ob-

tained from the inverse mapping of g,

h : R3 → R3, h(X,Y,Z) = (h1(X,Y,Z), h2(X,Y,Z), h3(X,Y,Z))T = (S 0, γ, β)T,

defined according to (22).
Therefore, taking into account that (X,Y,Z)T = (TS , γ, β)T, the p.d.f of the r.v. TS is the

(γ, β)-marginal p.d.f. of the joint p.d.f. (23)

f1(t, ρS ) =

∫
Dγ

∫
Dβ

fS 0,γ,β

(
ξ(1 + et(ξ−η)(−1 + ρS )) − ηρS

ξ + η(et(ξ−η)(−1 + ρS ) − ρS )
, ξ, η

)
et(ξ−η)(ξ − η)2(1 − ρS ) |ξ − ηρS |

(ξ + η(et(ξ−η)(−1 + ρS ) − ρS ))2 dη dξ .

(24)
Following an analogous development, one can demonstrate that the distribution of time until a
given proportion of the population remains infected, ρI , reads

f1(t, ρI) =

∫
Dγ

∫
Dβ

fS 0,γ,β

(
ξ + η(−1 + ρI) − et(ξ−η)

ξ − η(1 + (−1 + et(ξ−η))ρI)
, ξ, η

) ∣∣∣∣∣∣et(ξ−η)(ξ − η)2(ξ + η(−1 + ρI))ρI

(ξ − η(1 + (−1 + et(ξ−η))ρI))2

∣∣∣∣∣∣ dη dξ .

2.4. Basic reproductive number

In epidemiology, the basic reproduction number, R0, associated to an infection is useful to
elucidate whether will spread out or not. In the case of the SIS model (1)–(3), this value and its
relationship with the propagation of the epidemic in the long run is given by

R0 =
β

γ
,

{
if R0 < 1 ≡ β < γ, then the diseases will die out as t → +∞ ,
if R0 > 1 ≡ β > γ, then the diseases will spread out as t → +∞ .

This classification is easily derived from expression (16) of I(t), or equivalently of S (t) (see (11)),
since

lim
t→+∞

I(t) = lim
t→+∞

(β − γ)(1 − S 0)e(β−γ)t

β(1 − S 0)e(β−γ)t + S 0β − γ
= 0 if β < γ ,

lim
t→+∞

S (t) = lim
t→+∞

γ(1 − S 0) + (S 0β − γ)e(γ−β)t

β(1 − S 0) + (S 0β − γ)e(γ−β)t = 1 if β < γ .

10



Notice that this result is in agreement of its intuitive interpretation, the epidemic will die out
when the rate of decline in the percentage of susceptibles be less than the rate of infected that
recover from the diseases, in other words, when condition β < γ holds.

In our context, both β and γ are assumed to be r.v.’s, so that the requirement for epidemic ex-
tinction in the deterministic framework β < γ means the computation of the following probability
in the stochastic scenario

P[S], S = {ω ∈ Ω : β(ω) < γ(ω)} = {ω ∈ Ω : R0(ω) < 1} . (25)

This key probability can be computed by taking advantage of Proposition 2. In fact, using the
following identification between the notation for the SIS model and the one used in Proposition
2

U = (U1,U2)T = (γ, β)T , V =
U2

U1
=
β

γ
= R0 ,

one gets

fR0 (r0) =

∫
D(γ)

fγ,β(ξ, r0ξ) |ξ| dξ ,

where fγ,β(·, ·) denotes the (γ, β)–marginal distribution of the joint p.d.f. of the random inputs
S 0, γ and β. As a consequence, taking into account that R0(ω) > 0 for all ω ∈ Ω, the target
probability (25) can be computed as follows

P[S] =

∫ 1

0

∫
D(γ)

fγ,β(ξ, r0ξ) |ξ| dξ dr0 . (26)

3. An illustrative example

In this section we will show how to take advantage of the theoretical probabilistic results
previously obtained for the random SIS model (1)–(3) (or equivalently, (7)), in order to study the
spread of smoking in Spain.

Example 1. SIS-type epidemiological models are useful to describe the spread of diseases whose
infection does not confer immunity among the individuals of a population which is divided into
two groups, susceptible and infected. Many social habits can also be treated by SIS model like
smoking. Notice that once a person gives up smoking, he/she could become a smoker again
in the future. In this example, we will apply the SIS model (1)–(3) to study the evolution of
smoking among the Spanish men aged over 16 years old. In our context this population has
been divided into two groups, non-smokers (susceptible) and smokers (infected). Table 1 collects
the percentage of non-smokers, denoted by S j, for the available data during the period 1987–
2006, that correspond to the time values t j, j ∈ J = {0, 6, 8, 10, 14, 16, 19}, respectively. In
order to apply model (7), we have to chose specific probability distributions for the random input
parameters S 0, β and γ, which hereinafter we will assume to be independent r.v.’s. As the initial
condition S 0 represents a percentage, we have made the decision of assuming that S 0 has a beta
distribution of parameters a > 0, b > 0, i.e., S 0 ∼ Be(a; b). This is supported by the domain
of a beta r.v., which is the interval (0, 1). In addition, the beta distribution is more flexible than
other candidates like the (0, 1)-uniform distribution since it is a two-parametric distribution. It
permits to adapt it better to model complex situations. For the rate of decline β, we will take an
exponential distribution of parameter, λβ > 0, truncated on the interval (0, 1000), because this
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rate must be modelled by a positive r.v. Finally, for the rate of recovery, γ, we have chosen a
truncated Gaussian distribution of parameters µγ > 0 and σγ > 0 on the interval (0, 1). This
choice has been made because the positiveness of r.v. γ and the great flexibility of Gaussian
distribution. At this point, it is important to emphasize that the generality of the results provided
in the previous section permits to choice other probability distributions for the input parameters
different to the aforementioned ones whenever they match their epidemiological interpretation
(positiveness, boundedness, etc). Moreover, notice that truncation for r.v.’s β and γ allows us to
guarantee that hypotheses related to uniqueness are fulfilled.

year 1987 1993 1995 1997 2001 2003 2006
(t j) ( j = 0) ( j = 6) ( j = 8) ( j = 10) ( j = 14) ( j = 16) ( j = 19)
S j 0.4488 0.5144 0.5278 0.5514 0.5783 0.6244 0.6467

Table 1: Percentage of non-smokers Spanish men aged over 16 years old during the period 1987–2006. Source [27].

In order to determine the positive parameters a, b, λβ, µγ and σγ associated to the probability
distributions of the model parameters, we will minimize the mean square error, E(a, b, λβ, µγ, σγ),
between the data S j and the expectation of S (t) = S (t; a, b, λβ, µγ, σγ) evaluated at the time
instants t j, j ∈ J . It leads to the following optimization programme

min
a,b,λβ,µγ ,σγ>0

E(a, b, λβ, µγ, σγ) =
∑
j∈J

(
S j − E[S (t j; a, b, λβ, µγ, σγ)]

)2
, (27)

where, according to (18) and, taking into account that S (t) = S (t; a, b, λβ, µγ, σγ) ∈ (0, 1), the
above expectation can be computed as

E[S (t j; a, b, λβ, µγ, σγ)] =

∫ 1

0
s f1(s, t j) ds , j ∈ J . (28)

Now, we will explicit the form of the 1-p.d.f. f1(s, t) that appears in the above integral, and
is defined by (15), taking into account all the hypotheses we have assumed up to now. For that,
first notice that S 0 ∼ Be(a; b), β ∼ Exp(λβ) truncated on the interval (0, 1000) and γ ∼ N(µγ;σγ)
truncated on the interval (0, 1), hence according to (8), their domains DS 0 , Dβ and Dγ are
defined by s0,1 = 0, s0,2 = 1; β1 = 0, β2 = 1000, and γ1 = 0, γ2 = 1, respectively. Therefore,

f1(s, t) =

∫ 1

0

∫ 1000

0
fS 0

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)
fγ(ξ) fβ(η)

e(ξ−η)t(ξ − η)2

(ξ + e(ξ−η)t(−1 + s)η − sη)2 dη dξ ,

(29)
where

fS 0

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)
=

Γ(a + b)
Γ(a)Γ(b)

(
ξ + e(ξ−η)t(−1 + s)ξ − sη
ξ + e(ξ−η)t(−1 + s)η − sη

)a−1

×

(
e(ξ−η)t(−1 + s)(η − ξ)

ξ + e(ξ−η)t(−1 + s)η − sη

)b−1

,

(30)

fβ (η) =
λβe−λβη∫ 1000

0 λβe−λβη dη
, (31)
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and

fγ (ξ) =


e
−

(ξ−µγ )2

2(σγ )2
1

√
2πσγ

(
1
2 erfc

(
µγ−1
√

2σγ

)
− 1

2 erfc
(

µγ
√

2σγ

)) , if 0 < ξ ≤ 1 ,

0, otherwise ,

(32)

being erfc(z) = 1 − 2
√
π

∫ z
0 e−t2

dt the complementary error function.
In order to compute the minimum of the error function, E(a, b, λβ, µγ, σγ), given by (27)–(32),

we have used the Nelder-Mead algorithm [28] carrying out computations by Mathematicar

[29]. The obtained results are

a∗ = 708.755, b∗ = 893.394, λ∗β = 1362.230, µ∗γ = 0.0231162, σ∗γ = 0.0000526 . (33)

Figure 2 shows the 1-p.d.f. (29)–(32) for the optimal values a∗, b∗, λ∗β, µ
∗
γ and σ∗γ given by

(33). We observe that the center of the mass of probability of the r.v. percentage of susceptibles
at the time t, S (t), rises while its dispersion reduces as time increases. This behaviour is better
observed in Figure 3 where the mean, µS (t), and the standard deviation, σS (t), of S (t) have been
depicted. The obtained results agree with the historical data from which one observes that the
percentage of Spanish non-smokers men increases as time goes on.

1987
1989

1991
1993

1995
1997

1999
2001

2003
2005

t 0.4

0.5

0.6

0.7

s

0

20

40

f1(s,t)

Figure 2: Plot of f1(s, t) in Example 1 during the period 1987–2006 (corresponding to the solid lines).

In order to validate the model, we have built confidence intervals. As we know exactly the
p.d.f. of S (t) for every t, we can determine these intervals using (20)–(21). In this case, we notice
that their approximation using Gaussian confidence intervals of the form µS (t)±2σS (t) provides
very similar numerical results for every year of the period 1987–2006. In Figure 4 these intervals
together with the real data are plotted.

In Table 2, we present the confidence levels for the approximate intervals µS (t) ± 2σS (t)
using the exact p.d.f. (15) for the years where data is available, although figures for the rest
of the period are similar. Notice that these figures are very closeto 95.45%, that corresponds
to the case that the p.d.f. is Gaussian. From Figure 4, we observe that all the data lies within
the confidence intervals, hence the model is capable of capturing the variability of the real data,
and, as a consequence, the model can be validated at 95% confidence level.
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1990 2000 2010 2020
t
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0.50

0.55

0.60
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0.70

0.75

μS(t)

1990 2000 2010 2020
t
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0.008

0.009

0.010

0.011

0.012

σS(t)

Figure 3: Plot of expectation function (left) and standard deviation function (right) in Example 1.

1990 1995 2000 2005
t

0.45

0.50

0.55

0.60

0.65

S(t)

real data

μS(t)

μS(t)±2σS(t)

Figure 4: Expectation (solid line) and confidence intervals (dotted lines) in Example 1.

year 1987 1993 1995 1997 2001 2003 2006
(t j) ( j = 0) ( j = 6) ( j = 8) ( j = 10) ( j = 14) ( j = 16) ( j = 19)

Confidence level 0.9550 0.9544 0.9545 0.9546 0.9549 0.9550 0.9552

Table 2: Probabilities associated to the confidence intervals built according to the SIS model.
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Figure 5 shows the 1-p.d.f. of the time TS until a proportion ρS of the population remains
non-smokers (susceptible) for different values of ρS ∈ {0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75}.
The plot has been performed using the following expression

f1(t, ρS ) =

∫ 1

0

∫ 1000

0
fS 0

(
ξ(1 + et(ξ−η)(−1 + ρS )) − ηρS

ξ + η(et(ξ−η)(−1 + ρS ) − ρS )

)
fγ(ξ) fβ(η)

et(ξ−η)(ξ − η)2(1 − ρS ) |ξ − ηρS |

(ξ + η(et(ξ−η)(−1 + ρS ) − ρS ))2 dη dξ ,

derived from (24), taking into account that S 0, β and γ are independent r.v.’s and, that

fS 0

(
ξ(1 + et(ξ−η)(−1 + ρS )) − ηρS

ξ + η(et(ξ−η)(−1 + ρS ) − ρS )

)
=

Γ(a + b)
Γ(a)Γ(b)

(
ξ(1 + et(ξ−η)(−1 + ρS )) − ηρS

ξ + η(et(ξ−η)(−1 + ρS ) − ρS )

)a−1

×

(
(η − ξ)et(ξ−η)(−1 + ρS )

ξ + η(et(ξ−η)(−1 + ρS ) − ρS )

)b−1

,

and fβ(η) and fγ(ξ) are given by (31) and (32), respectively. For instance, according to the
1-p.d.f. of TS , one gets

E[TS ] =

∫ ∞

0
t fTS (t; 0.75) dt = 35.4013 .

This means that the middle of the year 2023 approximately represents the average time until
75% of the Spanish men aged over 16 years old population will be non-smokers. This can be
graphically seen in Figure 5. In Table 3, we have computed E[TS ] for different values of ρS .
This information is crucial for health authorities in order to know the evolution of smoking and,
hence adopting preventive and treatment campaigns.

ρS 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
E[TS ] 0.59 4.78 9.42 14.61 20.51 27.32 35.40 45.30 58.10

Table 3: Expectation of time TS until a proportion, ρS , of the population remains non-smoker for different values ρS .

Finally, using (26) we compute the probability of the event S introduced in (25)

P[S] =

∫ 1

0

∫ 1

0
fγ(ξ) fβ(r0ξ) |ξ| dξ dr0 = 0.999453 ,

where fβ(η) and fγ(ξ) are defined by (31) and (32), respectively. Notice that this result is in
accordance with the interpretation of the basic reproductive number R0 and, it informs us that
very likely the percentage of Spanish smoker men older than 16 years old will disappear as t
tends to +∞.

4. Conclusions

In this paper a full probabilistic description of the random SIS model has been provided. The
obtained results are very general in the sense that all the involved input parameters have been
assumed to be random variables having any probability density function. Therefore, the study
includes the possibility that they are statistically either dependent or independent. In this con-
text, significant probabilistic information has been determined. In a first step, the first probability
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Figure 5: Plot of the 1-p.d.f. of the time TS until a proportion ρS ∈ {0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75} of the
population remains susceptible in Example 1.

density function of the solution stochastic process of the governing nonlinear differential equa-
tion has been obtained. From this crucial function, the solution is completely characterized in
each time instant since every statistical moment of the solution can be computed. In particular,
mean and variance functions are easily determined. A key point regarding the explicit determi-
nation of the first probability density function is the computation of confidence intervals, whose
confidence level is set accurately. This prevents inadvertent use of asymptotic approximations
based on the central limit theorem which often are difficult to justify. All the above information
permits providing a probabilistic description of the SIS model that generalizes its deterministic
counterpart. An important contribution of the paper is the determination of the first probability
density function of the time until a given proportion of the population remains susceptible or
infected. This is very useful from a practical standpoint since it permits forecasting the earliest
time instant at which the susceptible subpopulation will reach a given threshold. The theoretical
study has been completed by providing a stochastic interpretation of a very important parameter
in epidemiology, namely, the basic reproductive number. To put forward all the theoretical results
in practice, an illustrative example using real data has been shown. The obtained results seem
to be quite reliable, although it must be noticed that the choice of the probability distributions
associated to the random inputs is a delicate issue that constitutes itself a challenge in dealing
with real problems. To improve both the theoretical study and its applications, it would be very
interesting to consider a demographic model into the SIS model where births and deaths rates
should be included. The analysis of this more detailed model may benefit of the results devel-
oped in this paper. Analogous comments could be applied to the extensions SIR, SEIR, etc., of
the SIS model.
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