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Abstract

Discontinuous dynamical systems with grazing solutions are discussed. The group property, continu-

ation of solutions, continuity and smoothness of motions are thoroughly analyzed. A variational system

around a grazing solution which depends on near solutions is constructed. Orbital stability of grazing

cycles is examined by linearization. Small parameter method is extended for analysis of neighborhoods

of grazing orbits, and grazing bifurcation of cycles is observed in an example. Linearization around an

equilibrium grazing point is discussed. The mathematical background of the study relies on the theory

of discontinuous dynamical systems [1]. Our approach is analogous to that one of the continuous dy-

namics analysis and results can be extended on functional differential, partial differential equations and

others. Appropriate illustrations with grazing limit cycles and bifurcations are depicted to support the

theoretical results.

Keywords: Discontinuous dynamical systems; Grazing points and orbits; Axial and non-axial grazing;

Variational system; Orbital stability; Small parameter; Bifurcation of cycles; Impact mechanisms

1 Introduction

Vibro-impacting systems provide examples of non-linear dynamical systems, exhibiting new levels of

complicated dynamics due to their non-smoothness. Grazing phenomenon is one of the attractive features

for these dynamics [13]-[36], [26]-[29]. There are two approaches for the definition of grazing in literature.

One is presented in the studies of Bernardo, Budd and Champneys [7, 8], Bernardo and Hogan [9], and

Luo [26]-[29]. In these studies, it is asserted that grazing occurs when a trajectory hits the surface of

discontinuity tangentially. In [36]-[39], Nordmark defines grazing as the approach of the velocity to zero

in the neighborhood of the surface of discontinuity which is the case of the studies conducted in [7]-[9],

[26]-[29]. Our comprehension of grazing in this paper is close to that one in [8],[9],[26]. In the paper [15],

grazing is considered as a bounding case which separates regions of quite different dynamic behaviors. It

is understood that the system trajectory makes tangential contact with an event triggering hypersurface.

The shooting, continuation and optimization methods are developed and illustrated for both transient

and grazing phenomena. It is exemplified by utilizing power electronics and robotics. In [41], the

grazing periodic orbit and its linearization are obtained by means of a numerical continuation method

∗Corresponding Author Tel.: +90 312 210 5355, Fax: +90 312 210 2972, E-mail: marat@metu.edu.tr

1

http://arxiv.org/abs/1509.01678v1


for hybrid systems. Applying this, the normal-form coefficients are evaluated, which in this case imply

the occurrences a jump to chaos and period-adding cascade. The necessary and sufficient conditions

of the general discontinuous boundary are expounded in [28]. In [27], by means of non-stick mapping,

the necessary and sufficient conditions for the grazing in periodically forced linear oscillator with dry

friction are obtained. By constructing special maps such as zero time discontinuity mapping [10]-[12]

and Nordmark map [36]-[39], the existence of periodic solution and their stability were investigated in

mechanical systems.

In this paper, we model the dynamics with grazing impacts by utilizing differential equations with

impulses at variable moments and applying the methods of [1]-[3]. As a consequence of such methods,

the role of the mappings [36]-[39] is diminished. One can observe that a trajectory at a grazing point

may have tangency to the surface of discontinuity, which is parallel to one or several coordinate axises.

Particularly it means the velocity approaches to zero [36]-[39]. Then, we will say about the axial grazing.

Otherwise, grazing is non-axial. This research contains the analysis of both axial and non-axial grazing.

In [33], it is observed through simulations and experiments that the coefficient of restitution depends

on the impact velocity of the particle by considering both the viscoelastic and the plastic deformations

of particles occurring at low and high velocities, respectively. It has been proposed in [32] that at low

impact velocities and for most materials with linear elastic range, the coefficient of restitution is of the

form R(v) = 1 − av, where v is the velocity before collision and a is a constant. Also, for low impact

velocities the restitution law can be considered quadratic [16]. This is why, we will use non-constant

restitution coefficients in models with impacts in this study.

For investigation of autonomous differential equations, it is convenient to utilize properties of dynam-

ical systems. They are the group property, continuation of solutions in both time directions, continuity

and differentiability in parameters. The studies of discontinuous dynamical systems with transversal

intersections of orbits and surfaces, B− smooth discontinuous flows, can be found in [1, 2]. In this

research, the dynamics is approved for systems with grazing orbits. Moreover, the definitions of orbital

stability and asymptotic phase are adapted to grazing cycles. The orbital stability theorem is proved,

which can not be underestimated for theory of impact mechanisms.

The remaining part of the paper is organized as follows. In the next section, we will introduce

necessary notations, definitions and theorems to specify discontinuous dynamical systems. In Section

3, it is shown how the dynamics can be linearized around grazing orbits. In Section 4, the theorem of

orbital stability is adapted for grazing cycles. In Section 5, the small parameter analysis is applied near

grazing orbits and bifurcation of cycles is observed. In last three sections, examples are presented to

actualize the theoretical results numerically and analytically. Finally, Conclusion covers a summary of

our study.
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2 Discontinuous dynamical systems

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respectively. Consider the

set D ∈ Rn such that D = ∪Di, where Di, i = 1, 2, . . . , k, components of D, are disjoint open connected

subsets of Rn. To describe the surface of discontinuity, we present a two times continuously differentiable

function Φ : Dr → Rn. The set can be defined as Γ = Φ−1(0) and is a closed subset of D̄, where D̄ is the

closure of D. Denote ∂Γ as the boundary of Γ. One can easily see that Γ = ∪k
i=1Γi, where Γi are parts

of the surface of discontinuity in the components of D. Denote Γ̃ = J(Γ), Φ̃(x) = Φ(J−1(x)). Denote an

r− neighborhood of D in Rn for a fixed r > 0 as Dr. Let Γr be the r− neighborhood of Γ in Rn, for a

fixed r > 0 and define functions J : Γr → Dr and J̃ : Γ̃r → Dr, such that, J(Γ), J̃(Γ̃) ⊂ D. Assume that

a function f(x) : Dr → Rn is continuously differentiable in Dr. Set the gradient vector of Φ as ∇Φ(x).

The following definitions will be utilized in the remaining part of the paper. Let x(t−) be the left

limit position of the trajectory and x(t+) be the right limit of the position of the trajectory at the

moment t. Define ∆x(t) := x(t+)− x(t−) as the jump operator for a function x(t) such that x(t) ∈ Γ

and t is a moment of discontinuity (discontinuity moment). In other words, the discontinuity moment t

is the moment when the trajectory meets the surface of discontinuity Γ. The function I(x) will be used

in the following part of the paper which is defined as I(x) := J(x) − x, for x ∈ Γ.

The following assumptions are needed throughout this paper.

(C1) ∇Φ(x) 6= 0 for all x ∈ Γ,

(C2) J ∈ C1(Γr) and det
[
∂J(x)
∂x

]
6= 0, for all x ∈ Γr \ ∂Γ,

(C3) Γ
⋂
Γ̃ ⊆ ∂Γ ∩ ∂̃Γ,

(C4) 〈∇Φ(x), f(x)〉 6= 0 if x ∈ Γ \ ∂Γ,

(C5) 〈∇Φ̃(x), f(x)〉 6= 0 if x ∈ Γ̃ \ ∂Γ̃,

(C6) J(x) = x for all x ∈ ∂Γ,

(C7) J̃(x) = x for all x ∈ ∂Γ̃.

One can verify that Γ̃ = {x ∈ D|Φ̃(x) = 0} and J̃(x) 6= x on Γ̃ since of (C2). Condition (C1) implies

that for every x0 ∈ Γ, there exist a number j and a function φx0
(x1, . . . , xj−1, xj+1, . . . , xn) such that Γ

is the graph of the function xj = φx0
(x1, . . . , xj−1, xj+1, . . . , xn) in a neighborhood of x0. Same is true

for every x0 ∈ Γ̃. Moreover, ∇Φ̃(x) 6= 0, for all x ∈ Γ̃, can be verified by using the condition (C2). The

conditions (C2), (C6), (C7), imply that the equality J̃(x) = x, is true for all x ∈ ∂Γ̃.

Let A be an interval in Z. We say that the strictly ordered set θ = {θi}, i ∈ A , is a B−sequence

[1] if one of the following alternatives holds: (i) θ = ∅, (ii) θ is a nonempty and finite set, (iii) θ is an

infinite set such that |θi| → ∞ as i→ ∞. In what follows, θ is assumed to be a B−sequence .
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The main object of our discussion is the following system,

x′ = f(x),

∆x|x∈Γ = I(x).

(2.1)

In order to define a solution of (2.1), we need the following function and spaces.

A function φ(t) : R → Rn, n ∈ N, θ is a B−sequence, is from the set PC(R, θ) if it : (i) is left

continuous, (ii) is continuous, except, possibly, points of θ, where it has discontinuities of the first kind.

A function φ(t) is from the set PC1(R, θ) if φ(t), φ′(t) ∈ PC(R, θ), where the derivative at points of

θ is assumed to be the left derivative. If φ(t) is a solution of (2.1), then it is required that it belongs to

PC1(R, θ) [1].

We say that x(t) : I → Rn,I ⊂ R, is a solution of (2.1) on I if there exists an extension x̃(t) of

the function on R such that x̃(t) ∈ PC1(R, θ), the equality x′(t) = f(x(t)), t ∈ I , is true if x(t) /∈ Γ,

x(θi+) = J(x(θi)) for x(θi) ∈ Γ and x(θi+) ∈ Γ̃, θi ∈ I . If θi is a discontinuity moment of x(t), then

x(θi) ∈ Γ, for θi > 0 and x(θi) ∈ Γ̃, for θi < 0. If x(θi) ∈ ∂Γ or x(θi) ∈ ∂Γ̃, then x(θi) is a point of

discontinuity with zero jump.

Definition 2.1 A point x∗ from ∂Γ or ∂Γ̃ is a grazing point of system (2.1) if 〈∇Φ(x∗), f(x∗)〉 = 0 or

〈∇Φ̃(x∗), f(x∗)〉 = 0, respectively. If at least one of coordinates of ∇Φ̃(x∗) is zero then the grazing is

axial, otherwise it is non-axial.

Definition 2.2 An orbit γ(x∗) = {x(t, 0, x∗)|x∗ ∈ D, t ∈ R} of (2.1) is grazing if there exists at least

one grazing point on the orbit.

Consider a solution x(t) : R → Rn and {θi} be the moments of the discontinuity, they are the moments

where solution x(t) intersects Γ as time increases and the moments when the solution it intersects Γ̃ as

time decreases.

A solution x(t) = x(t, 0, x0), x0 ∈ D of (2.1) locally exists and is unique if the conditions (C1)− (C3)

are valid [1].

In what follows, let ‖ · ‖ be the Euclidean norm, that is for a vector x = (x1, x2, . . . , xn) in Rn, the

norm is equal to
√
x21 + x22 + . . .+ x2n.

The following condition for (2.1) guarantees that any set of discontinuity moments of the system

constitutes a B− sequence and we call the condition B− sequence condition.

(C8) supD ‖f(x)‖ < +∞, and infx0∈Γ̃(x0, y(ζ, 0, x0)) > 0.

In [1], some other B− sequence conditions are provided.

We will request for discontinuous dynamical systems that any sequence of discontinuity moments to

be a B− sequence.
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Let us set the system

y′ = f(y) (2.2)

for the possible usage in the remaining part of the paper.

Consider a solution y(t, 0, x0), x0 ∈ Γ̃, of (2.2). Denote the first meeting point of the solution with

the surface Γ, provided the point exists, by y(ζ, 0, x0). The following conditions are sufficient for the

continuation property.

(C9) (a) Every solution y(t, 0, x0), x0 ∈ D, of (2.2) is continuable to either ∞ or Γ as time increases,

(b) Every solution y(t, 0, x0), x0 ∈ D, of (2.2) is continuable to either −∞ or Γ̃ as time decreases.

To verify the continuation of the solutions of (2.1), the following theorems can be applied.

Theorem 2.1 [1] Assume that conditions (C8) and (C9) are valid. Then, every solution x(t) =

x(t, 0, x0), x0 ∈ D of (2.1) is continuable on R.

Now, we will present a condition which is sufficient for the group property.

(C10) For all x0 ∈ D, the solution y(t, 0, x0) of (2.2) does not intersect Γ̃ before it meets the surface Γ as

time increases.

In other words, for each x0 ∈ D and a positive number s such that y(s, 0, x0) ∈ Γ̃, there exists a number

r, 0 ≤ r < s, such that y(r, 0, x0) ∈ Γ.

It is easy to verify that the condition (C10) is equivalent to the assertion that for all x0 ∈ D, the

solution y(t, 0, x0) of (2.2) does not intersect Γ before it meets the surface Γ̃ as time decreases. In other

words, for each x0 ∈ D and a negative number s such that y(s, 0, x0) ∈ Γ̃, there exists a number r,

s < r ≤ 0, such that y(r, 0, x0) ∈ Γ̃.

Theorem 2.2 (The group property) Assume that conditions (C1)-(C10) are valid. Then,

x(t2, 0, x(t1, 0, x0)) = x(t2 + t1, 0, x0), for all t1, t2 ∈ R.

Proof. Denote by ξ(t) = x(t+ t̄), for a fixed t̄ ∈ R. It can be verified that the sequence {θi − t̄} is a set

of discontinuity moments of ξ(t) and the function is a solution of (2.1) [1]. The next step is to show that

the following equality x(−t, 0, x(t, 0, x0)) = x0, holds for all x0 ∈ D and t ∈ R. Consider the case t > 0.

If the set of discontinuity moments {θi} is empty, the proof is same with that for continuous dynamical

systems [23]. Because of the condition (C2), which corresponds to invertibility of the jump function J,

the equality x(θi, 0, x(θi+)) = x(θi), holds for all i ∈ A . Assuming that θ−1 < 0 < θ1, we should verify

x(−θ1, 0, x(θ1, 0, x0)) = x0. Denote by x̄(t) = x(t, 0, x(θ1)). The point x(θ1) lies on the discontinuity

surface Γ. By condition (C3) the solution x̄(t) is a trajectory of y′ = f(y) for decreasing t. Condition

(C10), part (a), implies that the trajectory x̄(t) cannot meet with Γ̃ if t > −θ1 as time decreases. That

is, x̄(−θ1) = x0 as the dynamics is continuous. The proof for t < 0 can be done in a similar way. �

5



Remark 2.1 For the application of the results, it is possible to take the initial moment as t0 = 0, without

being the discontinuity moment since of the group property. Then x0 /∈ Γ ∪ Γ̃.

Denote by ̂[a, b], a, b ∈ R, the interval [a, b], whenever a ≤ b and [b, a], otherwise. Let x1(t) ∈

PC(R+, θ
1), θ1 = {θ1i }, and x2(t) ∈ PC(R+, θ

2), θ2 = {θ2i }, be two different solutions of (2.1).

Definition 2.3 The solution x2(t) is in the ǫ−neighborhood of x1(t) on the interval I if

• the sets θ1 and θ2 have same number of elements in I ;

• |θ1i − θ2i | < ǫ for all θ1i ∈ I ;

• the inequality ||x1(t)− x2(t)|| < ǫ is valid for all t, which satisfy t ∈ I \ ∪θ1
i
∈I (θ1i − ǫ, θ1i + ǫ).

The topology defined with the help of ǫ− neighborhoods is called the B-topology. It can be apparently

seen that it is Hausdorff and it can be considered also if two solutions x1(t) and x2(t) are defined on a

semi-axis or on the entire real axis.

Definition 2.4 The solution x0(t) = x(t, 0, x0), t ∈ R, x0 ∈ D, of (2.1) B-continuously depends on x0

for increasing t if there corresponds a positive number δ to any positive ǫ and a finite interval [0, b], b > 0

such that any other solution x(t) = x(t, 0, x̃) of (2.1) lies in ǫ−neighborhood of x0(t) on [0, b] whenever

x̃ ∈ B(x0, δ). Similarly, the solution x0(t) of (2.1) B-continuously depends on x0 for decreasing t if there

corresponds a positive number δ to any positive ǫ and a finite interval [a, 0], a < 0 such that any other

solution x(t) = x(t, 0, x̃) of (2.1) lies in ǫ−neighborhood of x0(t) on [a, 0] whenever x̃ ∈ B(x0, δ). The

solution x0(t) of (2.1) B-continuously depends on x0 if it continuously depends on the initial value, x0,

for both increasing and decreasing t.

If conditions (C1)-(C7) hold, then each solution x0(t) : R → Rn, x0(t) = x(t, 0, x0), of (2.1) continu-

ously depends on x0 [1].

2.1 B-equivalence to a system with fixed moments of impulses

In order to facilitate the analysis of the system with variable moments of impulses (2.1), a B-equivalent

system [1] to the system with variable moments of impulses will be utilized in our study. Below, we will

construct the B-equivalent system.

Let x(t) = x(t, 0, x0 + ∆x) be a solution of system (2.1) neighbor to x0(t) with small ‖∆x‖. If the

point x0(θi) is a (β)− or (γ)− type point, then it is a boundary point. For this reason, there exist two

different possibilities for the near solution x(t) with respect to the surface of discontinuity. They are:

(N1) The solution x(t) intersects the surface of discontinuity, Γ, at a moment near to θi,

(N2) The solution x(t) does not intersect Γ, in a small time interval centered at θi.

6



Consider a solution x0(t) : I → Rn, I ⊆ R, of (2.1). Assume that all discontinuity points θi,

i ∈ A are interior points of I . There exists a positive number r, such that r-neighborhoods of Di(r) of

(θi, x0(θi)) do not intersect each other. Consider r is sufficiently small and so that every solution of (2.2)

which satisfies condition (N1) and starts in Di(r) intersects Γ in Gi(r) as t increases or decreases. Fix

i ∈ A and let ξ(t) = x(t, θi, x), (θi, x) ∈ Di(r), be a solution of (2.2), τi = τi(x) the meeting time of ξ(t)

with Γ and ψ(t) = x(t, τi, ξ(τi) + J(ξ(τi))) another solution of (2.2). Denoting by Wi(x) = ψ(θi) − x,

one can find that it is equal to

Wi(x) =

∫ τi

θi

f(ξ(s))ds+ J(x+

∫ τi

θi

f(ξ(s))ds) +

∫ θi

τi

f(ψ(s))ds (2.3)

and maps an intersection of the plane t = θi with Di(r) into the plane t = θi.

Let us present the following system of differential equations with impulses at fixed moments, whose

impulse moments, {θi}, i ∈ A , are the moments of discontinuity of x0(t),

y′ = f(y),

∆y|t=θi =Wi(y(θi)).

(2.4)

The function f is the same as the function in system (2.1) and the maps Wi, i ∈ A , are defined by

equation (2.3). If ξ(t) = x(t, θi, x) does not intersect Γ near θi then we take Wi(x) = 0.

Let us introduce the sets Fr = {(t, x)|t ∈ I, ‖x − x0(t)‖ < r}, and D̄i(r), i ∈ A , closure of an

r− neighborhood of the point (θi, x0(θi+)). Write Dr = Fr ∪ (∪i∈ADi(r)) ∪ (∪i∈A D̄i(r)). Take r > 0

sufficiently small so that Dr ⊂ R × D. Denote by D(h) an h-neighborhood of x0(0). Assume that

conditions (C1) − (C10) hold. Then systems (2.1) and (2.4) are B-equivalent in Dr for a sufficiently

small r [1]. That is, if there exists h > 0, such that:

1. for every solution y(t) of (2.4) such that y(0) ∈ D(h), the integral curve of y(t) belongs to Dr and

there exists a solution x(t) = x(t, 0, y(0)) of (2.1) which satisfies

x(t) = y(t), t ∈ [a, b]\ ∪m
i=−k (τ̂i, θi], (2.5)

where τi are moments of discontinuity of x(t). One should precise that we assume τi = θi, if x(t)

satisfies (N2). Particularly,

x(θi) =





y(θi), if θi ≤ τi,

y(θ+i ), otherwise,

y(τi) =





x(τi), if θi ≥ τi,

x(τ+i ), otherwise.

(2.6)

2. Conversely, if (2.4) has a solution y(t) = y(t, 0, y(0)), y(0) ∈ D(h), then there exists a solution

7



x(t) = x(t, 0, y(0)) of (2.1) which has an integral curve in Dr, and (2.5) holds.

A solution x0(t) satisfies (2.1) and (2.4) simultaneously.

Consider a solution x0(t) : R → Rn, x0(t) = x(t, 0, x0), x0 ∈ D with discontinuity moments {θi}.

Fix a discontinuity moment θi. At this discontinuity moment, the trajectory may be on Γ and Γ̃. All

possibilities of discontinuity moment should be analyzed. For this reason, we should investigate the

following six cases:

(α) x0(θi) ∈ Γ \ ∂Γ, (α′) x0(θi) ∈ Γ̃ \ ∂Γ̃,

(β) x0(θi) ∈ ∂Γ & 〈∇Φ(x0(θi)), f(x0(θi))〉 6= 0, (β′) x0(θi) ∈ ∂Γ̃ & 〈∇Φ̃(x0(θi)), f(x0(θi))〉 6= 0,

(γ) x0(θi) ∈ ∂Γ & 〈∇Φ(x0(θi)), f(x0(θi))〉 = 0, (γ′) x0(θi) ∈ ∂Γ̃ & 〈∇Φ̃(x0(θi)), f(x0(θi))〉 = 0.

If a discontinuity point x0(θi) satisfy the case (α), ((α′)) the case (β), ((β′)) and the case (γ), ((γ′))

we will call it an (α)− type point, a (β)− type point and a (γ)− type point, respectively.

Besides, we present the following definition which is compliant with Definition 2.2.

Definition 2.5 If there exists a discontinuity moment, θi, i ∈ A , for which one of the cases (γ) or (γ′)

is valid, then the solution x0(t) = x(t, 0, x0), x0 ∈ Rn of (2.1) is called a grazing solution and t = θi is

called a grazing moment.

Next, we consider the differentiability properties of grazing solutions. The theory for the smoothness

of discontinuous dynamical systems’ solutions without grazing phenomenon is provided in [1].

Denote by x̄(t), j = 1, 2, . . . , n, a solution of (2.4) such that x̄(0) = x0 + ∆x, ∆x = (ξ1, ξ2, . . . , ξn),

and let ηi be the moments of discontinuity of x̄(t).

The following conditions are required in what follows.

(A) For all t ∈ [0, b]\ ∪i∈A (̂ηi, θi], the following equality is satisfied

x̄(t)− x0(t) =
n∑

i=1

ui(t)ξi +O(‖∆x‖), (2.7)

where ui(t) ∈ PC([0, b], θ).

(B) There exist constants νij , j ∈ A , such that

ηj − θj =

n∑

i=1

νijξi +O(‖∆x‖); (2.8)

(C) The discontinuity moment ηj of the near solution approaches to the discontinuity moment θj , j ∈ A ,

of grazing one as ξ tends to zero.
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The solution x̄(t) has a linerization with respect to solution x0(t) if the condition (A) is valid and,

moreover, if the point x0(θi) is of (α)− or (β)− type, then the condition (B) is fulfilled. For the case

x0(θi) is of (γ)− type the condition (C) is true.

The solution x0(t) is K−differentiable with respect to the initial value x0 on [0, b] if for each solution

x̄(t) with sufficiently small ∆x the linearization exists. The functions ui(t) and νij depend on ∆x and

uniformly bounded on a neighborhood of x0.

It is easy to see that the differentiability implies B−continuous dependence on solutions to initial

data.

Define the map ζ(t, x) as ζ(t, x) = x(t, 0, x), for x ∈ D.

A K-smooth discontinuous flow is a map ζ(t, x) : R×D → D, which satisfies the following properties:

(I) The group property:

(i) ζ(0, x) : D → D is the identity;

(ii) ζ(t, ζ(s, x)) = ζ(t+ s, x) is valid for all t, s ∈ R and x ∈ D.

(II) ζ(t, x) ∈ PC1(R) for each fixed x ∈ D.

(III) ζ(t, x) is K-differentiable in x ∈ D on [a, b] ⊂ R for each a, b such that the discontinuity points of

ζ(t, x) are interior points of [a, b].

In [1], it was proved that if the conditions of Theorem 2.1 and (C1)-(C10) are fulfilled, then system

(2.1) defines a B-smooth discontinuous flow [1] if there is no grazing points for the dynamics. It is easy

to observe that the B-smooth discontinuous flow is a subcase of the K-smooth discontinuous flow. In

the next section, we will construct a variational system for (2.1) in the neighborhood of grazing orbits.

That is, we will assume that some of the discontinuity points are (γ)− type points. Linearization around

a solution and its stability will be taken into account. Thus, analysis of the discontinuous dynamical

systems with grazing points will be completed.

3 Linearization around grazing orbits and discontinuous dynam-

ics

The object of this section is to verify K− differentiability of the grazing solution. Consider a grazing

solution x0(t) = x(t, 0, x0), x0 ∈ D, of (2.1). We will demonstrate that one can write the variational

system for the solution x0(t) as follows:

u′ = A(t)u,

∆u|t=θi = Biu(θi),

(3.9)
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where the matrix A(t) ∈ Rn×n of the form A(t) = ∂f(x0(t))
∂x

. The matrices Bi, i = 1, . . . , n, will be

defined in the remaining part of the paper. The matrix Bi is bivalued if θi is a grazing moment or of

(β)−type.

The right hand side of the second equation in (3.9) will be described in the remaining part of the

paper for each type of the points. As the linearization at a point of discontinuity, we comprehend the

second equation in (3.9).

3.1 Linearization at (α)−type points

Discontinuity points of (α) and (α′) types are discussed in [1]. In this subsection, we will outline the

results of the book.

Assume that x(θi) is an (α)−type point. It is clear that the B− equivalent system (2.4) can be

applied in the analysis. The functions τi(x) and Wi(x), are described in Subsection 2.1. Differentiating

Φ(x(τi(x))) = 0, we have

∂τi(x0(θi))

∂xj
= −

Φx(x0(θi))
∂x0(θi)
∂x0j

Φx(x0(θi))f(x0(θi))
. (3.10)

Then, considering (2.3), we get the following equation,

∂Wi(x0(θi))

∂x0j
= (f(x0(θi))− f(x0(θi) + J(x0(θi))))

∂τi
∂x0j

+
∂I

∂x
(ej + f

∂τi
∂x0j

), (3.11)

where ej = (0, . . . , 1︸ ︷︷ ︸
j

, . . . , 0).

The matrix Bi ∈ Rn×n in equation (3.9) is defined as Bi =Wix, where Wix is the n×n matrix of the

form Wix = [∂Wi(x0(θi))
∂x1

, ∂Wi(x0(θi))
∂x2

, . . . , ∂Wi(x0(θi))
∂xn

]. Its vector-components ∂Wi(x0(θi))
∂x0j

, j = 1, . . . , n,

evaluated by (3.11). Moreover, the components of the gradient ∇τi have to be evaluated by formula

(3.10).

3.2 Linearization at (β)−type points

In what follows, denote n × n zero matrix by On. In the light of the possibilities (N1) and (N2), the

matrix Bi in (2.1) can be expressed as follows:

Bi =





On, if (N1) is valid,

Wix, if (N2) is valid,

(3.12)

where Wix is evaluated by formula (3.11) and ∇τ(x) evaluated by formula (3.10).

The differentiability properties for the cases (α′) and (β′) can be investigated similarly.
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3.3 Linearization at a grazing point

Fix a discontinuity moment θi and assume that one of the cases (γ) or (γ′) is satisfied. We will investigate

the case (γ). The case (γ′) can be considered in a similar way.

Considering condition (C1) with the formula (3.10), it is easy to see that one coordinate of it is

infinity at a grazing point. This gives arise singularity in the system, which makes the analysis harder

and the dynamics complex. Through the formula (3.10), one can see that the singularity is just caused

by the position of the vector field with respect to the surface of discontinuity and the impact component

of the dynamical system does not participate in the appearance of the singularity. To handle with the

singularity, we will rely on the following conditions.

(A1) A grazing point is isolated. That is, there is a neighborhood of the point with no other grazing

points.

(A2) The map Wi(x) in (2.3) is differentiable at the grazing point x = x0(θi).

(A3) The function τi(x) does not exceed a positive number less than θi+1 − θi near a grazing point,

x0(θi), on a set of points which satisfy condition (N1).

In the present paper, we analyze the case, when the impact functions neutralize the singularity

caused by transversality. That is, the triad: impact law, the surface of discontinuity and the vector

field is specially chosen, such that condition (A2) is valid. Presumably, if there is no of this type of

suppressing, complex dynamics near the grazing motions may appear [7, 28, 36, 37]. In the examples

stated in the remaining part of the paper, one can see the verification of (A2), in details.

Let us prove the following assertion.

Lemma 3.1 If conditions (C1), (C4), (C6), (C8) and (A3) hold. Then, τi(x) is continuous near a

grazing point x0(θi), on a set of points, which satisfy condition (N1).

Proof. Let x0(θi) be a grazing point. If x̄ is not a point from the orbit of the grazing solution,

the continuity of τi(x) at the point x = x̄ can be proven using similar technique presented in [1]. Now,

the continuity at x0(θi) is taken into account. On the contrary, assume that τi(x) is not continuous

at the point x = x0(θi). Then, there exists a positive number ǫ0 and a sequence {xn}n∈Z such that

τi(xn) > ǫ0 whenever xn → x0(θi), as n→ ∞. Moreover, from condition (A3), one can assert that there

exists a subsequence τi(xnk
) which converges to a number ǫ0 ≤ τ0 < θi+1−θi. Without loss of generality,

assume that the subsequence converges the point where the sequence {xn}n∈Z converges. Since of the

continuity of solutions in initial value, x(τi(xn), 0, xn) approaches to x(τ0, 0, x(θi)). But x(τi(xn), 0, xn)

is on the surface of discontinuity Γ, x(τ0, 0, x0(θi)) /∈ Γ. This contradicts with the closeness of the surface

of discontinuity Γ. The continuity at other points of the grazing orbit is valid by the group property. �
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Since of B−equivalence of systems (2.1) and (2.4), we will consider linearization around x0(t) as

solution of the system (2.4), consequently, only formula (2.7) will be needed. Finally, the linearization

matrix for the grazing point also has to be defined by the formula (3.12), where Wix exists by condition

(A2).

In what follows, we will consider only grazing motions such that condition (A2) holds. Consequently,

the continuous dependence on initial data is valid. More precisely, B− continuous dependence on initial

data is true. Now, if conditions (C1) − (C10) and (A1), (A2) are assumed, the system (2.1) defines a

K− smooth discontinuous flow for dynamics with grazing points.

3.4 Linearization around a grazing periodic solution

Let Ψ(t) : R → D be a periodic solution of (2.1) with period ω > 0 and θi, i ∈ Z, are the points of

discontinuity which satisfy (ω, p)− property, i.e. θi+p = θi + ω, p is a natural number.

Let us fix a solution x(t) = x(t, 0,Ψ(0) + ∆x) and assume that linearization of Ψ(t) with respect to

x(t) exists and is of the form

u′ = A(t)u,

∆u|t=θi = Biu.

(3.13)

The matrix Bi is determined by (3.12). It is known that A(t + ω) = A(t), t ∈ R. But, the sequence Bi

may not be periodic in general, since of (3.12). This makes the analysis of the neighborhood of Ψ(t)

difficult. For this reason, we suggest the following condition.

(A4) For each sufficiently small ∆x ∈ Rn, the variational system (3.13) satisfies Bi+p = Bi, i ∈ Z. There

exist a finite number m ≤ 2l, where l is the number of points of (β)− or (γ)− type in the interval

[0, ω], of the periodic sequences Bi.

The assumption (A4) is valid for many low dimensional models of mechanics and those which can be

decomposed into low dimensional subsystems. To distinguish periodic sequences Bi in the assumption

(A4), we will apply the notation Bi = D
(j)
i , i ∈ Z and j = 1, 2, . . . ,m.

If the condition (A4) is not fulfilled, then complex dynamics near a periodic motion may appear.

This case can be investigated either by methods developed through mappings applications [13, 41] or it

requests additional development of our present results.

In the next example, we will demonstrate that the system constitutes K− smooth discontinuous flow

although it has grazing points in the phase space.

Example 3.1 (K-smooth discontinuous flow with grazing points). Consider an impact model

y′1 = y2,

y′2 = −y1 + 0.001y2,

(3.14a)
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∆y2|y∈Γ1
= −y2 −R1y

2
2 ,

∆y2|y∈Γ2
= −(1 +R2)y2,

(3.14b)

with the domain D = R2, R1 = exp(−0.0005π) and R2 = 0.9. In the paper [16], it is stated that the

coefficient of restitution for low velocity impact still remains as an open problem. In the study [4], by

considering Kelvin-Voigt model for the elastic impact, we derived quadratic terms of the velocity in the

impact law. This arguments make the quadratic term for the impulse equation (3.14b) reasonable.

Let us describe the set of discontinuity curves by Γ = Γ1 ∪ Γ2. The components Γ1 and Γ2 are

intervals of the vertical lines y1 = exp(0.00025π) and y1 = 0, respectively and they will be precised next.

Fix a point P = (0, ȳ2) ∈ D, with ȳ2 > 1. Let y(t, 0, P ) be a solution of (3.14a) and it meets with the

vertical line x1 = exp(0.00025π), x2 > 0 at the point P2 = (exp(0.00025π), y2(θ1, 0, P )), where θ1 is the

meeting moment with the line. Consider the point Q2 = (exp(0.00025π),−R1y2(θ1, 0, P2)
2) and denote

Q1 = (0, y2(θ2, 0, Q2)), where θ2 is the moment of meeting of the solution y(t, 0, Q2) with the vertical line

x1 = 0, x2 < 0. We shall need also the point P1 = (0,−R2y2(θ2, 0, Q2)). Finally, we obtain the region

G in yellow and blue between the vertical lines and graphs of the solutions in Figure 1. The region G

contains discontinuous trajectories and outside of this region all trajectories are continuous. Moreover,

both region G and its complement are invariant.

Z
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Γ
 ∼

Γ
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Γ

Γ

∼

∼

QQ
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P P
22
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2

1
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2

1
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y
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  y

2

y

y

1

2

Figure 1: The region G for system (3.14) is depicted in details. The curves of discontinuity Γ = Γ1 ∪ Γ2

and Γ̃ = Γ̃1 ∪ Γ̃2 are drawn as vertical lines in red and green, respectively and the grazing orbit in
magenta.

Define Γ1 = {(y1, y2)| y1 = exp(0.00025π), 0 ≤ y2 ≤ y2(θ1, 0, (0, ȳ2))}, and Γ2 = {(y1, y2)| y1 =

0, y2(θ2, 0,−R1y2((θ1, 0, (0, ȳ2)))
2) ≤ y2 ≤ 0}. The boundary of the curve, Γ = Γ1 ∪ Γ2, has of four
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points, they are

∂Γ = {(0, 0), (exp(0.00025π), 0), (exp(0.00025π), y2(θ1, 0, (0, ȳ2))), (0, y2(θ2, 0,−R1y2(θ1, 0, (0, ȳ2)))}.

In the following part of the example, we will show that two of them, y∗ = (y∗1 , y
∗
2) = (exp(0.00025π), 0)

and the origin, (0, 0) are grazing points. Moreover, it can be easily validated that other two points are of

β−type.

Issuing from system (3.14), the curve of discontinuity Γ̃ consists of two components Γ̃1 and Γ̃2. The

components are the following sets

Γ̃1 = {(y1, y2)| y1 = exp(0.00025π), −R1y2(θ1, 0, (0, ȳ2))
2 ≤ y2 ≤ 0}

and

Γ̃2 = {(y1, y2)| y1 = 0, 0 ≤ −R2y2(θ2, 0, Q2)}.

One can verify that the function

Ψ(t) =





exp(0.0005t)
(
sin(t), cos(t)

)
, if t ∈ [0, π),

(0, 1), if t = π,

(3.15)

is a discontinuous periodic solution of (3.14) with period ω = π, whose discontinuity points (0, 1) and

(0,− exp(0.0005π)) belong to Γ̃ and Γ, respectively. The expression

〈∇Φ((exp(0.00025π), 0)), f((exp(0.00025π), 0))〉 = 〈(1, 0), (0,− exp(−0.00025π))〉 = 0

verifies that y∗ is a (γ)− type point, i.e. a grazing point of the solution Ψ(t). It is easily seen that the

grazing is axial. Now, we can assert that the periodic solution (3.15) is a grazing solution in the sense

of Definition 2.5. Its simulation is depicted in Figure 2.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1
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z
1
(t)

z 2(t
)

Figure 2: The grazing orbit of system (3.14).

Since the complement of G is invariant in both directions and consists of continuous trajectories of
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the linear system (3.14a), one can easily conclude that the complement is a continuous dynamical system

[23]. Thus, to verify the dynamics for the whole system, one need to analyze it in the region G. This set

is bounded, consequently for solutions in it conditions (C8) and (C9) are fulfilled and by Theorem 2.1,

they admit B−sequences and continuation property.

Consider a function ζ(y2) : [y2(θ2, 0, Q2), y2(θ1, 0, P )] → [y2(θ2, 0, Q2), y2(θ1, 0, P )] such that it is

continuously differentiable, satisfies ζ(y2) = −R2y2 in a neighborhood of y2 = 0 and is the identity at

the boundary points, i.e. ζ(y2(θ1, 0, P )) = y2(θ1, 0, P ) and ζ(y2(θ1, 0, P )) = y2(θ1, 0, P ). It is easily seen

that such function exists. On the basis of this discussion, let us introduce the following system,

y′1 = y2,

y′2 = −y1 + 0.001y2,

∆y2|y∈Γ = ζ(y2)− y2.

(3.16)

It is apparent that system (3.16) is equivalent to (3.14) near the orbit of periodic solution Ψ(t). That

is, they have the same trajectories there.

Specifying (2.1) for (3.16), it is easy to obtain that Φ(y1, y2) = Φ̃(y1, y2) = (y1 − exp(0.00025π))y1,

f(y1, y2) = (y2,−y1 + 0.001y2) and J(y) = (y1, ζ(y2)).

Now, we will verify that system (3.16) defines a K− smooth discontinuous flow. First, condition (C1)

is verified since ∇Φ1(y) = ∇Φ2(y) = (1, 0) 6= 0, for all y ∈ D. The jump function J(y) = (y1, ζ(y2)) is

continuously differentiable function. So, condition (C2) is valid. It is true that Γ ∩ Γ̃ ⊆ ∂Γ ∩ ∂̃Γ. In-

equalities 〈∇Φ1(y), f(y)〉 = 〈(1, 0), (y2,−y1+0.001y2)〉 = y2 6= 0 and 〈∇Φ2(y), f(y)〉 = 〈(1, 0), (y2,−y1+

0.001y2)〉 = y2 6= 0, if y ∈ Γ\∂Γ, validate the condition (C4). Moreover, 〈∇Φ̃1(y), f(y)〉 = 〈(1, 0), (y2,−y1+

0.001y2)〉 = y2 6= 0 and 〈∇Φ̃2(y), f(y)〉 = 〈(1, 0), (y2,−y1 +0.001y2)〉 = y2 6= 0, if y ∈ Γ̃ \ ∂Γ̃. Conditions

(C6) and (C7) hold as the function ζ is such defined. Thus, conditions (C1)− (C10) have been verified.

Consequently, the system (3.14) defines the K− smooth discontinuous flow for all motions except the

grazing ones. To complete the discussion, one need to linearize the system near the grazing solutions.

First, we proceed with the linearization around the grazing periodic orbit (3.15).

The solution, Ψ(t) has two discontinuity moments θ1 = π
2 and θ2 = ω in the interval [0, ω]. The

corresponding discontinuity points are of (γ)− and (α)− types, respectively. Next, we will linearize the

system at these points. The linearization at the second point exists [1] and the details of this will be

analyzed in the next example. This time, we will focus on the grazing point y∗.

First, we assume that y(t) = y(t, 0, y∗ +∆y), ∆y = (∆y1,∆y2) is not a grazing solution. Moreover,

the solution intersects the line Γ1 at time t = ξ near t = θ1 as time increases. The meeting point

ȳ = (ȳ1, ȳ2) = (y1(ξ, 0, (y
∗ +∆y)), y2(ξ, 0, (y

∗ +∆y)), is transversal one. It is clear ȳ1 = exp(0.00025π)

and ȳ2 > 0. In order to find a linearization at the moment t = θi, we use formula (2.3) for y(t), and find
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that

∂Wi(y)

∂y01
=

τ(y)∫

θi

∂f(y(s))

∂y

∂y(s)

∂y01
ds+ f(y(s))

∂τ(y)

∂y01
+ Jy(y)(e1 + f(y(s))

∂τ(y)

∂y01
) + f(y(s) + J(y(s)))

∂τ(y)

∂y01

+

θi∫

τ(y)

∂f(y(s) + J(y(s)))

∂x

∂y(s)

∂y01
ds, (3.17)

where e1 = (1, 0)T , T denotes the transpose of a matrix. Substituting y = ȳ to the formula (3.17), we

obtain that

∂Wi(y(ξ, 0, y
∗ +∆y))

∂y01
= f(y(ξ, 0, y∗ +∆y))

∂τ(y(ξ, 0, y∗ +∆y))

∂y01

+Jy(y(ξ, 0, y
∗ +∆y))

(
e1 + f(y(ξ, 0, y∗ +∆y)))

∂τ(y(ξ, 0, y∗ +∆y)))

∂y01

)

+f(y(ξ, 0, (J(y(ξ, 0, y∗ +∆y)))))
∂τ(J(y(ξ, 0, y∗ +∆y)))

∂y01
. (3.18)

Considering the formula (3.10) for the transversal point ȳ = (ȳ1, ȳ2), the first component
∂τ(ȳ)

∂y01
can

be evaluated as
∂τ(ȳ)

∂y01
= − 1

ȳ2
. From the last equality, it is seen how the singularity appears at the grazing

point. Finally, we obtain that

∂Wi(ȳ)

∂y01
=




ȳ2

−ȳ1 − 0.001ȳ2



(
− 1

ȳ2

)
+



1 0

0 −2R1ȳ2



(
e1 +




ȳ2

−ȳ1 − 0.001ȳ2



(
− 1

ȳ2

))
(3.19)

−




−R1(ȳ2)
2

−ȳ1 + 0.001R1(ȳ2)
2



(
− 1

ȳ2

)
=




ȳ2 −R1(ȳ2)
2

−ȳ1 − 0.001(ȳ2 −R1(ȳ2)
2)



(
− 1

ȳ2

)
+



1 0

0 −2R1ȳ2







0

ȳ1 + 0.001ȳ2
ȳ2


 .

Calculating the righthand side of (3.19) we have

∂Wi(ȳ)

∂y01
=




−R1ȳ2 − 1

0.001(1−R1ȳ2) + 2R1(0.001ȳ2 − ȳ1)


 . (3.20)

The last expression demonstrates that the derivative is a continuous function of its arguments in a

neighborhood of the grazing point. Since it is defined and continuous for the points, which are not from

the grazing orbit by the last expression and for other points it can be determined by the limit procedure.
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Indeed, one can easily show that the derivative at the grazing point y∗ is




−1

0.001− 1.8 exp(0.00025π)


 . (3.21)

Similarly, all other points of the grazing orbit can be discussed.

Next, differentiating (2.3) with y(t) again we obtain that

∂Wi(y)

∂y02
=

τ(y)∫

θi

∂f(y)

∂y

∂y(s)

∂y02
ds+ f(y(s))

∂τ(y)

∂y02
+ Jy(y)(e2 + f(y(s))

∂τ(y)

∂y02
) + f(y + J(y))

∂τ(y)

∂y02

+

θi∫

τ(y)

∂f(y(s) + J(y(s)))

∂x

∂y(s)

∂y02
ds, (3.22)

where e2 = (0, 1)T . Calculate the right hand side of (3.22) at the point ȳ = (ȳ1, ȳ2) to obtain

∂Wi(y(ξ, 0, y
∗ +∆y))

∂y02
= f(y(ξ, 0, y∗ +∆y))

∂τ(y(ξ, 0, y∗ +∆y))

∂y02

+Jy(y(ξ, 0, y
∗ +∆y))

(
e2 + f(y(ξ, 0, y∗ +∆y)))

∂τ(y(ξ, 0, y∗ +∆y))

∂y02

)

+f(y(ξ, 0, y∗ +∆y))
∂τ(y(ξ, 0, y∗ +∆y))

∂y02
. (3.23)

To calculate the fraction
∂τ(y(ξ, 0, y∗ +∆y))

∂y02
in (3.23), we apply formula (3.10) for the transversal

point ȳ = (ȳ1, ȳ2). The second component
∂τ(ȳ)

∂y02
takes the form

∂τ(ȳ)

∂y02
= 0. This and formula (3.23)

imply

∂Wi(ȳ)

∂y02
=




0

−2Rȳ2


 . (3.24)

Similar to (3.21), one can obtain that

∂Wi(y
∗)

∂y02
=



0

0


 . (3.25)

Joining (3.21) and (3.25), it can be obtained that

Wiy(y
∗) =




−1 0

0.001− 1.8 exp(0.00025π) 0


 . (3.26)
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The continuity of the derivatives in a neighborhood of y∗ implies that the function W is differentiable at

the grazing point y = y∗, and the condition (A2) is valid.

Now, on the basis of the discussion made above, one can obtain the bivalued matrix of coefficients for

the grazing point as

B1 =





O2, if (N1) is valid,


−1 0

0.001− 1.8 exp(0.00025π) 0


 , if (N2) is valid.

The matrix D
(1)
1 = O2 is for near solutions of (3.15) which are in the region where Z in, see Fig. 1,

and do not intersect the curve of discontinuity Γ1. The matrix

D
(2)
1 =




−1 0

0.001− 1.8 exp(0.00025π) 0




is for near solutions of (3.15), which intersects the curve of discontinuity Γ1. They start in the subregion,

where the point Y is placed. Thus, the linearization for Ψ(t) at the grazing point exists. Moreover, since

another point of discontinuity (0, exp(0.0005π)) is not grazing, the linearization at the point exist as well

as linearization at points of continuity [1, 40]. Consequently, there exist linearization around Ψ(t).

To verify condition (A3), consider a near solution y(t) = y(t, 0, ȳ) to Ψ(t), where ȳ = (0, ȳ2), ȳ2 >

Ψ2(0) = 1, which satisfy the condition (N1). It is true that θi+1 − θi =
π

2
=
ω

2
. The first coordinate of

the near solution is y1(t) = ȳ exp(0.0005t) sin(t) and

y1(
ω
2 ) = y1(

π

2
) = ȳ exp(0.00025π) > exp(0.00025π) = Ψ1(

ω

2
). Thus, the meeting moment of near solution

y(t) with the surface of discontinuity is less than ω
2 . So, it implies that 0 < τ(y) < π

2 − ǫ for a small

number ǫ if the first coordinate of ȳ is close to exp(0.00025π). This validates condition (A3). Now, Lemma

3.1 proves the condition (C).

Now, let us consider the point (0, 0). We have that 〈∇Φ((0, 0)), f((0, 0))〉 = 〈(1, 0), (0, 0)〉 = 0. That is

the origin is a grazing point. In the same time it is a fixed point of the system. For this particular grazing

point, we can find the linearization directly. Indeed, all the near solutions satisfy the linear impulsive

system,

x′1 = x2,

x′2 = −x1 + 0.001x2,

∆x2|x1=0 = −(1 +R2)x2.

(3.27)

Consider a solution x(t) = x(t, 0, x0), where x0 = (x01, x
0
2) 6= (0, 0) with moments of discontinuity
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θi, i ∈ Z, then the linearization system for the equation around the equilibrium is

u′1 = u2,

u′2 = −u1 + 0.001u2,

∆u2|t=θi = −(1 +R2)u2.

(3.28)

Indeed, if u1(t), u1(0) = e1, u2(t), u2(0) = e2, are solutions of (3.28), then one can see that x(t)−(0, 0) =

x01u1(t) + x02u2(t), for all t ∈ R.

We have obtained that linearization exists for both grazing solutions Ψ(t), and the equilibrium at

the origin. Moreover, conditions (C1) − (C10) are valid and all other solutions are B-differentiable in

parameters [1]. Thus, the system (3.14) defines a K− smooth discontinuous flow in the plane.

In the next example, we will finalize the linearization around the grazing solution Ψ(t).

Example 3.2 (Linearization around the grazing discontinuous cycle). We continue analysis of the last

example, and complete the variational system for Ψ(t).

Let us consider this time, the linearization at the non-grazing moment ω = π. The discontinuity point

is c = (0,− exp(0.0005π)) and it is of (α)− type, since

〈∇Φ(c), f(c)〉 = 〈(1, 0)(− exp(0.0005π),−0.001 exp(0.0005π))〉 = − exp(0.0005π) 6= 0.

By using formula (3.10), one can compute the gradient as ∇τ(c) = (exp(−0.0005π), 0).

Then, utilizing ∇τ(c) and formula (3.11), one can determine that the matrix of linearization at the

moment π is

B2 =



exp(−0.0005π) 0

0.001 0


 .

From the monotonicity of the jump function, −R1y
2
2 , it follows that the the yellow and blue subregions

of G are invariant. Consequently, for each solution near to Ψ(t), the sequences Bi is of two types

Bi = D
(j)
i , i ∈ Z and j = 1, 2, where D

(1)
2i−1 = O2, D

(2)
2i−1 = D

(2)
1 =




−1 0

0.001− 1.8 exp(0.00025π) 0


 ,

D
(1)
2i = D

(2)
2i =



exp(−0.0005π) 0

0.001 0


 , i ∈ Z. That is, the condition (A4) is valid and the linearization

around the periodic solution (3.15) on R is of two subsystems:
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u′1 = u2,

u′2 = −u1 + 0.001u2,

∆u|t=θ2i−1
= D

(1)
2i−1u,

∆u|t=θ2i = D
(1)
2i u,

(3.29)

and

u′1 = u2,

u′2 = −u1 + 0.001u2,

∆u|t=θ2i−1
= D

(2)
2i−1u,

∆u|t=θ2i = D
(2)
2i u,

(3.30)

where θ2i−1 = (2i−1)π
2 and θ2i = iπ

The sequences {D(j)
i }, j = 1, 2, are 2− periodic. It is appearant that system (3.29)+(3.30) is a

(ω, 2)− periodic. Thus, the variational system for the grazing solution is constructed.

4 Orbital stability

In this section, we proceed investigation of the grazing periodic solution Ψ(t). Analysis of orbital stability

will be taken into account. Denote by B(z, δ), an open ball with center at z and the radius δ > 0 for

a fixed point z ∈ Γ \ ∂Γ. By condition (C3), the ball is divided by surface Γ into two connected open

regions. Denote c+(z, δ), for the region, where solution x(t) = x(t, 0, z) of (2.2) enters as time increases.

The region is depicted in Figure 3.

Set the path of the periodic solution Ψ(t) as

η := {x ∈ D : x = Ψ(t), t ∈ R}.

z

c (z,δ
+

)

Figure 3: The region c+(z, δ).

Define dist(A, a) = infα∈A ‖α− a‖, where A is a set, and a is a point.
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Definition 4.1 The periodic solution Ψ(t) : R → D of (2.1) is said to be orbitally stable if for every ǫ >

0, there corresponds δ = δ(ǫ) > 0 such that dist(x(t, 0, x0), η) < ǫ, for all t ≥ 0, provided dist(x0, η) < δ

and x0 /∈ ∪ic
+(Ψ(θi), δ), for i = 1, . . . ,m, where m is the number of points Ψ(θi) ∈ Γ \ ∂Γ.

The point x0 is not considered in regions c+(Ψ(θi), δ), i = 1, . . . ,m, since solutions which start there

move continuously on a finite interval, while Ψ(t) experiences a non-zero jump at t = θi and this violates

the continuity in initial value, in general. In the same time, we take into account any region adjoint to

points of ∂Γ, since the jump of Ψ(t) is zero there and, consequently, the continuous dependence in initial

value is valid for all near points.

Definition 4.2 The solution Ψ(t) : R+ → D of (2.1) is said to have asymptotic phase property if a

δ > 0 exists such that to each x0 satisfying dist(x0, η) < δ and x0 /∈ ∪ic
+(Ψ(θi), δ), for i = 1, . . . ,m,

there corresponds an asymptotic phase α(x0) ∈ R with property: for all ǫ > 0, there exists T (ǫ) > 0, such

that x(t+ α(x0), 0, x0) is in ǫ-neighborhood of Ψ(t) in B−topology for t ∈ [T (ǫ),∞).

Let us consider the following system, which will be needed in the following lemmas and theorem

x′ = A(t)x,

∆x|t=ζi = Biu,

(4.31)

where A(t) and Bi are n×n function-matrices, A(t+ω) = A(t), for all t ∈ R and there exists an integer

p such that ζi+p = ζi + ω and Bi+p = Bi, for all i ∈ Z.

Lemma 4.1 Assume that system (4.31) has a simple unit characteristic multiplier and the remaining

n− 1 ones are in modulus less than unity. Then, the system (4.31) has a real fundamental matrix X(t),

of the form

X(t) = P (t)




1 0

0 exp (Bt)


 , (4.32)

where P ∈ PC1(R, θ) is a regular, ω-periodic matrix, and B is an (n − 1) × (n − 1) matrix with all

eigenvalues have negative real parts.

Proof. Denote the matrix X(t), X(0) = I, as fundamental matrix of system (4.31). There exists a

matrix B1 such that the substitution x = P (t)z, where P (t) = X(t) exp(−B1t), transforms (4.31) to the

following system with constant coefficient [1],

z′ = Λz. (4.33)

The matrix exp(Λω) has a simple unit eigenvalue and remaining (n − 1) ones are in modulus less
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than unity. Hence, there exists real nonsingular matrix M, which satisfies

M−1 exp(Λω)M =



1 0

0 C1


 .

The remaining part of the proof is same as proof of Lemma 5.1.1 in [17]. �

Throughout this section, we will assume that (A4) is valid. That is, the variational system (3.13)

consists of m periodic subsystems. For each of these systems, we find the matrix of monodromy, Uj(ω)

and denote corresponding Floquet multipliers by ρ
(j)
i , i = 1, . . . , n, j = 1, . . . ,m. In the next part of the

paper, the following assumption is needed.

(A5) ρ
(j)
1 = 1 and |ρ(j)i | < 1, i = 2, . . . , n for each j = 1, . . . ,m.

Lemma 4.2 Assume that the assumptions (A4) and (A5) are valid. Then, for each j = 1, . . . ,m, the

system (3.13) admits a fundamental matrix of the form

Uj(t) = Pj(t)[1, exp(Hjω)], t ∈ R, (4.34)

where Pj ∈ PC1(R, ζ) is a regular, ω-periodic matrix and Hj is an (n − 1) × (n − 1)− matrix with all

eigenvalues have negative real parts.

The proof of Lemma 4.2, can be done similar to that of Lemma 4.1.

Theorem 4.1 Assume that conditions (C1)−(C7), (C10), and the assumptions (A1)−(A5) hold. Then

ω- periodic solution Ψ(t) of (2.1) is orbitally asymptotically stable and has the asymptotic phase property.

Proof. Since of the group property, we may assume Ψ(0) is not a discontinuity point. Then, one can

displace the origin to the point Ψ(0), and the coordinate system can be rotated in such a way that the

tangent vector Ψ′
0 = Ψ′(0) points in the direction of the positive x1 axis i.e. the coordinates of this

vector are Ψ′
0 = (Ψ′

01, 0, . . . , 0), Ψ
′
01 > 0.

Let θi, i ∈ Z, be the discontinuity moments of Ψ(t). Denote the path of the solution by η = {x ∈ X :

x = Ψ(t), t ∈ R}. There exists a natural number p, such that θi+p = θi + ω for all i. Because of condi-

tions (C1)− (C7) and K−differentiability of Ψ(t) there exists continuous dependence on initial data and

consequently there exists a neighborhood of η such that any solutions which starts in the set will have

moments of discontinuity which constitute a B− sequence with difference between neighbors approxi-

mately equal to the distance between corresponding neighbor moments of discontinuity of the periodic

solution Ψ(t). Consequently we can determine variational system for Ψ(t), with points of discontinuity

θi, i ∈ Z.

On the basis of discussion in Section 2.1, one can define in the neighborhood of η a B− equivalent

system of type (2.4). The variational system of it takes the form
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z′ = A(t)z + r(t, z),

∆z|t=θi = D
(j)
i z + qi(z), j = 1, 2, . . . ,m,

(4.35)

where r(t, z) = [f(Ψ(t)+z)−f(Ψ(t))]−A(t)z and qi(z) =Wi(Ψ(θi)+z)−Wi(Ψ(θi))−D(j)
i z, are contin-

uous functions, and matrices D
(j)
i satisfy condition (A4). The functions are continuously differentiable

with respect to z. One can verify that r(t, 0) ≡ qi(0) ≡ 0 and r(t + ω, z) = r(t, z) for t ∈ R. Moreover,

the derivatives satisfy r′(t, 0) ≡ q′iz(0) ≡ 0 and the functions r(t, z) → 0, qi(z) → 0, r′z(t, z) → 0 and

q′iz(z) → 0, as z → 0 uniformly in t ∈ [0,∞), i ≥ 0. Each system (4.35) for j = 1, 2, . . . ,m, corresponds

to a region adjoint to initial value, x0 such that these regions cover a neighborhood of x0.

Fix a number j and denote Yj(t) the fundamental matrix of adjoint to (4.35) linear homogeneous

system

y′ = A(t)y,

∆y|t=θi = D
(j)
i y,

(4.36)

of the form (4.34). One can verify that

Yj(t)Y
−1
j (s) = Pj(t)




1 0

0 exp(Hj(t− s))


P−1

j (s), (4.37)

for −∞ < t, s <∞.

We can write




1 0

0 exp(Hj(t− s))


 =




0 0

0 exp(Hj(t− s))


+




1 0

0 On−1


 ,

where On−1 is the (n− 1)× (n− 1) zero matrix. Then it can be driven

Yj(t)Y
−1
j (s) = G

(j)
1 (t, s) +G

(j)
2 (t, s) = G(j)(t, s),

where

G
(j)
1 (t, s) = Pj(t)




0 0

0 exp(Hj(t− s))


P−1

j (s),

G
(j)
2 (t, s) = Pj(t)




1 0

0 On−1


P−1

j (s).
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Denote the eigenvalues of the matrix Hj by λ
(j)
2 , . . . , λ

(j)
n . By means of the Lemma 4.1 and 4.2, there

exits a number α > 0, such that Re(λ
(j)
k ) < −α, k = 2, 3, . . . , n, where Re(z) means the real part of the

number, z. Taking into account that the matrices Pj and P−1
j are regular and periodic, the following

estimates can be calculated

|G(j)
1 (t, s)| ≤ K(j) exp(−α(t− s)), (4.38)

|G(j)
2 (t, s)| ≤ K(j), (4.39)

where K(j) is a positive real constant.

Denote the first column of the fundamental matrix Y by χ1. By the equation (4.34), χ1 is equal to

the first column of Pj , this means that it is a ω-periodic solution of (3.13).

By assumptions of the theorem the variational system (4.35) satisfies the conditions of Lemma 4.2,

and one can verify that the following estimate is true [17]

|Yj(t)| ≤ K
(j)
1 exp(−αt) for t ≥ 0, (4.40)

where K
(j)
1 is a positive constant. Let us setup the following integral equation

z(j)(t, a) = Yj(t)a+

t∫

0

G
(j)
1 (t, s)r(s, z(s))ds −

∞∫

t

G
(j)
2 (t, s)r(s, z(s))ds

+
∑

0<θk<t

G
(j)
1 (t, θk+)qk(z(θk))−

∑

t<θk<∞

G
(j)
2 (t, θk+)qk(z(θk)), (4.41)

where a = [0, a2, . . . , an], ai ∈ R, i = 2, 3, . . . , n, are orthogonal to Ψ′(0), i.e. with the zero first

coordinate.

Let z
(j)
0 (t, a) ≡ 0, and consider the following successive approximations

z
(j)
k (t, a) = Yj(t)a+

∞∫

0

G(j)(t, s)r(s, zk−1(s))ds+

∞∑

k=1

G(j)(t, θk+)qk(zk−1(θk)), (4.42)

for k = 1, 2, . . . . By using the approximation (4.42) and estimation (4.40), one can verify that

|z(j)1 (t, a)| ≤ K
(j)
1 |a| exp(−αt/2). (4.43)

We will show that the bounded solution of (4.41) exists and satisfies (4.35). For arbitrary positive small

number L, there exists a number δ = δ(L) such that for |z1| < δ, |z2| < δ

|r(t, z1)− r(t, z2)| ≤ L|z1 − z2| (4.44)
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and

|qi(z1)− qi(z2)| ≤ L|z1 − z2|, (4.45)

uniformly in t ∈ [0,∞).

Denote by L1 = 4K(j)
( 2
α
− 1

1− exp(−αθ/2)
)
.

Next, by using mathematical induction, we are going to show that z
(j)
s (t, a), s = 1, 2, . . . , are defined

for t ∈ [0,∞) and satisfy

|z(j)s+1(t, a)− z(j)s (t, a)| ≤ K
(j)
1 |a| exp(−αt/2)/2s, s = 0, 1, 2, . . . , (4.46)

if L < L1. Utilizing Lemma 4.2 and inequalities (4.40), (4.44), (4.45) and θi+1 − θi ≥ θ, i ∈ Z, one can

verify that

|z(j)k+1(t, a)− z
(j)
k (t, a)| ≤ K

(j)
1 |a|L1 exp(−αt/2)/(2kα). (4.47)

As a consequence of (4.46), the sequence z
(j)
k+1(t, a) converges uniformly on t ∈ [0,∞), |a| < δ/2K

(j)
1 ,

and

|z(j)s (t, a)| ≤ 2K
(j)
1 |a| exp(−αt/2), s = 1, 2, . . . .

Therefore, the limit function z(j)(t, a) exists on the same domain, it is piecewise continuous, satisfies

(4.41) and the following estimate

|z(j)(t, a)| ≤ 2K
(j)
1 |a| exp(−αt/2). (4.48)

Denote by z(t) = z(j)(t, a), for j = 1, 2, . . . ,m. Next, we will verify that z(j)(t, a) satisfies (4.35). For

it, differentiate (4.41)

z′(t) = Y ′
j (t)a+G

(j)
1 (t, t)r(t, z(t)) +Gj

2(t, t)r(t, z(t)) +

t∫

0

G
(j)
1t (t, s)r(s, z(s))ds

−
∞∫

t

G
(j)
2t (t, s)r(s, z(s))ds +

∑

0<θk<t

G
(j)
1t (t, θk+)qk(z(θk))−

∑

t<θk<∞

G
(j)
2t (t, θk+)qk(z(θk))

= A(t)Yj(t)a+G(j)(t, t)r(t, z(t)) +

∞∫

0

A(t)G(j)(t, s)r(s, z(s))ds +
∑

0<θi<t

A(t)G(j)(t, θk+)qk(z(θk))

= A(t)z(t) + r(t, z(t)).

Fix θk, k ∈ Z, then
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z(θk+)− z(θk) = Yj(θk+)a+

θk∫

0

G
(j)
1 (θk+, s)r(s, z(s))ds−

∞∫

θk

G
(j)
2 (θk+, s)r(s, z(s))ds

+
∑

0≤θi<θk

G
(j)
1 (θk+, θi+)qi(z(θi+))−

∑

θk<θi<∞
G

(j)
2 (θk+, θi+)qi(z(θi+))

−Yj(θk)a−
θk∫

0

G
(j)
1 (θk, s)r(s, z(s))ds +

∞∫

θk

G
(j)
2 (θk, s)r(s, z(s))ds

−
∑

0≤θi<θk

G
(j)
1 (θk, θi+)qi(z(θi)) +

∑

θk≤θi<∞
G

(j)
2 (θk, θi+)qi(z(θi+))

= D
(j)
k z(θk) + qk(z(θk)).

The above discussion proves that z(j)(t, a), j = 1, , 2, . . . ,m, are bounded solutions of system (4.35).

We will determine the initial values of bounded solutions in terms of (n−1) parameters a
(j)
2 , . . . , a

(j)
n , j =

1, , 2, . . . ,m. Denote a(j) = [0, aj2, a
j
3, . . . , a

j
n]. By using (4.41), we obtain

z(j)(0, a(j)) = Yj(0)a
(j) −

∞∫

0

G
(j)
2 (0, s)r(s, z(s))ds −

∑

0<θk<∞

G
(j)
2 (0, θk+)qk(z(θk))

= Pj(0)a
(j) − Pj(0)




1 0

0 On−1




∞∫

0

P−1
j (s)r(s, z(s))ds −

∑

0<θk<∞

P−1
j (s)qk(z(θk)).

In the way utilized in [17], one can show that the coordinates of the initial value (x1, . . . , xn) ∈ D of the

solution z(j) satisfy the equation

x1 +

n∑

i=2

cjixi − hj(x2, . . . , xn) = 0, (4.49)

where hj ∈ C1, j = 1, , 2, . . . ,m.

One can see that equation (4.49) determines (n−1) dimensional hypersurfaces Sj ⊂ D, j = 1, 2, . . . ,m,

in a neighborhood of the origin such that each solution which starts at the surface satisfies inequality

(4.48). From the analytical representation, it follows that the equation of the tangent space of Sj at the

origin is described by the equation x1 +
n∑

i=2

cjixi and the first coordinate of the gradient of the left hand

side in (4.49) is unity. Moreover, the path η intersects Sj transversely. This and condition (A4) imply

that the path of every solution φ(t) near Ψ(t) intersects one of the manifolds Sj, j = 1, 2, . . . ,m, at some

t̄ ∈ [0, 2ω].

Because of the continuous dependence on initial values, a δ(ǫ) > 0 exists for a given ǫ > 0, such that

if dist(x0, ηδ) < δ(ǫ), then the solution φ(t, x0) is defined on [0, 2ω], and dist(φ(t, x0), η) < ǫ ≤ ǫ1 for

t ∈ [0, 2T ]. Therefore, the path of φ(t, x0) intersects Sj for some j = 1, 2, . . . ,m and t1 ∈ [0, 2ω]. The
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solution φ(t, φ(t1, x
0)) = φ(t+ t1, x

0) has its initial value in Sj , consequently, satisfies (4.48). In the light

of the B− equivalence, the corresponding solution x(t), x(0) = φ(0)−Ψ(0), of (4.35) satisfies the property

that for all ǫ > 0, there exists T (ǫ) such that x(t) is in an ǫ− neighborhood of Ψ(t) for t ∈ [T (ǫ),∞).

That is, the solution Ψ(t) is orbitally asymptotically stable and there exists an asymptotical phase. �

Definitions of the orbital stability and an asymptotic phase as well as theorem of orbital stability for

non-grazing periodic solutions are also presented in [44]. In our paper, we suggest the orbital stability

theorem for grazing periodic solutions, its proof and formulate the definitions for the stability. They are

different in many aspects from those provided in [44]. It is valuable that they also valid, if the solution

is non-grazing.

To shed light on our theoretical results, we will present the following examples.

Example 4.1 We continue with the system presented in Examples 3.1 and 3.2. In Example 3.1, we

verified that system (3.16)defines a K− smooth discontinuous flow in the plane and the variational

system (3.29)+(3.30) around the grazing periodic solution, Ψ(t) is approved.

Using systems (3.29) and (3.30), one can evaluate the Floquet multipliers as ρ
(1)
1 = 1, ρ

(1)
2 = 0.8551,

ρ
(2)
1 = 1 and ρ

(2)
2 = 0. This verifies condition (A5).

The conditions (C1)− (C7) and (C10) are validated and the assumptions (A4) and (A5) verified. By

using Theorem 4.1, we can assert that the solution, Ψ(t) is orbitally asymptotically stable. The stability

is illustrated in Fig. 4. The red one is for a trajectory of the discontinuous periodic solution (3.15) of

(3.14) and the blue one is for the near solution of (3.14) with initial value y0 = (0.8, 1.2). It can be

observed from Fig. 4 that the blue trajectory approaches the red one as time increases.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

y
1
(t)

y 2(t
)

Figure 4: The red discontinuous cycle of (3.14) axially grazes Γ at (0.00025π), 0) and (0,− exp(−0.0005π))
is an (α)-type point. The blue arcs are of the trajectory with initial value (0.8, 1.2). It can be observed
that it approaches the grazing one as time increases.

Example 4.2 (A periodic solution with a non-axial grazing). We will take into account the following
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autonomous system with variable moments of impulses

x′1 = x2,

x′2 = −x1,

∆x1|x∈Γ =
1√
2
− x1 +K(x2 − x1)

2,

∆x2|x∈Γ =
1√
2
− x2 +K(x2 − x1)

2,

(4.50)

where Γ = {(x1, x2)|x1 + x2 =
√
2}, Γ̃ = {(x1, x2)|x1 = x2} and K = 0.11. It is easy to verify that the

point x∗ = (
1

2
,
1

2
) is a grazing point because 〈∇τ(x∗), f(x∗)〉 = 〈(1, 1), (12 ,− 1

2 )〉 = 0 and the grazing is

non-axial. We assume that the domain is the plane.

The solution Ψ(t) = (sin(t), cos(t)), t ∈ R is a grazing one, since the point x∗ = Ψ(π4 ) is from its

orbit. The cycle and the line of discontinuity are depicted in Figure 5.
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Figure 5: The red curve is the orbit of Ψ(t) which grazes non-axially the line of discontinuity.

Let us consider the linearization at the grazing point x∗ next. We will consider the near solution

x(t) = x(t, 0, x∗ + ∆x). Denote t = ξ, the moment when the solution meets the surface of discontinuity

Γ at the point x̄ = x(ξ) = x(ξ, 0, x∗ +∆x). Taking into account formulae (3.17), (3.18) with (4.50), one

can obtain the following matrix

∂Wi(x(ξ, 0, x
∗ +∆x))

∂x01
=



x̄2

−x̄1


 1

x̄1 − x̄2
+



−2K(x̄2 − x̄1) −2K(x̄2 − x̄1)

−2K(x̄2 − x̄1) −2K(x̄2 − x̄1)




×
(
e1 +



x̄2

−x̄1


 1

x̄1−x̄2

)
+



− 1√

2
+K(x̄2 − x̄1)

2

1√
2
−K(x̄2 − x̄1)

2


 1

x̄1 − x̄2
. (4.51)

Calculating the right hand side of the expression (4.51), we obtain that
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∂Wi(x(ξ, 0, x
∗ +∆x))

∂x01
=




−
√
2 + 0.22

2
√
2√

2 + 0.22

2
√
2


 . (4.52)

Using similar method with that of the first one, the second derivative can be computed as

∂Wi(x(ξ, 0, x
∗ +∆x))

∂x02
=




√
2 + 0.22

2
√
2

−
√
2 + 0.22

2
√
2


 . (4.53)

Combining (4.52) and (4.53), we can obtain the following matrix for the linearization at the grazing

point x∗,

Wix(x
∗) =




−
√
2 + 0.22

2
√
2

√
2 + 0.22

2
√
2√

2 + 0.22

2
√
2

−
√
2 + 0.22

2
√
2


 . (4.54)

It is appearant that the matrix Wix(x
∗) is continuous with respect to its arguments, since it is constant if

the point x∗+∆x is not from the orbit of the grazing solution. Since of the limit procedure, it is the same

constant for all points of the grazing solution. Thus, the Jacobian is constant matrix in a neighborhood

of the grazing point and condition (A2) is valid.

Now, let us check the validity of the condition (A3). Consider a near solution x(t) = x(t, 0, x̄), to

the grazing cycle Ψ(t), where x̄ = (0, x̄2), x̄2 > Ψ2(0) = 1. So, the near solution x(t) satisfies the

condition (N1). For the grazing periodic solution, it is true that θi+1−θi = 2π = ω. The grazing solution

Ψ(t) = x(t, 0, (0, 1)), touches the line of discontinuity Γ at t = ω
8 . The first coordinate of the near solution

is x1(t) = x̄2 sin(t), and x1(
ω

8
) = x̄2 sin(

ω

8
) =

x̄2√
2
> Ψ1(

ω

8
) =

1√
2
. Consequently, the near solution x(t)

meets the line of discontinuity Γ before the moment ω
8 . This implies that 0 < τ(x) < π

4 − ǫ, for a

small positive ǫ whenever x1(t) is close to 1√
2
. Thus, the condition (A3) is valid and Lemma 3.1 proves

condition (C).

In the light of the above discussion, the bivalued matrix of coefficients for the grazing point is easily

obtained as
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B1 =





O2, if (N1) is valid,



−
√
2 + 0.22

2
√
2

√
2 + 0.22

2
√
2√

2 + 0.22

2
√
2

−
√
2 + 0.22

2
√
2


 , if (N2) is valid.

(4.55)

It is appearant that the interior of the grazing orbit is invariant. Let us show that the external part

of the unit circle is positively invariant. It is sufficient to demonstrate that J1(x1)
2 + J2(x2)

2 > 1 for

any (x1, x2) ∈ Γ. Denote x1 = z and x2 =
√
2− z and consider the formula

F (z) = J1(z)
2 + J2(

√
2− z)2 = (

1√
2
+ 0.11(

√
2− 2z)2)2 + (

1√
2
+ 0.11(

√
2− 2z)2)2,

where F ( 1√
2
) = 1. It is easy to calculate that F ′( 1√

2
) = 0 and F ′′( 1√

2
) = 0.88

√
2 > 0. Consequently,

F (z)− F (
1√
2
) = F (z)− 1 =

1

2
F ′′(

1√
2
)(z − 1√

2
)2 + o(‖z − 1√

2
‖2) > 0,

if z is close to 1√
2
. Thus, near the grazing point, the external region is invariant. From this discussion,

since of the formula (4.55), we can conclude that the condition (A4) is valid. Taking into account it with

the expression (4.55), the linearization system for (4.50) around the grazing solution Ψ(t) is obtained as

u′1 = u2,

u′2 = −u1,

∆u(2πi) = D
(j)
i u,

(4.56)

where D
(1)
i = O2 and D

(2)
i =




−
√
2 + 0.22

2
√
2

√
2 + 0.22

2
√
2√

2 + 0.22

2
√
2

−
√
2 + 0.22

2
√
2


 , i ∈ Z.

To finalize stability analysis, consider the first system in (4.56), with matrices D
(1)
i = O2. Its multi-

pliers are ρ
(1)
1 = ρ

(1)
2 = 1 and it constitutes the linearization for the orbits which are inside the circle. The

system does not give a decision by orbital stability theorem, Theorem 4.1. Nevertheless, from the simple

analysis [40] result, we know that the grazing orbit is stable with respect to inside orbits of the system.

The linearization of orbits which are outside of the circle has multipliers ρ
(2)
1 = 1 and ρ

(2)
2 = −0.15. It

means that the periodic solution is orbitally stable with respect to solutions outside of the circle. Summa-

rizing the discussion, we can conclude that the periodic solution is stable. The stability result is observed

through simulations and it is seen in Fig. 6.
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Figure 6: The red orbit of system (4.50) non-axially grazes the surface Γ. The magenta trajectory with
initial point (0, 1.32) approaches the cycle as time increases. The green cycle with initial point (0, 0.96)
demonstrates the inside stability of the grazing orbit.

5 Small parameter analysis and grazing bifurcation

In this part, we will discuss existence and bifurcation of cycles for perturbed systems, if the generating

one admits a grazing periodic solution. In continuous dynamical systems, a small parameter may cause a

change in the number of periodic solutions in critical cases. In the present analysis, we will demonstrate

that the change may happen in non-critical cases, since of the non-transversality. That is why, one can

say that grazing bifurcation is under discussion. Let us deal with the following system

x′ = f(x) + µg(x, µ),

∆x|x∈Γ(µ) = I(x) + µK(x, µ),

(5.57)

where x ∈ Rn, t ∈ R,Γ(µ) = {x| Φ(x)+µφ(x, µ) = 0}, µ ∈ (−µ0, µ0), and µ0 is a sufficiently small positive

number. Functions f(x), I(x) and Φ(x) are continuously differentiable up to second order, g(x, µ),K(x, µ)

are continuously differentiable in x and µ. The function φ(x, µ) is continuously differentiable in x up to

second order and to first order in µ. We assume that the generating system for (5.57) is the system (2.1)

with all conditions assumed for the system, earlier. The main assumption of this section is that (2.1)

admits a ω−periodic solution, Ψ(t). Let Ψ(0) = (ζ01 , ζ
0
2 , . . . , ζ

0
n) be the initial value of the solution.

Our aim is to find conditions that verify the existence of periodic solutions of (5.57) with a period

T such that for µ = 0, the periodic solutions of (5.57) are turned down to Ψ(t). It is common for the

autonomous systems that the period T does not coincide with ω. Thus, in the remaining part of the

paper, we will consider the period T as an unknown variable.

Since Ψ(0) is not an equilibrium, there is a number j = 1, 2, . . . , n, such that fj(ζ
0
1 , ζ

0
1 , . . . , ζ

0
n) 6= 0.

In other words, the vector field is transversal to line xj = ζ0j near the point. Hence, to try points near to
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Ψ(0) for the periodicity, it is sufficient to consider those with j−th coordinate is equal to ζ0j , [31]. For the

discontinuous dynamics, the choice of the fixed coordinate can be made easier if the surface of disconti-

nuity is provided with a constant coordinate. We will demonstrate this in examples. Denote the initial

values of the intended periodic solution by ζ1, ζ2, . . . , ζn. Assume that one initial value ζj is known, i.e. ζ0j .

Thus, the problem contains n−many unknowns, they can be presented as ζ1, ζ2, . . . , ζj−1, ζj+1, . . . , ζn,T .

Denote the solution of (5.57) by xs(t, ζ1, ζ2, . . . , ζn, µ) with initial conditions xs(0, ζ1, ζ2, . . . , ζn, µ) = ζs.

To determine the unknowns, we will consider the Poincaré criterion, which can be written as

Sk(T , ζ1, ζ2, . . . , ζn, µ) ≡ xk(T , ζ1, ζ2, . . . , ζn, µ)− ζk = 0, k = 1, 2, . . . , n, (5.58)

where ζj = ζ0j . The equations (5.58) are satisfied with µ = 0,T = ω, ζi = ζ0i , i = 1, 2, . . . , n, since Ψ(t)

is the periodic solution.

The following condition for the determinant is also needed in the remaining part paper.

(A6) ∣∣∣∣∣∣∣∣∣∣∣∣∣

∂(S1(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂T
. . .

∂(S1(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂ζn

∂(S2(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂T
. . .

∂(S2(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂ζn

...
. . .

...

∂(Sn(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂T
. . .

∂(Sn(ω,ζ0
1 ,ζ

0
2 ,...,ζ

0
j−1,ζ

0
j+1,...,ζ

0
n,0))

∂ζn

∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0 (5.59)

Theorem 5.1 Assume that condition (A6) is valid. Then, (5.57) admits a non-trivial periodic solution,

which converges in the B− topology to the non-trivial ω-periodic solution of (5.57) as µ tends to zero.

We will present the following examples to realize our theoretical results.

Example 5.1 In this example, we will consider the perturbed system in case the generating system has

a graziness. To show that, let us take into account the following perturbed system

x′1 = x2,

x′2 = −0.001x2 − x1,

∆x2|x∈Γ1
= −(1 +R1x2 + µx2)x2,

∆x2|x∈Γ2
= −(1 +R2 + µ(x2 − exp(0.001π/2))x2.

(5.60)

It is easy to see that the system (5.60) is of the form (5.57). For µ = 0, the generating system became

(3.14). For the perturbed system (5.60), we will investigate existence of the periodic solution around the

grazing periodic solution of (3.14) with the help of Theorem 5.1.

There are two sorts of possible periodic solutions of (5.60) around the grazing one. One of them

has two impulse moments during the period since it crosses both lines of discontinuity, i.e. x1 = 0

and x1 = exp(0.00025π). The other sort is the periodic solution which does not intersect the line x1 =
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exp(0.00025π) and intersects the line x1 = 0. We will show the existence of both type of periodic solutions

if |µ| sufficiently small.

Let us start with the second type, assume that the solution for the perturbed system exists and it starts

at the point (0, x02), x02 < 1 and does not intersect the line x1 = exp(0.00025π). Denote the initial values

of the periodic solution by ζ1 and ζ2. Since the periodic solution necessarily intersects the line x1 = 0,

one can choose ζ1 ≡ ζ01 = 0. By specifying the formula in (5.58) for the system (5.60), it is easy to obtain

the following expressions

S1(T , 0, ζ2, µ) = x1(T , 0, ζ2, µ) = 0,

S2(T , 0, ζ2, µ) = x2(T , 0, ζ2, µ)− ζ2 = 0.

(5.61)

Next, taking the derivative of the expressions in (5.61), we can obtain the following

∣∣∣∣∣∣∣

∂(S1(T ,0,ζ2,µ))
∂T

∂(S1(T ,0,ζ2,µ))
∂ζ2

∂(S2(T ,0,ζ2,µ))
∂T

∂(S2(T ,0,ζ2,µ))
∂ζ2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x1(ω,0,ζ0
2 ,0)

∂T

∂x1(ω,0,ζ0
2 ,0)

∂ζ2

∂x2(ω,0,ζ0
2 ,0)

∂T

∂x2(ω,0,ζ0
2 ,0)

∂ζ2
− 1

∣∣∣∣∣∣∣
. (5.62)

The determinant (5.62) is calculated by means of the monodromy matrix of (3.14), with the impulse

matrix D
(1)
1 = O2, i.e.




1 −0.0317

1.0158 −0.1014


 . (5.63)

Taking into account the system (5.66) with (5.63) at ζ2 = ζ02 and T = ω for µ = 0, one can derive

that

∣∣∣∣∣∣∣

∂S1(ω,0,ζ0
2 ,0)

∂T

∂S1(ω,0,ζ0
2 ,0)

∂ζ2

∂S2(ω,0,ζ0
2 ,0)

∂T

∂S2(ω,0,ζ0
2 ,0)

∂ζ2
− 1

∣∣∣∣∣∣∣
= −0.0317 exp(0.00025π) 6= 0. (5.64)

This verifies condition (A6). Thus, condition (A6) is valid, then by utilizing Theorem (5.1), we can

assert that the system (5.57) admits a non-trivial periodic solution, which converges in the B− topology

to the non-trivial ω-periodic solution of (2.1) as µ tends to zero.

Now, let us verify that system (5.60) has a circle which intersects the line x1 = exp(0.00025π) in the

neighborhood of (exp(0.00025π), 0). So, the periodic solution will attain two discontinuity moments in a

period. Denote the initial values of the periodic solution by ζ1 and ζ2. To apply the condition (A6), fix

one initial value ζ1 = ζ01 = 0 of the intended periodic solution and in the light of the expressions (5.58)
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S1(T , 0, ζ2, µ) = x1(T , 0, ζ2, µ) = 0,

S2(T , 0, ζ2, µ) = x2(T , 0, ζ2, µ)− ζ2 = 0.

(5.65)

Taking the derivative of the expressions (5.65) with respect to variables T and ζ2, one can obtain the

following

∣∣∣∣∣∣∣

∂(S2(T ,0,ζ2,µ))
∂T

∂(S1(T ,0,ζ2,µ))
∂ζ2

∂(S2(T ,0,ζ2,µ))
∂T

∂(S2(T ,0,ζ2,µ))
∂ζ2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x1(ω,0,ζ0
2 ,0)

∂T

∂x1(ω,0,ζ0
2 ,0)

∂ζ2

∂x2(ω,0,ζ0
2 ,0)

∂T

∂x2(ω,0,ζ0
2 ,0)

∂ζ2
− 1

∣∣∣∣∣∣∣
. (5.66)

To determine the above determinant, the monodromy matrix of (3.13) with the jump matrix D
(2)
i can

be evaluated as



1 0.01

0 0.704


 . (5.67)

For µ = 0, with the values ω and ζ02 the determinant (5.66) can be determined as

∣∣∣∣∣∣∣

∂(S1(ω,0,ζ0
2 ,0))

∂T

∂(S1(ω,0,ζ0
2 ,0))

∂ζ2

∂(S2(ω,0,ζ0
2 ,0))

∂T

∂(S2(ω,0,ζ0
2 ,0))

∂ζ2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

0 0.01

− exp(0.00025π) −0.296

∣∣∣∣∣∣∣
= 0.01 exp(0.00025π) 6= 0. (5.68)

This verifies condition (A6). So, By Theorem 5.1, we can conclude that the perturbed system (5.60)

admits a non-trivial T (µ)− periodic solution which converges in the B− topology to the non-trivial

ω-periodic solution of (3.14) as µ tends to zero such that T (0) = ω.

In Fig. 7, some numerical results are provided to show the solutions of system (5.60) with µ = 0.05.

The periodic solutions for µ 6= 0 are not grazing. For µ = 0, we have one periodic solution which

is orbitally stable, and for µ < 0, there exist two periodic solutions. One of them has one discontinuity

moment in each period, in other words, the cycle does not intersect the surface of discontinuity around

grazing point and it is orbitally stable and the other one has two discontinuity moments in each period.

This means, the number of periodic solutions increases by variation of µ, around µ = 0. So, we will call

that bifurcation of periodic solution from a grazing cycle.

Example 5.2 Let us consider the following system with variable moments of impulses and a small

parameter

x′1 = x2,

x′2 = −0.0001[x22 + (x1 − 1)2 − (1 + µ)2]x2 − x1 + 1,

∆x2|x∈Γ = −(1 + Rx2 + µx32)x2 + µ2,

(5.69)
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Figure 7: The red arcs are the trajectory of the system (5.60) with initial value (0, 1.2) and the blue arcs
are the orbit with initial value (0, 1.5). Through simulation, we observe that the trajectories approach
to the periodic solution of (5.60) as time increases.

where R = 0.9 and Γ = {x|x1 = 0, x2 ≤ 0}. It is easy to see that system (5.69) is of the form (5.57) and

Φ(x1, x2) = x1 = 0. The system has a periodic solution

Ψµ(t) = (1 + (1 + µ) cos(t),−(1 + µ) sin(t)), (5.70)

where t ∈ R for µ ∈ (−2, 0].

The generating system of (5.69) has the following form

x′1 = x2,

x′2 = −0.0001[x22 + (x1 − 1)2 − 1]x2 − x1 + 1,

∆x2|x∈Γ = −(1 +Rx2)x2,

(5.71)

and admits the periodic solution Ψ0(t) = (1+cos(t),− sin(t)). By means of the equality 〈∇Φ(x∗), f(x∗)〉 =

〈(1, 0), (0, 1)〉 = 0 with x∗ = (0, 0) ∈ ∂Γ, it is easy to say that x∗ is a grazing point of Ψ0(t).

Let us start with the linearization of system (5.71) around the periodic solution Ψ0(t). Consider a

near solution y(t) = y(t, 0, y∗+∆y), where ∆y = (∆y1,∆y2), to the periodic solution Ψ0(t). Assume that

y(t) satisfies condition (N1), and it meets the surface of discontinuity Γ at the moment t = ξ and at the

point ȳ = y(ξ, 0, y∗ +∆y). Considering the formula (3.10) for the transversal point ȳ = (ȳ1, ȳ2), the first

component
∂τ(ȳ)

∂y01
can be evaluated as

∂τ(ȳ)

∂y01
= − 1

ȳ2
. From the last equality, the singularity is seen at the

grazing point. By taking into account (3.17) with (5.71) and
∂τ(ȳ)

∂y01
, we obtain that
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∂Wi(ȳ)

∂y01
=




Rȳ2 − 1

−0.0001R(ȳ22 + (ȳ1 − 1)2 − 1)− 2R(0.0001(ȳ22 + (ȳ1 − 1)2 − 1))


 . (5.72)

Similarly, taking into account the formula (3.22), one can evaluate that
∂τ(ȳ)

∂y02
= 0. This and formula

(3.23) imply

∂Wi(ȳ)

∂y02
=




0

−2Rȳ2


 . (5.73)

Joining (5.72) and (5.73), the matrix Wiy(ȳ) can be obtained as

Wiy(ȳ) =




Rȳ2 − 1 0

−0.0001R(ȳ22 + (ȳ1 − 1)2 − 1)− 2R(0.0001(ȳ22 + (ȳ1 − 1)2 − 1)) −2Rȳ2


 . (5.74)

The last expression implies continuity of the partial derivatives near the grazing point. This validates

condition (A2).

Then, evaluating the matrix in (5.74) at ȳ = y∗ = (0, 0), it is easy to obtain

Wiy(y
∗) =




−1 0

0.0003R 0


 , (5.75)

and

Bi =





O2, if (N1) is valid,


−1 0

0.0003R 0


 , if (N2) is valid.

(5.76)

To verify condition (A3), let us specify the region

H = {(y1, y2)|y2 <
√
1− (y1 − 1)2, 0 ≤ y1 ≤ 1}.

For the grazing solution Ψ0(t), we have that θi+1−θi = 2π. Consider a near solution y(t) = (y1(t), y2(t)) =

y(t, 0, ȳ) to Ψ(t). To satisfy the condition (N1), take ȳ = (ȳ1, ȳ2) ∈ H. The orbit of y(t) is below the
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grazing orbit. Fix points y = (y1, y2) ∈ H and ψ = (ψ1, ψ2) of the orbits y(t) and Ψ0(t), respectively such

that 0 ≤ y1 = ψ1 ≤ 1 and ψ2 < 0. Since of the equation y′1 = y2, the speed of y1(t) at (y1, y2) is larger

than the speed of Ψ1(t) at (ψ1, ψ2). Consequently, one can find that τ(y) ≤ π
4 < 2π for y ∈ H. Thus, the

condition (A3) is valid and Lemma 3.1 verifies the condition (C).

It is easy to demonstrate that the condition (A4) is valid such that near solutions to the grazing

one are either continuous or discontinuous. That is, they don’t intersect the line of discontinuity Γ or

intersect it permanently near to the grazing point and by means of the formula (5.76), the linearization

system for (5.71) around the grazing cycle Ψ0(t) consists of the following two subsystems

u′1 = u2,

u′2 = −0.0001 sin(2t)u1 + 0.0002 sin2(t)u2,

(5.77)

and

u′1 = u2,

u′2 = −0.0001 sin(2t)u1 + 0.0002 sin2(t)u2,

∆u|2πi =




−1 0

0.0003R 0


u.

(5.78)

The system (5.77) + (5.78) is (2π, 1) periodic. The Floquet multipliers of system (5.77) + (5.78) are

ρ
(1)
1 = 1, ρ

(1)
2 = 0.939, ρ

(2)
1 = 1, ρ

(2)
2 = 0.912. Thus, condition (A5) is validated. Moreover, the conditions

(C1)− (C7) and (A1), (A2) can be verified utilizing similar way presented in Example 3.1. Consequently,

Theorem 4.1 authenticates that the grazing periodic solution (cycle), Ψ0(t) of the system (5.71) is orbitally

stable. The simulation results demonstrating the orbital stability of Ψ0(t) are depicted in Figure 8.
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Figure 8: The grazing cycle of system (5.71) is in red. The blue arcs are the trajectory of the system
with initial point (0.5, 1.2) and the green continuous orbit is with initial value (0.1, 0). They demonstrate
stability of the grazing solution.

Next, we will investigate two sorts of periodic solutions of system (5.69) with a period T near to 2π.

The first one is continuous and the second admits discontinuities once on a period. For those solutions,

corresponding linearization systems around the grazing cycle Ψ0(t) are (5.77) and (5.78), respectively.
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Let us start with the continuous periodic solutions of (5.69). For continuous periodic solution, we will

consider the linearization system (5.77).

To apply Theorem 5.1, denote Ψ0(0) = (ζ01 , 0). That is, consider ζ02 = 0. Then, applying the above

discussion, obtain that the Poincarè condition admits the form of the following equations,

S1(T , ζ1, µ) = x1(T , ζ1, µ)− x1 = 0,

S2(T , ζ1, µ) = x2(T , ζ1, µ) = 0.

(5.79)

Because solutions of the system (5.71) have continuous derivatives with respect to the time, phase

variables and parameters, we can calculate the following determinant

∣∣∣∣∣∣∣∣

∂S1(ω, ζ
0
1 , 0)

∂T

∂S1(ω, ζ
0
1 , 0)

∂x01
∂S2(ω, ζ

0
1 , 0)

∂T

∂S2(ω, ζ
0
1 , 0)

∂x01

∣∣∣∣∣∣∣∣
. (5.80)

First, we need the monodromy matrix of the system (5.77). It is




0.939 −0.0001407

−0.0003165 1


 . (5.81)

It is easy to see that first column of the determinant (5.80) is computed by utilizing (5.71) and the

second column is evaluated by means of the first column of the matrix (5.81). From this discussion, one

can obtain that the determinant (5.80) is equal to

∣∣∣∣∣∣∣

0 −0.061

1 −0.0003165

∣∣∣∣∣∣∣
= 0.061 6= 0. (5.82)

Thus, in the light of Theorem 5.1, we can conclude that for sufficiently small |µ| there exists a unique

periodic solution of the system

x′1 = x2,

x′2 = −0.0001[x22 + (x1 − 1)2 − (1 + µ)2]x2 − x1 + 1.

(5.83)

It is exactly the cycle (5.70) with a period T = 2π. If µ < 0, the solution is separated from the set

Γ. Consequently, it is a periodic continuous solution of the equation (5.69). It is orbitally stable by the

theorem for continuous dynamics [23], since of the continuous dependence of multipliers on the parameter.

The function Ψµ(t), µ > 0, intersects Γ and can not be a solution of equation (5.69). Thus, the system

does not admit a continuous periodic solution near to Ψ0(t), if the parameter is positive.

Considering those solutions which have one moment of discontinuity in a period, one can find that
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the corresponding linearization of Ψ0(t) is the system (5.78).

The monodromy matrix of (5.78) can be evaluated as




0.939 −0.00052

−0.000427 1


 . (5.84)

It can be easily observed that the discontinuous solution intersects the line x1 = 0. For this reason, one

can specify the first coordinate of the initial value as ζ1 = ζ01 ≡ 0. In the light of these discussions and

the formula (5.58), the following equations are obtained:

S1(T , 0, ζ2, µ) = x1(T , 0, ζ2, µ) = 0,

S2(T , 0, ζ2, µ) = x2(T , 0, ζ2, µ)− ζ2 = 0.

(5.85)

Then, taking the derivative of the system (5.85) with respect to T and ζ2, and calculating it at T = ω,

ζ2 = ζ02 = 0, and for µ = 0, the following determinant is obtained

∣∣∣∣∣∣∣∣

∂S1(ω, 0, ζ
0
2 , 0)

∂T

∂S1(ω, 0, ζ
0
2 , 0)

∂ζ2
∂S2(ω, 0, ζ

0
2 , 0)

∂T

∂S2(ω, 0, ζ
0
2 , 0)

∂ζ2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

0 −0.0006

1 0.0009

∣∣∣∣∣∣∣
= −0.0006 6= 0. (5.86)

Thus, condition (A6) holds. Then, utilizing Theorem 5.1, it is easy to conclude that for sufficiently small

µ there exists a unique periodic solution of the system (5.69) with a period ≈ 2π. It is true that for

positive as well as negative µ. Moreover, these solutions are orbitally asymptotically stable because of the

continuous dependence of solutions on parameter and initial values and they meet the discontinuity line

transversally.

For each fixed µ 6= 0, solutions near to the periodic ones intersect the line of discontinuity Γ transver-

sally once during the time approximately equal to the period. That is, the smoothness which is requested

for the application of the Poincarè condition is valid, since the smoothness for the grazing point has

already been verified. It is clear that there can not be another solutions with period close to 2π. Thus,

one can make the following conclusion. The original system (5.69) admits two orbitally stable periodic

solutions, continuous and discontinuous, if µ < 0. There is a single orbitally stable continuous solution

(grazing) if µ = 0. Additionally, there is a unique discontinuous orbitally stable periodic solution for

positive values of the parameter. Consequently, grazing bifurcation of cycles appears for the system with

small parameter.

We have obtained regular behavior in dynamics near grazing orbits by the Poincarè small parameter

analysis. Nevertheless, outside the attractors irregular phenomena may be observed.

In Figure 9, the solutions of the system (5.69) with parameter µ = −0.2 are depicted through simula-

tions. The red arcs are the trajectory of the system (5.69) with initial value (0.7, 0.05) and the blue arcs
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are the trajectory of the system (5.69) with initial value (0.4, 0.05). It is seen that both red and blue tra-

jectories approach the discontinuous periodic solution of (5.69), as time increases. So, the discontinuous

cycle is orbitally stable trajectory. Moreover, the green one is a continuous periodic trajectory of (5.69)

with initial value (0, 0.05) and it is orbitally asymptotically stable. To sum up, there exists two periodic

solutions of (5.69) for the parameter µ = −0.2, one is continuous, the other one is discontinuous and

both solutions are orbitally asymptotically stable.
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Figure 9: The blue, red and green arcs constitute the trajectories of system (5.69) with µ = −0.2. The
first two approach as time increases to the discontinuous limit cycle and the third one is the continuous
limit cycle itself.

In Fig. 10, the red arcs are the orbit of the system with initial value (0, 0.1) and the blue arcs are the

trajectory of it with initial value (0, 0.4). Both trajectories approach to the discontinuous cycle of system

(5.69), as time increases. Thus, Fig. 10 illustrates the existence of the orbitally stable discontinuous

periodic solution if µ = 0.2.
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Figure 10: The red and blue arcs constitute the trajectories of the system (5.69) with µ = 0.2. Both
orbits approach to the discontinuous limit cycle, as time increases.

6 Conclusion

In literature, the dynamics in the neighborhood of the grazing points [7]-[10], [13], [18], [19], [36]-[39]

is generally analyzed through maps of the Poincaré type. The main analysis is conducted on complex
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dynamics behavior such as chaos and bifurcation [7]-[10], [13], [15], [18], [36]-[39]. However, there is still

no sufficient conditions for the discontinuous motion to admit main features of dynamical systems : the

group property, continuous and differentiable dependence on initial data and continuation of motions,

which are useful for both local and global analysis. Variational systems for grazing solutions have not

been considered in general as well as orbital stability theorem and regular perturbation theory around

cycles, despite, particular cases can be found in specialized papers. See, for example, [12]. To investigate

these problems in the present paper, we have applied the method of B− equivalence and results on

discontinuous dynamics developed and summarized in [1]. In our analysis the grazing singularity is

observed through the gradient of the time function τ(x), since some of its coordinates are infinite. We

have found the components of the discontinuous dynamical system that is the vector field, surfaces of

discontinuity and the equations of jump such that interacting they neutralize the effect of singularity.

Then, we linearize the system at the grazing moments and this brings the dynamics to regular analysis and

make suitable for the application. By means of the linearization, the theory can be understood as a part

of the general theory of discontinuous dynamical system. Thus, we have considered grazing phenomena

as a subject of the general theory of discontinuous dynamical systems [1], discovered a partition of set

of solutions near grazing solution such that we determine linearization around a grazing solution is a

collection of several linear impulsive systems with fixed moments of impulses. This constitutes the main

novelty of the present paper. To linearize a solution around the grazing one, a system from the collection

is to be utilized. This result has been applied to prove the orbital stability theorem. The way of analysis

in [1]-[3] continues in the present paper and it admits all attributes which are proper for continuous

dynamics [23]. That is why, we believe that the method can be extended for introduction and research

of graziness in other types of dynamics such as partial and functional differential equations and others.

Next, we plan to apply the present results and the method of investigation for problems initiated in

[7]-[10], [37]-[39], [41].
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