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Abstract

By means of transformations to nonlinear Klein–Gordon equations,
we show that a generalized short pulse equation is integrable in two (and,
most probably, only two) distinct cases of its coefficients. The first case
is the original short pulse equation (SPE). The second case, which we
call the single-cycle pulse equation (SCPE), is a previously overlooked
scalar reduction of a known integrable system of coupled SPEs. We get
the Lax pair and bi-Hamiltonian structure for the SCPE and show that
the smooth envelope soliton of the SCPE can be as short as only one cycle
of its carrier frequency.

1 Introduction

In this paper, we study the integrability of the nonlinear wave equation

uxt = u+ au2uxx + buu2x, (1)

where a and b are arbitrary constants, not equal zero simultaneously. The values
of a and b change under the scale transformations of u, x and t, but the ratio a/b
does not change in this way and serves as an essential parameter of (1) therefore.
This nonlinear equation (1) is a slight generalization of the well-known integrable
short pulse equation (SPE)

uxt = u+
1

6

(

u3
)

xx
(2)

which, in its turn, corresponds to the case of a/b = 1/2 in (1). The nonlinear
equation (2) appeared first in the context of differential geometry [1, 2]. Later
the SPE (2) was rediscovered in the context of nonlinear optics [3, 4], in the
problem of propagation of ultra-short infrared light pulses in silica optical fibers,
and in this way it acquired its current name and significance. The SPE has
been studied in many aspects, including its Lax pair [1, 2, 5], transformation
to the sine-Gordon equation [5, 6, 7], recursion operator and hierarchy [5, 8, 9],
bi-Hamiltonian structure and conserved quantities [8, 9], soliton solutions and
periodic solutions [6, 10, 11, 12, 13], wave breaking and well-posedness [14, 15],
and integrable discretizations [16].
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Our aim is to show that the generalized SPE (1) is integrable in two (and,
most probably, only two) distinct cases of its coefficients. The first case, with
a/b = 1/2, is the original SPE (2) up to a scale transformation of variables. The
second case, with a/b = 1, corresponds via a scale transformation of variables
to the new nonlinear wave equation

uxt = u+
1

2
u
(

u2
)

xx
(3)

which we call the single-cycle pulse equation (SCPE). We use this name because
we show that the smooth envelope soliton of the SCPE (3) can be as short as only
one cycle of its carrier frequency. In Section 2 of this paper, we transform the
generalized SPE (1) with any value of a/b to a corresponding nonlinear Klein–
Gordon equation whose nonlinearity depends on a/b. In Section 3, we use the
previously known results on integrability of nonlinear Klein–Gordon equations
and show in this way that the generalized SPE (1) corresponds to integrable
nonlinear Klein–Gordon equations in the cases of a/b = 1/2 and a/b = 1 only.
Next we concentrate on the SCPE (3), reveal its relation to a known integrable
system of coupled SPEs, obtain its Lax pair and bi-Hamiltonian structure, and
study its soliton solutions. Section 4 contains concluding remarks.

2 Transformation

Let us show how to transform the generalized SPE (1) with any value of a/b to
a corresponding nonlinear Klein–Gordon equation.

In the case of a = 0, we have b 6= 0 and make b = 1 in (1) by a scale
transformation of variables, without loss of generality. Then it is easy to see
that the new dependent variable w(x, t),

w = arctanux, (4)

satisfies the nonlinear Klein–Gordon equation

wxt = tanw (5)

if u satisfies the considered case of the generalized SPE (1),

uxt = u+ uu2x. (6)

Note that the inverse transformation from (5) to (6),

u = wt, (7)

is also a local transformation, that is, like (4), it requires no integration.
From now on, we consider the case of a 6= 0 and follow the way of transfor-

mation used in [7]. Introducing the new independent variable y,

x = x(y, t), u(x, t) = p(y, t), (8)

and imposing the condition

xt = −ap2 (9)
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on the function x(y, t) to considerably simplify the result, we cast the studied
equation (1) into the form

xypyt + (2a− b)pp2y − px2y = 0. (10)

Note that this equation (10) is invariant under the transformation y 7→ Y (y)
with any function Y . This means that solutions of the system of equations (9)
and (10) determine solutions of the studied equation (1) parametrically, with
y being the parameter. Next we introduce the new dependent variable q(y, t),
such that

xy =
1

q
py, (11)

which means that q(y, t) = ux(x, t). Compatibility condition xty = xyt for (9)
and (11) reads

pyt =
1

q
pyqt − 2apqpy. (12)

Eliminating xy from (10) and (11), and using (12), we obtain the expression for
p in terms of q,

p =
qt

1 + bq2
, (13)

and the third-order equation for q,

(

log

[

(

qt
1 + bq2

)

y

])

t

− qt
q
+

2aqqt
1 + bq2

= 0. (14)

Solutions q(y, t) of this equation (14) determine solutions of the second-order
equation (1) parametrically, via (8), (9), (11) and (13). The fact that the order
of (14) exceeds the order of (1) by one (hence, there is one extra arbitrary
function in the general solution of (14)) means that the arbitrariness y 7→ Y (y)
of the parameter y is still not fixed.

Let b = 0. Since a 6= 0, we make a = 1 in (1) by a scale transformation of
variables, without loss of generality. In this case, integrating (14) over t, we get

log qyt − log q + q2 = c(y), (15)

where the arbitrary function c(y) is the “constant” of integration. We choose
c(y) = 0 without loss of generality, because it is always possible to make c(y) = 0
in (15) by the transformation y 7→ Y (y) with a properly chosen function Y .
Note that, when the function c(y) is fixed, the arbitrariness of the parameter y
is reduced only to the shifts y 7→ y+ y0 with any constant y0. As the result, we
obtain that solutions of the considered case of the generalized SPE (1),

uxt = u+ u2uxx, (16)

are determined parametrically by solutions of the nonlinear Klein–Gordon equa-
tion

qyt = q exp
(

−q2
)

(17)
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via the relations

u(x, t) = qt(y, t),

x = x(y, t) : xy = exp
(

−q2
)

, xt = −q2t , (18)

where y serves as the parameter.
Let b 6= 0. In this case, we make b = 1 in (1) by a scale transformation of

variables, integrate (14) over t, and get

log
[

(arctan q)yt

]

− log q + a log
(

1 + q2
)

= c(y), (19)

where the arbitrary function c(y) is the “constant” of integration. Next we make
c(y) = 0 in (19) by the transformation y 7→ Y (y) with a properly chosen Y (y),
and introduce the new dependent variable r(y, t),

r = arctan q. (20)

As the result, we obtain that solutions of the considered case of the generalized
SPE (1),

uxt = u+ au2uxx + uu2x, (21)

are determined parametrically by solutions of the nonlinear Klein–Gordon equa-
tion

ryt = sin r(cos r)2a−1 (22)

via the relations

u(x, t) = rt(y, t),

x = x(y, t) : xy = (cos r)2a, xt = −ar2t , (23)

where y serves as the parameter. Note that a is an arbitrary nonzero constant
in this case. However, if we set a = 0, the expressions (22) and (23) correctly
reproduce the expressions (5) and (7), respectively.

3 Integrability

We have transformed the generalized SPE (1) with any value of a/b to a corre-
sponding nonlinear Klein–Gordon equation whose nonlinearity depends on the
value of a/b. Now, using previously known results on integrability of nonlin-
ear Klein–Gordon equations, we can draw a conclusion on integrability of the
generalized SPE.

Integrability of nonlinear Klein–Gordon equations has been studied very
well. According to the classification made in [17], the equation

zξη = f(z) (24)

possesses a higher symmetry if and only if the function f(z) satisfies one of the
following two conditions:

f ′ = αf (25)
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or

f ′′ = αf + βf ′, (26)

where z = z(ξ, η), the prime denotes the derivative with respect to z, the con-
stant α in (25) is arbitrary, while the constants α and β in (26) must satisfy the
condition

β
(

α− 2β2
)

= 0. (27)

Consequently, up to scalings and shifts of variables, only three distinct nonlin-
ear equations of the form (24) possess nontrivial groups of higher symmetries:
the Liouville equation (Darboux integrable), the sine-Gordon equation (Lax
integrable), and the Tzitzeica equation (Lax integrable). No more integrable
nonlinear equations of the form (24) have been discovered by various methods
as yet.

The right-hand sides of the nonlinear Klein–Gordon equations (5) and (17)
do not satisfy the conditions (25) and (26). The right-hand side of the nonlinear
Klein–Gordon equation (22) fails the condition (25) as well, but it satisfies the
condition (26) provided that a = 1/2 or a = 1. In the case of a = 1/2, we obtain
from (21)–(23) the well-known transformation [6]

u(x, t) = rt(y, t),

x = x(y, t) : xy = cos r, xt = −1

2
r2t (28)

which relates the original SPE (2) with the sine-Gordon equation

ryt = sin r. (29)

In the case of a = 1, using the new dependent variable s(y, t),

s = 2r, (30)

we obtain from (21)–(23) the transformation

u(x, t) =
1

2
st(y, t),

x = x(y, t) : xy =
1

2
+

1

2
cos s, xt = −1

4
s2t (31)

which relates the SCPE (3) with the sine-Gordon equation, too,

syt = sin s. (32)

Consequently, there are two (and, most probably, only two) distinct inte-
grable cases of the generalized SPE (1), namely, the original SPE (2) and the
SCPE (3), and they are two different “avatars” of one and the same sine-Gordon
equation. The words “most probably” mean, of course, that the validity of our
conclusion relies on the completeness of the known list of integrable nonlinear
Klein–Gordon equations.

From now on, we study the new integrable equation (3). Since we know the
transformation (31) relating the SCPE (3) with the sine-Gordon equation (32),
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we can derive the Lax pair, bi-Hamiltonian structure and soliton solutions of
the SCPE from the corresponding known objects of the sine-Gordon equation,
in the way successfully used in [6, 18, 19, 20, 21, 22] for other equations. There
is, however, the following easier way, at least for what concerns the Lax pair
and bi-Hamiltonian structure.

Let us give one example of how our result on integrability of the generalized
SPE (1) can be used. Consider the system of two symmetrically coupled SPEs

uxt = u+
1

6

(

u3
)

xx
+ gv2uxx, vxt = v +

1

6

(

v3
)

xx
+ gu2vxx, (33)

where g is an arbitrary constant. This system is a slight generalization of the
integrable system of Feng [23] which, in its turn, corresponds to the case of
g = 1/2 in (33). Are there any other integrable cases of the system (33) besides
the known case with g = 1/2? If we set v = 0 or u = 0 in (33), this two-
component system reduces to the integrable SPE (2) for u or v, respectively.
However, if we set

v = ±u, (34)

the system (33) reduces to the generalized SPE

uxt = u+

(

g +
1

2

)

u2uxx + uu2x (35)

which, as we have already shown, is integrable in two (and, most probably, only
two) cases. The case of g = 0 in (35), when the equations in (33) are decoupled,
is the SPE (2). The case of g = 1/2 in (35), when (33) is the system of Feng,
is the SCPE (3). Taking into account that reductions of an integrable system
must be integrable themselves, we conclude that the system of Feng is (most
probably) the only integrable case of the coupled SPEs (33). As a by-product,
we have established the fact which was surprisingly overlooked in the literature
till now, namely, that the system of Feng [23] possesses two different scalar
reductions, the SPE (2) and the SCPE (3).

Since the Lax pair and bi-Hamiltonian structure of the system of Feng have
already been obtained in [22], we can use them to obtain the Lax pair and bi-
Hamiltonian structure of the SCPE (3) via the reduction (34). Taking from [22]
the Lax pair of the system of Feng and setting v = −u (note the choice of the
sign), we get the following Lax pair of the SCPE (3):

Ψx = XΨ, Ψt = TΨ (36)

with

X =

(

λ
(

1− u2x
)

2λux
2λux −λ

(

1− u2x
)

)

,

T =

(

λu2
(

1− u2x
)

+ 1

4λ 2λu2ux − u
2λu2ux + u −λu2

(

1− u2x
)

− 1

4λ

)

, (37)

where Ψ(x, t) is a two-component column, and λ is the spectral parameter. The
choice of v = u, however, would bring us to a “fake” Lax pair (36) with some
diagonal matrices X and T , which is equivalent to the conservation law

(

u2x
)

t
+
(

−u2 − u2u2x
)

x
= 0 (38)
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of the SCPE (3). Next, taking from [22] the bi-Hamiltonian structure of the
system of Feng and applying the reduction (34) with any choice of the sign, we
get the following bi-Hamiltonian structure of the SCPE (3):

D = ∂−1

x , H =

∫

dx

(

1

2
u2 − 1

2
u2u2x

)

, (39)

and

D =
[

∂−1

x

(

1− u2x
)

+ 2ux∂
−1

x ux
]

∂−1

x

[(

1− u2x
)

∂−1

x + 2ux∂
−1

x ux
]

,

H =

∫

dx

(

−1

2
u2x

)

, (40)

where D and H denote the Hamiltonian operator and functional, respectively,
so that ut = D(δH/δu) is the evolutionary form of (3) for D and H given either
by (39) or by (40).

Finally, let us proceed to the soliton solutions of the SCPE (3). We derive
them from the known soliton solutions of the sine-Gordon equation (32), using
the transformation (31). For any given solution s(y, t) of the sine-Gordon equa-
tion (32), the relations (31) determine u as a function of y and t uniquely, and
determine x as a function of y and t up to an additive constant of integration.
This determines a solution u(x, t) of the SCPE (3), given in a parametric form,
with y being the parameter. The invariance of the sine-Gordon equation (32)
under the Lorentz transformation

y 7→ γy, t 7→ γ−1t, s 7→ s (41)

corresponds via (31) to the invariance of the SCPE (3) under the scale trans-
formation

x 7→ γx, t 7→ γ−1t, u 7→ γu, (42)

where γ is any nonzero constant. We can put the source solution of the sine-
Gordon equation into a simpler form by (41), in order to simplify the symbolic
integration required to obtain x(y, t). Then we can use (42) to generalize the
target solution of the SCPE, if necessary. Also we can simplify the source solu-
tion of the sine-Gordon equation by shifts of y and t, y 7→ y+ y0 and t 7→ t+ t0.
A shift of t in s(y, t) causes the same shift of t in u(x, t), while a shift of y has
no effect on the target solution of the SCPE.

Taking the kink solution [24] of the sine-Gordon equation (32), in the form

s = 4 arctan[exp(y + t)] (43)

simplified by the Lorentz transformation (41) and a shift of y, we obtain via the
transformation (31) the following parametric expressions for the corresponding
solution of the SCPE (3):

u = 1/ cosh(y + t), x = y − tanh(y + t), (44)

where y serves as the parameter, −∞ < y <∞, and the constant of integration
in x has been fixed so that x|y=t=0 = 0. (If we took the antikink solution of
the sine-Gordon equation as a source solution for the transformation (31), the
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Figure 1: The cusped soliton (44): t = 1 (solid) and t = −1 (dashed).

target solution of the SCPE would differ from (44) in the sign of u only.) This
solution (44) is the cusped soliton (cuspon) shown in Figure 1, which moves
from the right to the left with constant shape and unit speed. The angle of the
cusp of this soliton is zero, because the approximation

u ≈ 1− 1
3
√
2
(x+ t)2/3 (45)

is valid for |x + t| ≪ 1. We can generalize this solution (44) by the scale trans-
formation (42), thus obtaining either a bigger and faster cuspon or a smaller
and slower one. Let us also remind that the soliton solution of the SPE (2),
which corresponds via the transformation (28) to the same kink solution of the
sine-Gordon equation, is the loop soliton [6].

It is easy to see why and when the transformation (31), being applied to a
smooth solution of the sine-Gordon equation (32), generates a solution of the
SCPE (3) with a singularity. From (31) we get the relation

ux(x, t) =
sin s(y, t)

1 + cos s(y, t)
. (46)

Then it immediately follows from (46) that the target solution u(x, t) of the
SCPE can be free from singularities only if the corresponding source solution
s(y, t) of the sine-Gordon equation nowhere reaches any of the values

s = π ± 2πk, k = 0, 1, 2, . . . , (47)

for which |ux| → ∞. Any solution of the sine-Gordon equation, which con-
tains asymptotically free kinks or antikinks at large t, does not satisfy this
requirement, and the corresponding solution of the SCPE has to contain cusps
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therefore. Consequently, in order to obtain any smooth solution of the SCPE,
we have to take a source solution of the sine-Gordon equation containing only
breathers, which are known to be the bound kink-antikink states.

Let us take the breather solution [24] of the sine-Gordon equation (32),
simplified by the Lorentz transformation (41) and shifts of y and t, that is

s = −4 arctan

(

m sinψ

n coshφ

)

, (48)

where m is a constant, 0 < m < 1, and

n =
√

1−m2, φ = m(y + t), ψ = n(y − t). (49)

Applying the transformation (31) to the solution (48), we obtain the following
parametric expressions for the corresponding solution of the SCPE (3):

u = 2mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
,

x = y +mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
, (50)

where y serves as the parameter, −∞ < y <∞, and the constant of integration
in x has been fixed so that x|y=t=0 = 0. Of course, this solution (50) can be
generalized by the scale transformation (42) and shifts of x and t, if necessary.

The obtained solution (50) of the SCPE (3), which we call the pulse solution
or the envelope soliton, is free from singularities not for all values ofm. It is easy
to see that the function s(y, t) given by (48) does not reach any of the values
listed in (47), for all y and t, if and only if

0 < m < mcr = 1/
√
2 ≈ 0.707. (51)

Therefore, in the overcritical case, when m > mcr, the pulse solution (50) con-
tains cusps, as shown in Figure 2. In the undercritical case, when m < mcr,
the pulse solution (50) represents a smooth envelope soliton, a typical example
of which with a small value of m is shown in Figure 3. The envelope curve of
this pulse is determined by the hyperbolic functions in (50) and moves from
the right to the left. The oscillatory component of this pulse is determined by
the trigonometric functions in (50) and moves from the left to the right. The
smaller the value of m, the larger the number of oscillations in the pulse. For
very small values of m, m≪ 1, we find from (50) that x ≈ y and

u ≈ 2m
cos(x− t)

cosh[m(x + t)]
. (52)

On the other hand, if the value of m tends to mcr in the undercritical case, the
smooth envelope soliton of the SCPE (3) can be as short as only one cycle of its
carrier frequency. This is shown in Figure 4. Let us also remind that the smooth
envelope soliton of the SPE (2), which corresponds via the transformation (28)
to the same breather solution of the sine-Gordon equation, cannot be shorter
than approximately three cycles of its carrier frequency [6].
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Figure 2: The overcritical envelope soliton (50) with m = 0.85 > mcr: t = 0.9
(solid) and t = −1.8 (dashed).
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Figure 3: The undercritical envelope soliton (50) with m = 0.2 < mcr: t = 15
(solid) and t = −15 (dashed).
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Figure 4: The critical envelope soliton (50) with m = 0.707 ≈ mcr: t = 0 (solid),
t = −1.1 (dashed), and t = −2.2 (dotted).

4 Conclusion

In this paper, we have studied the integrability of a nonlinear wave equation
which slightly generalizes the well-known integrable short pulse equation (SPE).
We have transformed this generalized SPE to nonlinear Klein–Gordon equations
whose nonlinearities depend on the coefficients of the generalized SPE. We have
shown in this way that the generalized SPE is integrable in two distinct cases
of its coefficients and that no more integrable cases should be expected unless
the known list of integrable nonlinear Klein–Gordon equations is incomplete.

The first integrable case is the original SPE, while the second one is a new
equation which we have called the single-cycle pulse equation (SCPE) due to
properties of its solutions. The SPE and the SCPE are two different “avatars”
of one and the same sine-Gordon equation. Moreover, the SCPE is a previously
overlooked scalar reduction of the integrable system of coupled SPEs of Feng. We
have obtained the Lax pair and bi-Hamiltonian structure for the SCPE. From
the kink and breather solutions of the sine-Gordon equation we have derived
the corresponding cusped soliton and envelope soliton solutions of the SCPE.
We have shown that the smooth envelope soliton of the SCPE can be as short
as only one cycle of its carrier frequency.

Consequently, the SCPE is an interesting new equation of soliton theory,
which deserves further investigation in many aspect, including its hierarchy,
conserved quantities, multi-soliton and periodic solutions, problems of wave
breaking and well-posedness, integrable discretizations and multi-component
generalizations. Moreover, owing to the properties of its smooth envelope soli-
ton, the SCPE is able to appear in physics and technology as a model equation
describing the propagation of extremely short wave packets in certain media
with cubic nonlinearities.
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