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Abstract

Tick-Borne diseases can be transmitted via non-systemic (NS) transmission.
This occurs when tick gets the infection by co-feeding with infected ticks on
the same host resulting in a direct pathogen transmission between the vectors,
without infecting the host. This transmission is peculiar, as it does not require
any systemic infection of the host. The NS transmission is the main efficient
transmission for the persistence of the Tick-Borne Encephalitis virus in nature.
By describing the heterogeneous ticks aggregation on hosts through a bipartite
graphs representation, we are able to mathematically define the NS transmission
and to depict the epidemiological conditions for the pathogen persistence. Despite
the fact that the underlying network is largely fragmented, analytical and computational
results show that the larger is the variability of the aggregation, and the easier
is for the pathogen to persist in the population.

1 Introduction

Infections have always affected animals and humans, and, in the last centuries,
an increasing research activity has been devoted in understanding infective
processes and in depicting viable containment strategies. Since the pioneering
work of Bernoulli in the eighteenth century [8] and more recently of Kermack
and McKendrick [37], mathematical models have played an important role in
this area, helping field operators and physician to reveal important aspects of
the infection dynamics or to test and validate health policies. In addition,
in last decades, thanks to the increasing availability of computing power, the
field has grown in interest and results also thanks to the introduction of new
mathematical and computational frameworks. Cellular Automata, [71], Agent
Based Models, e.g. [14, 20], and more in general simulation approaches are
becaming essential tools in epidemiology by supporting theoretical and analytical
results or even revealing gaps of knowledge.

In this context, recently some seminal works [7, 3, 53, 50, 46] unveiled
the important role of the contact structure of the epidemiological units on
epidemic spreading, demonstrating that the heterogeneity of the number of
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contacts between individuals substantially increases the probability of pathogens
invasion. At the same time, many studies on real-world data showed the
pervasiveness of heterogeneous contact structures in many social [44, 2, 49],
biological [33, 16, 17, 24, 6, 13, 47, 30], technological, and infrastructural [39,
62, 54, 4, 34] networks. Such heterogeneity implies that the distribution of the
number of contacts per individual is fat tailed (thus following distributions like
lognormal, Weibull, Pareto, etc.). Therefore, we should carefully consider an
homogeneous mixing hypothesis (i.e. individuals interacting homogeneously
with each other) when modelling an epidemiological scenario, and in many
cases methods in which the heterogeneity is fully taken into account should
be preferred. For further details, the reader can consult to the main references
for social networks analysis [70, 61] and for networks modeling [51, 5, 12].

Lately, some works explored dynamical processes occurring on networks
evolving in time [32, 48, 35, 59, 21, 31, 68, 18, 55, 41, 69, 27, 65, 45, 26, 66,
67]. In particular, Perra and collagues [55, 41] proposed an activity driven
network model where at each time-step edges are ”fired” from nodes accordingly
their potential. Results show that by distributing heterogeneously the activity
potential to nodes the model is able to reproduce graphs with skewed degree
distributions similar to those observed in reality. Furthermore, Perra’s group
showed that the an epidemic process occurring on networks deriving from such
model depends on the activity distribution of nodes and in particular to its
heterogeneity. More recently, Valdano and colleagues [66], proposed a methodology
that given a temporal network is able to detect the epidemic threshold with a
very good accuracy. In particular, the authors described the epidemic threshold
in terms of the spectral radius of a matrix defined by the network topology and
the disease features.

In this manuscript, we are interested in a challenging epidemiological problem:
to model the spreading of a tick-borne disease (TBD) occurring via non-systemic
(NS) transmission. TBDs are diseases that are naturally maintained in a complex
cycle of vectors (ticks) and those hosts on which ticks take their blood meals
(usually mammalian, reptiles, and birds according to ticks habits). TBDs differ
from other vector-borne diseases (such as malaria, the most knownmosquito-borne
disease) mainly thanks to ticks’ peculiarities: ticks have a limited mobility and
usually wait for a host instead of seeking for it, and in many cases they make a
single complete blood meal on a single host before moulting.

A TBD can be usually maintained in nature by three transmission routes.
First, the systemic transmission, occurring when a tick (respectively a host)
gets the infection from a infective host (respectively a tick) during a blood
meal. Then, the transovarial transmission, occurring when the pathogen is
transmitted from a infected female tick to its offspring. Finally, the non systemic
(NS) transmission, occurring when a tick gets the infection by co-feeding with
infected ticks on the same host. The peculiarity of the NS transmission is
that it does not require any systemic infection of the host. As an example of
a pathogen exploiting these three transmission routes, the reader can refer to
Lyme borreliosis, whose ethiological agent are bacteria of the Borrelia burgdorferi
sensu lato compelx [23, 42].
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In this article, we are interested in the Tick-Borne Encephalitis (TBE) which
is an emerging TBD in Europe [57], as it causes the most important arboviral
infection of the human central nervous system in Eurasia, resulting in long-term
sequelae and, in some cases, to death [15]. TBE virus, in Europe, is maintained
in a cycle involving as vector Ixodes ricinus ticks. I. ricinus is a three stages
(larva, nymph, and adult) hard-tick which needs a complete blood meal on a
single host before moulting from a stage to the following. Rodents are the main
host for these ticks at juvenile stages, larval and nymphal, while adult ticks
are found principally on other larger mammalians, e.g. deer [40]. However,
since rodents are indicated as the main reservoir for TBE virus [43] and the
transovarial transmission seems to be negligible for its persistence [52], the most
important stages in the epidemiological cycle of this pathogen are the larval and
nymphal ones. In addition, TBE virus causes a very short systemic infection in
rodents, [58]. Consequently, several studies [60, 29, 28] suggested that the NS
transmission is the main efficient transmission for the persistence of the TBE
virus in nature.

In this epidemiological scenario, the burden of ticks on rodents and the
consequent contact pattern of ticks co-feeding on rodents, become the key factors
when modelling this pathogens’ dynamics. Tick aggregations on rodents have
been recognized as highly heterogeneous [56, 63, 64, 11, 9, 38, 28, 22] with
a large number of rodents parasitised by few ticks and a smaller number of
rodents having a large number of ticks. Therefore, the homogeneous mixing
approximation should be avoided when describing the contact structure between
ticks and rodents. Accordingly, in the following, we are going to introduce
a discrete-time mathematical model describing the NS transmission and the
heterogeneous pattern of contact between ticks and mice. In this model, we
are able to detect a threshold condition for the epidemic persistence. We
further investigate this threshold by microscopical simulations of the epidemic
spreading.

2 Model

In order to model the heterogeneous contact pattern between ticks and hosts,
we use a particular class of graph, dynamical star graphs Sk. An Sk is defined
by a central node (the mouse) and k peripheral nodes (the ticks) connected
with the central node by edges called rays. No connection is allowed between
peripheral nodes, resulting in a particular type of bipartite graph.

We further define a constellation S(N, p) as the set of N stars Ski
with each

ki (i = 1, . . . , N) sampled from a fixed probability distribution p(k). Given the
constellation S(N, p), the number of peripheral nodes is M = N

∑

k kp(k) =
N〈k〉. We partition them according to their epidemic status (Susceptible, S,
and Infective, I), while central nodes are involved in the epidemic process only
as bridges between peripheral nodes.

Over this structure, to model the pathogen spreading process, we define
a simple Susceptible-Infected-Susceptible (SIS) model [1, 36, 10], as already
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proposed for TBD modeling in [9]. In this framework, let denote π(t) the
prevalence at time t (i.e. the fraction of infective nodes), and β and µ the
infection and recovery probabilities, respectively.

At each discrete time step t, let consider an instance of the constellation
S(N, p). Consequently, the probability that a peripheral node is on a star Sh is
hp(h)
〈k〉 . Let us consider a peripheral node connected to a central node together

with other h − 1 other nodes. The expected number of infective nodes in the
neighborhhod of the central node is π(t) (h− 1). Therefore, supposing that the
considered node is susceptible, the probability that it gets the infection is

1− (1− β)
(h−1)π(t)

.

As consequence, the probability that a susceptible node at time t is infective at
time t+ 1 is

γ(t) =
∑

h

(

(

1− (1− β)
(h−1)π(t)

) h

〈k〉
p(h)

)

,

and the evolution of the prevalence in time is described by the following discrete-time
Markov-chain

π(t+ 1) = F (π(t)) = (1− µ)π(t) + (1− π(t)) γ(t) + µπ(t)γ(t) (1)

where the first term of F (π(t)) is the probability that a infective node at time t is
not recovered at time t+1, the second term is the probability that a susceptible
node gets the infection, and the third term is the probability that a infective
node at time t gets recovered but immediately it is reinfected [25].

Now, we analyze the phase diagram of this process by studying the steady
state of eq. (1) in the bound interval [0, 1]. The trivial solution π̃ = 0 is a steady
point. Moreover, since F (1) ≤ 1, F ′(π) > 0, and F ′′(π) < 0 there exists one and
only one non trivial equilibrium point, π̂, if and only if F ′(0) > 1. We sketch in
Fig. 1 the two different cases. In conclusion, the non trivial equilibrium exists
if and only if:

− log(1− β)

µ
>

〈k〉

〈k2〉 − 〈k〉
, (2)

where 〈k2〉 is the second moment of p(k).
Condition (2) is of great interest for at least two reasons. On one hand,

it demonstrates the presence of clear phase change in the epidemic behavior:
for large enough β, i.e. for β > βc, the pathogen reaches the condition for its
persistence. On the other hand it binds the critical infection probability, βc,
to the heterogeneity of the distribution of rays in constellations. This means
that the larger the heterogeneity, the smaller the β is needed by the pathogen
to mantain its persistence. In addition, we could also state that when only the
trivial equilibrium point exists, since |F ′(0)| < 1 is hold, the zero solution is
asymptotically stable. On the other hand, for F ′(0) > 1 we have that the the
trivial equilibrium is unstable and π̂ is asymptotically stable [19].
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Figure 1: An illustrative picture of the solutions of eq. (1). When F ′(0) > 1 the
non-trivial steady state, π̂, exists while when F ′(0) < 1 the only equilibrium
point is the origin.

3 Numerical Results and Analysis

To show the validity of the analytic approach presented above, we perform
both numerical integrations of eq. 1 and Monte Carlo (MC) simulations of the
epidemic process. In particular, since we are interested in depicting the influence
on the epidemic threshold of the aggregation of ticks on hosts, we need a network
model that, while keeping constant the total number of edges in the structure,
is able to tune the rays heterogeneity.

To this end, we first generate a constellation S(N, p), in which p is a discrete
Pareto distribution defined as p(k) ∼ k−(γ+1) for k ≥ km with the scale
parameter km = 2 and the shape parameter γ = 1.25 (arbitrarly chosen to
have an highly heterogeneous distribution). Then for a given α ∈ [0, 1], we
randomly reassign the fraction α of the peripheral nodes to central nodes. We
further impose that a ray departing from a central node of degree two (the
minimum degree since km = 2) could not be reallocated to avoid central nodes
with a number of edges less than km. We call the so obtained constellation
G(S(N, p), α).

We further remark that for a given G(S(N, p), α), there exists a probability
distribution q for which

∑

k kp(k) =
∑

h hq(h) and
∑

k k
2p(k) ≥

∑

h h
2q(h),

and such that G(S(N, p), α) = T (N, q). In addition, we would also highlight
that given a constellation S(N, p) the graphs G(S(N, p), α0) and G(S(N, p), α1)
have the same number of edges but differ in their degree heterogeneity which
is driven by α (thus ranging from the one induced by the Pareto distribution,
α = 0, to the one of a random graph, α = 1).

In this framework, the constellations G(S0(N, p), α) and G(S1(N, p), α) are
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different in the sense that they are generated from two different, S0(N, p)
and S1(N, p), initial constellations. Now, the heterogeneity of a constellation
generated from a Pareto distribution, S0(N, p) could be very different if compared
to S1(N, p). For instance, we observe that 〈k2〉 could vary of two order of
magnitude (e.g. right panel of Figure 2).

Therefore, we want to remark that the direct comparison of βc observed for
G(S0(N, p), α0) and for G(S1(N, p), α1) could lead to misleading results. For
instance, supposing α0 < α1, from the analytic results we could expect the
lowest critical infection probability associated with α0. But, in the case that
〈k2〉S0(N,p) < 〈k2〉S1(N,p), it could happen that the lowest epidemic threshold is
associated to α1.

For a graphical representation of the graph heterogeneity changing as a
function of α, we plot on the right panel of Fig. 2 the degree distributions
of a graph G(S(N, p), α), while on the left panel we plot the induced second
moment 〈k2〉G(Sj(N,p),α) for j = 1, . . . , 100 as function of α.

0.0 0.2 0.4 0.6 0.8 1.0
α

101

102
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〈k
2
〉

100 101 102 103

x
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10−3

10−2

10−1

100

P
(k

≥
x
)

0.00

0.25

0.50

0.75

1.00

α

Figure 2: Left: mean and 95% confidence interval of heterogeneity in
G(Si(N, p), α), as measured by 〈k2〉, with i = 1, . . . , 100. Right: degree
distributions for different values of α for a graph G(S(N, p), α). For both plots
N = 104.

Once fixedN = 104, we generate a constellation S∗(N, p) and given an initial
condition, π(t0) = 0.01, we recursively iterate Equation (1) onG(S∗(N, p), α) for
different values of α. After few iterations (less than 100) the equilibrium point
(trivial or not, according to the epidemic parameters) is reached. Thus, we plot
in Figure 3 the obtained stable point in function of the epidemic parameters, β
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and µ and of α. The epidemic threshold predicted by analytic arguments and
the numerical simulations are in good agreement.

In Figure 3 we also plot the average prevalence of MC simulations where
the steady non-trivial equilibrium is reached. In particular, on G(S∗(N, p), α),
for different combinations of parameters (β, µ, α), we start 300 simulations from
one infected peripheral-node (randomly chosen). Then, at each iterations t

the peripheral nodes with their health status are permuted around central
nodes under the constrain given by G(S∗(N, p), α) and the NS transmission
between infectious and susceptible peripheral nodes occurs with probability β.
Afterwards, the recovery process could occur with probability µ. Results of
MC simulations give further evidences of the accurate detection of the critical
transmission probability.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

β

0.0

0.2

0.4

0.6

0.8

1.0

π̂

α = 0

α = 1/3

α = 2/3

α = 1

Figure 3: Stable prevalence, π̂, as function of β. N = 104, µ = 0.75. Dotted
lines represent average of prevalence at reached equilibrium of MC simulations
in non-trivial equilibria, full lines those of numerical integration. Vertical lines
are the ET as estimated by Eq. 2.

We further investigate the critical transmission parameters, βc, ofG(Sj(N, p), α)
with j = 1, . . . , 100 and in particular their dependence on the network sizeN . To
this end, for each triplets (i, α,N) we replicate 100 times the epidemic threshold
detection. We plot the average values in Figure 4.

As expected, we found that βc is an increasing function of α and decreasing
of N . In particular, we have that the βc in α = 0 starts from a point depending
on the size N (the larger N , the larger the heterogeneity and thus the lower the
critical transmission probability). Then, βc increases driven by the reshuffling
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Figure 4: Averaged critical infection parameter as function of α for different
network sizes N

parameter, α, reaching a plateau which is almost the same for the different N .

4 Discussion and Conclusion

In this work, inspired by the peculiar features of the TBE virus transmission,
we propose a model of epidemic spreading on dynamic star graphs. At each
time step a constellation of star graphs is generated and the infection is spread
among rays of the stars. This allows us to reproduce the most important
aspects of the TBE dynamics for its persistence: the high aggregation of ticks
on hosts and the NS transmission. Analytic results, validated by numerical
investigations, suggesting that the epidemic threshold βc depends to the second
moment of the distribution of the number of rays of star graphs. This is a well
known result for the epidemic dynamics on networks [53, 46, 50]. However, it
is somehow surprising that also in the case of a graph made of disconnected
star-like structures holds the very same description of the invasion threshold.
Being the nodes (i.e. ticks) randomly re-attached at every time-step, the system
under investigation resembles a spreading process on annealed networks. This
result has important consequences for the epidemiology of TBE: in fact, it
suggests that the aggregation of ticks on host is a favorable condition for the
persistence of the viruses. In this way, the correct identification (and modelization)
of ticks burden on mice is the key-factor for the understanding of the tick-borne
diseases.
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It is important to stress out that recent literature is rich of models defined
for temporal networks (e.g. [32, 48, 35, 59, 21, 31, 68, 18, 55, 41, 69, 27, 65,
66, 67]). Unfortunately, such generative models are not suitable to describe the
NS transmission of TBEv where the underlying network structure is intrisically
memory-less being vectors hosted for one blood meal only before developing in
the new stage and attaching a new host. We therefore defined our dynamical
model made of unconnected star-like graphs where nodes are fully reshuffled
after each time-step to fully describe the epidemiological peculiarities of the
process under study. However, a relevant aspect of our model is that it is
general enough to be extended to other systems. For instance, diseases spreading
occurring among people using transport means could be described by this model.
In this scenario, transport means are the central nodes while passengers are the
peripheral nodes among which the infection are spread. However, an extensive
research in this direction will be subject of future work.

Moreover, other future works will be devoted in a better integration of this
model to the ecological complexity of the spreading of TBE virus. In particular,
we would like to take into account the seasonality of ticks and rodents behavior
and to explicit the ticks stages. An other interesting extension would be to
apply our model to other tick-borne diseases and thus to integrate it with more
complex aspects of their dynamics.
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