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Abstract

It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives

rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated

in sets of motions. This is the first time that description of chaos is initiated from a single motion. The

theoretical results are exemplified by means of the symbolic dynamics.
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1 Introduction

The mathematical dynamics theory, which was founded by Poincaré [1] and significantly developed by

the french genius and Birkhoff [2], was a source as well as the basis for the later discoveries and thorough

investigations of complex dynamics [3]-[7]. The homoclinic chaos was discussed by Poincaré [8], and

Lorenz [5] observed that a strange attractor contains a Poisson stable trajectory. Possibly, it was Hilmy

[9, 10] who gave the first definition of a quasi-minimal set (as the closure of the hull of a Poisson stable

motion). In [10] one can find a theorem by Hilmy, which states the existence of an uncountable set of

Poisson stable trajectories in a quasi-minimal set. We modify the Poisson stable points to unpredictable

points such the quasi-minimal set is chaotic.

Let (X, d) be a metric space and T refer to either the set of real numbers or the set of integers. A

mapping f : T×X → X is a flow on X [11] if:

(i) f(0, p) = p for all p ∈ X ;

(ii) f(t, p) is continuous in the pair of variables t and p;

(iii) f(t1, f(t2, p)) = f(t1 + t2, p) for all t1, t2 ∈ T and p ∈ X.

If a mapping f : T+ × X → X, where T+ is either the set of non-negative real numbers or the set of

non-negative integers, satisfies (i), (ii) and (iii), then it is called a semi-flow on X [11].

Suppose that f is a flow on X. A point p ∈ X is stable P+ (positively Poisson stable) if for any

neighborhood U of p and for any H1 > 0 there exists t ≥ H1 such that f(t, p) ∈ U . Similarly, p ∈ X is
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stable P− (negatively Poisson stable) if for any neighborhood U of p and for any H2 < 0 there exists

t ≤ H2 such that f(t, p) ∈ U . A point p ∈ X is called stable P (Poisson stable) if it is both stable P+

and stable P− [10].

For a fixed p ∈ X, let us denote by Ωp the closure of the trajectory T (p) = {f(t, p) : t ∈ T} , i.e.,

Ωp = T (p). The set Ωp is a quasi-minimal set if the point p is stable P and T (p) is contained in a

compact subset of X [10]. We will also denote Ω+
p = T +(p), where T +(p) = {f(t, p) : t ∈ T+} is the

positive semi-trajectory through p.

An essential result concerning quasi-minimal sets was given by Hilmy [9]. It was demonstrated that

if the trajectory corresponding to a Poisson stable point p is contained in a compact subset of X and

Ωp is neither a rest point nor a cycle, then Ωp contains an uncountable set of motions everywhere dense

and Poisson stable. The following theorem can be proved by adapting the technique given in [9, 10].

Theorem 1.1 Suppose that p ∈ X is stable P+ and T +(p) is contained in a compact subset of X. If

Ω+
p is neither a rest point nor a cycle, then it contains an uncountable set of motions everywhere dense

and stable P+.

2 Unpredictable points and trajectories

In this section, we will introduce unpredictable points and mention some properties of the corresponding

motions. The results will be provided for semi-flows on X, but they are valid for flows as well. We will

denote by N the set of natural numbers.

Definition 2.1 A point p ∈ X and the trajectory through it are unpredictable if there exist a positive

number ǫ0 (the sensitivity constant) and sequences {tn} and {τn} , both of which diverge to infinity, such

that lim
n→∞

f(tn, p) = p and d[f(tn + τn, p), f(τn, p)] ≥ ǫ0 for each n ∈ N.

An important point to discuss is the sensitivity or unpredictability. In the famous research studies

[1, 4, 5, 7, 8, 12], sensitivity has been considered as a property of a system on a certain set of initial data

since it compares the behavior of at least couples of solutions. The above definition allows to formulate

unpredictability for a single trajectory. Indicating an unpredictable point p, one can make an error by

taking a point f(tn, p). Then d[f(τn, f(tn, p)), f(τn, p)] ≥ ǫ0, and this is unpredictability for the motion.

Thus, we say about the unpredictability of a single trajectory whereas the former definitions considered

the property in a set of motions. In Section 3, it will be shown how to extend the unpredictability to a

chaos.

The following assertion is valid.

Lemma 2.1 If p ∈ X is an unpredictable point, then T +(p) is neither a rest point nor a cycle.
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Proof. Let the number ǫ0 and the sequences {tn} , {τn} be as in Definition 2.1. Assume that there

exists a positive number ω such that f(t+ ω, p) = f(t, p) for all t ∈ T+. According to the continuity of

f(t, p), there exists a positive number δ such that if d[p, q] < δ and 0 ≤ t ≤ ω, then d[f(t, p), f(t, q)] < ǫ0.

Fix a natural number n such that d[pn, p] < δ, where pn = f(tn, p). One can find an integer m and a

number ω0 satisfying 0 ≤ ω0 < ω such that τn = mω + ω0. In this case, we have that

d[f(τn, pn), f(τn, p)] = d[f(ω0, pn), f(ω0, p)] < ǫ0.

But, this is a contradiction since

d[f(τn, pn), f(τn, p)] = d[f(tn + τn, p), f(τn, p)] ≥ ǫ0.

Consequently, T +(p) is neither a rest point nor a cycle. �

It is seen from the next lemma that the unpredictability can be transmitted by the flow.

Lemma 2.2 If a point p ∈ X is unpredictable, then every point of the trajectory T +(p) is also unpre-

dictable.

Proof. Suppose that the number ǫ0 and the sequences {tn} , {τn} are as in Definition 2.1. Fix an

arbitrary point q ∈ T +(p) such that q = f(t, p) for some t ∈ T+. One can verify that

lim
n→∞

f(tn, q) = lim
n→∞

f(tn + t, p) = lim
n→∞

f(t, f(tn, p)) = f(t, p) = q.

Now, take a natural number n0 such that τn > t for each n ≥ n0. If we denote ζn = τn − t, then we have

for n ≥ n0 that

d[f(tn + ζn, q), f(ζn, q)] = d[f(tn + ζn, f(t, p)), f(ζn, f(t, p))]

= d[f(tn + τn, p), f(τn, p)]

≥ ǫ0.

Clearly, ζn → ∞ as n → ∞. Consequently, the point q is unpredictable. �

Remark 2.1 It is worth noting that the sensitivity constant ǫ0 is common for each point on an unpre-

dictable trajectory.

3 Chaos on the quasi-minimal set

This section is devoted to the demonstration of chaotic dynamics on a quasi-minimal set. According

to [5, 12], the dynamics on a set S ⊆ X is sensitive if there exists a positive number ǫ0 such that for
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each u ∈ S and each positive number δ there exist a point uδ ∈ S and a positive number τδ such that

d[uδ, u] < δ and d[f(τδ, uδ), f(τδ, u)] ≥ ǫ0.

The main result of the present study is mentioned in the next theorem, and it is valid for both flows

and semi-flows on X.

Theorem 3.1 The dynamics on Ω+
p is sensitive if p ∈ X is an unpredictable point.

Proof. Let ǫ0 > 0 be the sensitivity constant corresponding to the point p. Fix an arbitrary positive

number δ, and take a point r ∈ Ω+
p . First of all, consider the case r ∈ T +(p). By Lemma 2.2, there

exist sequences {tn} and {τn} , both of which diverge to infinity, such that limn→∞ f(tn, r) = r and

d[f(tn+τn, r), f(τn, r)] ≥ ǫ0 for each n. Fix a natural number n0 such that d[r, r] < δ, where r = f(tn0
, r).

In this case, the inequality d[f(τn0
, r), f(τn0

, r)] ≥ ǫ0 is valid.

On the other hand, suppose that r ∈ Ω+
p /T +(p). One can find a sequence {ηm} , ηm → ∞ as

m → ∞, such that limm→∞ rm = r, where rm = f(ηm, p). According to Lemma 2.2, for each m ∈ N,

there exist sequences {smn } and {ξmn } , both of which diverge to infinity, such that limn→∞ rmn = rm and

d[f(ξmn , rmn ), f(ξmn , rm)] ≥ ǫ0, n ∈ N, where rmn = f(smn , rm).

Now, let m0 be a natural number such that d[rm0
, r] < δ/2. Suppose that there exists a natural

number n1 satisfying

d[f(ξm0

n1
, rm0

), f(ξm0

n1
, r)] ≥ ǫ0/2.

If this is the case, then sensitivity is proved. Otherwise, fix n2 ∈ N such that d[rm0

n2
, rm0

] < δ/2 so that

d[rm0

n2
, r] ≤ d[rm0

n2
, rm0

] + d[rm0
, r] < δ. One can confirm that

d[f(ξm0

n2
, rm0

n2
), f(ξm0

n2
, r)]

≥ d[f(ξm0

n2
, rm0

n2
), f(ξm0

n2
, rm0

)]− d[f(ξm0

n2
, rm0

), f(ξm0

n2
, r)]

> ǫ0/2.

The theorem is proved. �

In Theorem 3.1, we have proved the presence of sensitivity in the set Ω+
p if p is an unpredictable

point in X. In the case that f is a flow on X, one can use the same proof for the verification of sensitivity

in Ωp. According to Theorem 1.1 and Lemma 2.1, if the positive semi-trajectory of an unpredictable

point p ∈ X is contained in a compact subset of X, then Ω+
p contains an uncountable set of everywhere

dense stable P+ motions. Additionally, since T +(p) is dense in Ω+
p , the transitivity is also valid in the

dynamics.

In the definition of Devaney chaos [12], periodic motions constitute a dense subset. However, in

our case, instead of periodic motions, Poisson stable motions take place in the dynamics. Therefore,

summarizing the last discussions, we propose a new definition of chaos based on the concept of the
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unpredictable point. More precisely, we say that the dynamics on the quasi-minimal set Ωp is chaotic if

the dynamics on it is sensitive, transitive and there exists a continuum of Poisson stable trajectories dense

in the quasi-minimal set. Nevertheless, in the framework of chaos there may be infinitely many periodic

motions. For instance, chaos in the sense of Devaney [12] and Li-Yorke [4] admit a basis consisting of

periodic motions. However, our definition does not contradict to this, and this possibility is exemplified

in the next section.

4 Applications

In this section, we will mainly investigate symbolic dynamics [12, 13] and show the presence of unpre-

dictable points as well as chaos on a quasi-minimal set in the sense mentioned in Section 3. Moreover,

we will reveal by means of the topological conjugacy that the same is true for the logistic, Hénon and

horseshoe maps.

Let us take into account the following space of bi-infinite sequences [13],

Σ2 = {s = (. . . s−2s−1.s0s1s2 . . .) : sj = 0 or1 for each j}

with the metric

d[s, s] =

∞∑

k=−∞

|sk − s̄k|
2|k|

,

where s = (. . . s−2s−1.s0s1s2 . . .), s = (. . . s−2s−1.s0s1s2 . . .) ∈ Σ2. The shift map σ : Σ2 → Σ2 is defined

as

σ(. . . s−2s−1.s0s1s2 . . .) = (. . . s−2s−1s0.s1s2 . . .).

The map σ is continuous and the metric space Σ2 is compact [13].

In order to show that the map σ possesses an unpredictable point in Σ2, we need an ordering on

the collection of finite sequences of 0’s and 1’s as follows [13]. Suppose that two finite sequences s =

{s1s2 . . . sk} and s̄ = {s̄1s̄2 . . . s̄k′} are given. If k < k′, then we say that s < s̄. Moreover, if k = k′,

then s < s̄ provided that si < s̄i, where i is the first integer such that si 6= s̄i. Note that there are 2m

distinct sequences of 0’s and 1’s with length m. Thus, one can denote the sequences having length m as

sm1 < . . . < sm2m , where the superscript represents the length of the sequence and the subscript refers to

a particular sequence of length m which is uniquely specified by the above ordering scheme.

Now, consider the following sequence,

s∗ = (. . . s38s
3
6s

3
4s

3
2s

2
4s

2
2.s

1
1s

2
1s

2
3s

3
1s

3
3s

3
5s

3
7 . . .).

It was demonstrated in [13] that the trajectory of s∗ is dense in Σ2. We will show that s∗ is an unpre-
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dictable point of the dynamics (Σ2, σ). For each n ∈ N, one can find j ∈ N such that

s2n+2

2j−1
= (s∗−n . . . s

∗
0 . . . s

∗
n0)

and

s2n+2

2j = (s∗−n . . . s
∗
0 . . . s

∗
n1).

Therefore, there exists a sequence {tn} with tn ≥ n +
∑2n+1

k=1
k2k−1, n ∈ N, such that σtn(s∗) = s∗i for

|i| ≤ n. Accordingly, the inequality d[σtn(s∗), s∗] ≤ 1/2n−1 is valid so that σtn(s∗) → s∗ as n → ∞.

Hence, s∗ is stable P+. In a similar way, one can confirm that s∗ is stable P−. Note that Σ2 is a quasi-

minimal set since s∗ is Poisson stable. On the other hand, suppose that there exists a natural number n

such that

σtn+n+1(s∗)i = σn+1(s∗)i

for each i ≥ 0. Under this assumption we have that σtn(s∗)i = s∗i for i ≥ −n. This is a contradiction

since the sequence s∗ is not eventually periodic. For this reason, for each n ∈ N, there exists an integer

τn ≥ n + 1 such that σtn+τn(s∗)0 6= στn(s∗)0. Hence, d[σtn+τn(s∗), στn(s∗)] ≥ 1 for each n ∈ N, and s∗

is an unpredictable point in Σ2.

One of the concepts that has a great importance in the theory of dynamical systems is the topological

conjugacy, which allows us to make interpretation about complicated dynamics by using simpler ones.

Let X and Y be metric spaces. A flow (semi-flow) f on X is topologically conjugate to a flow (semi-flow)

g on Y if there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h [12, 13]. The following

theorem can be verified by using the arguments presented in [14].

Theorem 4.1 Suppose that X and Y are metric spaces and a flow (semi-flow) f on X is topologically

conjugate to a flow (semi-flow) g on Y. If there exists an unpredictable point whose trajectory is contained

in a compact subset of X, then there also exists an unpredictable point whose trajectory is contained in

a compact subset of Y.

Since the shift map σ on Σ2 is topologically conjugate to the Smale Horseshoe [12, 13], one can

conclude by using Theorem 4.1 that the horseshoe map possesses an unpredictable point and a trajectory.

On the other hand, let us consider the Hénon map

xn+1 = α− βyn − x2
n

yn+1 = xn,
(4.1)

where β 6= 0 and α ≥ (5+2
√
5)(1+ |β|)2/4. It was proved by Devaney and Nitecki [15] that the map (4.1)

possesses a Cantor set in which the map is topologically conjugate to the shift map σ on Σ2. Therefore,
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Theorem 4.1 also implies the presence of an unpredictable point and a trajectory in the dynamics of

(4.1).

Next, as an example of a semi-flow, consider the following space of infinite sequences [12],

Σ2 = {s = (s0s1s2 . . .) : sj = 0 or1 for each j}

with the metric

d[s, s] =

∞∑

k=0

|sk − sk|
2k

,

where s = (s0s1s2 . . .), s = (s0s1s2 . . .) ∈ Σ2. The shift map σ : Σ2 → Σ2 is defined as σ(s0s1s2 . . .) =

(s1s2s3 . . .). As in the case of the space of bi-infinite sequences, the metric space Σ2 is compact and the

map σ is continuous [12, 13].

Let us take into account the sequence

s∗ = ( 0 1
︸︷︷︸

1 blocks

| 00 01 10 11
︸ ︷︷ ︸

2 blocks

| 000 001 010 011 . . .
︸ ︷︷ ︸

3 blocks

| . . .),

which is constructed by successively listing all blocks of 0’s and 1’s of length n, then length n + 1, etc.

This sequence is non-periodic and its trajectory T (s∗) = {σn(s∗) : n = 0, 1, 2, . . .} is dense in Σ2 [12].

Note that the number of all blocks of length n in s∗ is 2n. Based upon the construction of s∗, there exists

a sequence {tn} satisfying tn ≥ ∑n

j=1
j2j , n ∈ N, such that s∗i = σtn(s∗)i for each i = 0, 1, 2, . . . , n.

Clearly, tn → ∞ as n → ∞ and d[σtn(s∗), s∗] ≤ 1/2n so that σtn(s∗) → s∗ as n → ∞. Hence, s∗ is stable

P+. In a very similar way to the bi-infinite sequences, one can show the existence of a sequence {τn} ,

τn → ∞ as n → ∞, such that d[σtn+τn(s∗), στn(s∗)] ≥ 1 for each n ∈ N. Thus, s∗ is an unpredictable

point in Σ2.

It was shown in [16] that the logistic map xn+1 = µxn(1 − xn) possesses an invariant Cantor set

Λ ⊂ [0, 1], and the map on Λ is topologically conjugate to σ on Σ2 for µ > 4. Therefore, the map with

µ > 4 possesses an unpredictable point and a trajectory in accordance with Theorem 4.1.

5 Conclusions

Emphasizing the ingredients of Devaney [12] and Li-Yorke [4] chaos, one can see that the definitions of

chaos have been considered by means of sets of motions, but not through a single motion description. This

is the first time in the literature that we initiate chaos by a single function. Thus, the line, equilibrium,

periodic function, quasi-periodic function, almost periodic function, recurrent function, Poisson stable

motion is prolonged with the new element - unpredictable motion. This supplement to the line creates

the possibility of other functions behind the known ones.
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An essential point to discuss is the sensitivity or unpredictability. In the literature, sensitivity has

been considered through initially nearby different motions. However, we say about unpredictability as

an interior property of a single trajectory. Then chaos appears in a neighborhood of the trajectory.

The symbolic dynamics illustrates all the results and it is an important tool for the investigation of the

complicated dynamics of continuous-time systems such as the Lorenz and Rössler equations [17, 18]. It

is worth noting that unpredictable points can be replicated by the techniques summarized in [19].

One can see the proximity of chaos and quasi-minimal sets by comparing their definitions [4, 10, 12].

Transitivity is a common feature of them, and the closure of a Poisson stable trajectory contains infinitely

many Poisson stable orbits. In its own turn we know that a periodic trajectory is also Poisson stable.

Possibly, the uncountable set of Poisson stable trajectories is an ultimate form of infinitely many cycles

known for a chaos. One may also ask whether sensitivity is proper for any quasi-minimal set. These are

the questions to discover more relations between quasi-minimal sets and chaos.
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