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Abstract

In this paper we study the generalized variable-coefficient Gardner equations of the

form ut +A(t)un ux+C(t)u2nux+B(t)uxxx+Q(t)u= 0. This class broadens out many other

equations previously considered: Johnpillai and Khalique (2010), Molati and Ramollo

(2012) and Vaneeva, Kuriksha and Sophocleous (2015). Equivalence group of the class

under consideration has been constructed which permit an exhaustive study and a simple

and clear formulation of the results. Some conservation laws are derived for the nonlinearly

self-adjoint equations, based on differential substitutions, and by using the direct method

of the multipliers.

Keywords: Partial differential equations; Conservation laws; Symmetries; Equivalence

transformations.

1 Introduction

Recent developments in the field of partial differential equations (PDEs) have led researchers to

focus its efforts on the study of PDEs with variable coefficients, particularly in nonlinear equa-

tions with variable coefficients. These equations describe many nonlinear phenomena more

realistically than their constant coefficients counterparts. However, the study of variable coeffi-

cient equations seems rather difficult. Nowadays, the research on variable coefficient equations

primarily encompasses the study of the symmetries of PDEs, the determination of integrability

conditions, the construction of conservation laws or the obtaining of exact solutions.

Nonlinear evolution equations play an important role in the field of nonlinear dynamics.

Among them, we emphasise the KdV equation as well as their generalizations. KdV equation

governs different physical processes, for instance, the dynamics and the physics of shallow wa-

ters. The problem lies in the fact that KdV equation is a quite simple model to analyse these

phenomena more precisely. Thus, it must be considered generalizations of KdV equation which
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involve more than one nonlinear term, the Gardner equation is an example. The Gardner equa-

tion is also known as combined KdV-mKdV equation, this is a useful model for the description

of wave phenomena in plasma and solid state and internal solitary waves in shallow waters.

In recent years, several works have been dedicated to study the Gardner equation from the

point of view of Lie symmetries, exact solutions and conservation laws. In [11] Johnpillai

and Kalique obtained the optimal system of one-dimensional subalgebras of the Lie symmetry

algebras of the class

ut +uux +B(t)uxxx+Q(t)u = 0, (1)

where the linear damping term B(t) and the dispersion term Q(t) are arbitrary smooth functions

of the time variable t. Later, the same authors [12] constructed conservation laws for equation

(1) for some special forms of the functions B(t) and Q(t). Vaneeva et al. [20] considered the

variable coefficient Gardner equations

ut +A(t)uux+C(t)u2ux +B(t)uxxx = 0, (2)

where A(t), B(t) and C(t) are smooth functions verifying B·C 6= 0. This equation was previously

studied by Molati and Ramollo [15] who obtained Lie symmetries of equation (2). Vaneeva

et al. enhanced the classification of Lie symmetries obtained in [15] through the use of the

general extended equivalence group. This enables them to clasify exhaustively these equations

by reducing class (2) to the subclass

ut +A(t)uux+C(t)u2ux +uxxx = 0.

In this paper, we broaden out the previous results by considering the generalized variable-

coefficient Gardner equation with nonlinear terms of any order

ut +A(t)un ux +C(t)u2nux +B(t)uxxx+Q(t)u = 0, (3)

where n is a positive constant, A(t), B(t) 6= 0, C(t) 6= 0 and Q(t) 6= 0 are arbitrary smooth func-

tions of t.

Due to the variable coefficients that equation (3) involves, one expects that there exist a

transformation by which equation (3) could be mapped to another equation with the same dif-

ferential structure but with constant coefficients. An equivalence transformation is a such one.

An equivalence transformation is a non-degenerate transformation acting on dependent and

independent variables which maps equation (3) to another equation of the same family, ex-

cept maybe the form of the coefficients. The main advantage of equivalence transformations is

that instead of considering individual equations they permit an analysis for complete equivalent

classes. Thus, equivalence transformations appear as a powerful method to study PDEs with

variable coefficients.
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The symmetry group of a PDE is the largest transformation group that acts on dependent

and independent variables of the equation so it transforms solutions of the equation in other

solutions. Lie symmetry groups is considered to be one of the most powerful methods when

analysing PDE. Symmetry groups have several well-known applications. For instance, they can

be used to obtain exact solutions [4, 18, 21] or construct conservation laws [5, 6, 7, 8, 9, 19].

Given a PDE, a conservation law is a space-time divergence expression which vanishes on

all solutions of the PDE. This concept has its origin in physics but their applications spread

into many other areas of science. In mathematics, they can be used in numerical methods and

mathematical analysis, particularly, investigation of existence, uniqueness and stability of solu-

tions of PDEs. Furthermore, the existence of a large number of conservation laws of a PDE is a

strong indicator of its integrability.

This work is organised as follows. In Section 2, we obtain the continuous equivalence group

of equation (3). Next, in Section 3 we obtain Lie symmetries of the reduced equation obtained

by using equivalence transformations. In Section 4 and 5 we use the concept of adjoint equation

and we determine the subclasses of the equation which are nonlinearly self-adjoint. In Section

6, we obtain conservation laws via a general theorem proved by Ibragimov [13] and a direct

method proposed by Anco and Bluman [1, 2]. The conclusions are presented in Section 7.

2 Equivalence transformations

In this section we determine the equivalence transformation of class (3). These transformations

allow us to reduce class (3) to a subclass with simpler form, for instance, reducing the number

of arbitrary elements. An equivalence transformation of class (3) is a nondegenerate point

transformation, (t,x,u) to (t̃, x̃, ũ) in the augmented space (t,x,u,A,B,C,Q,n)which transforms

any equation of class (3) to an equation from the same class but with different arbitrary elements,

Ã(t̃), B̃(t̃), C̃(t̃), Q̃(t̃) and ñ from the original ones. We apply Lie’s infinitesimal criterion [17] to

obtain equivalence transformation of class (3), i.e., we require not only the invariance of class

(3) but also the invariance of the auxiliary system

Ax = Au = Bx = Bu =Cx =Cu = Qx = Qu = nt = nx = nu = 0. (4)

We consider the one-parameter group of equivalence transformations in (t,x,u,A,B,C,Q,n)
given by

t̃ = t + ε τ(t,x,u)+O(ε2),
x̃ = x+ ε ξ (t,x,u)+O(ε2),
ũ = u+ ε η(t,x,u)+O(ε2),
Ã = A+ ε ω1(t,x,u,A,B,C,Q,n)+O(ε2),
B̃ = B+ ε ω2(t,x,u,A,B,C,Q,n)+O(ε2),
C̃ = C+ ε ω3(t,x,u,A,B,C,Q,n)+O(ε2),
Q̃ = Q+ ε ω4(t,x,u,A,B,C,Q,n)+O(ε2),
ñ = n+ ε ω5(t,x,u,A,B,C,Q,n)+O(ε2),

(5)
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where ε is the group parameter. In this case, the vector field takes the following form

Y = τ∂t +ξ ∂x +η∂u +ω1∂A +ω2∂B +ω3∂C +ω4∂Q +ω5∂n. (6)

Invariance of system (3)-(4) under the one-parameter group of equivalence transformation (5)

with infinitesimal generator (6) leads to a system of determining equations. After having solved

the determining system, omitting tedious calculations, we obtain the associated equivalence

algebra of class (3) which is infinite dimensional and is spanned by

Y1 = x∂x +u∂u +(1−n)A∂A +3B∂B +(1−2n)C∂C,

Y2 = ∂x,

Yα = α∂t −αtA∂A −αtB∂B −αtC∂C −αtQ∂Q,

Yr = −ru∂u +nrA∂A +2nrC∂C + rt∂Q,

where α = α(t), r = r(t) are arbitrary smooth functions with αt 6= 0.

Theorem 1 The equivalence group of class (3) consists of the transformations

t̃ = α(t), x̃ = (x+ ε2)e
ε1, ũ = eε1−εrr(t)u,

Ã =
enεrr+(1−n)ε1

αt

A, B̃ =
e3ε1

αt

B, C̃ =
e2nεrr+(1−2n)ε1

αt

C, Q̃ =
Q+ εrrt

αt

ñ = n,

where ε1, ε2 and εr are arbitrary constants.

From Theorem 1 we obtain that equation (3) can be transformed into an equation in which the

highest order linear term and the nonlinear term of highest order have been set to a nonzero

constant values

ũt̃ + Ã(t̃) ũn ũx̃ + ũ2n ũx̃ + ũx̃x̃x̃ + Q̃(t̃) ũ = 0,

by means of the transformation

t̃ = e3ε1

∫
B(t)dt, x̃ = (x+ ε2)e

ε1, ũ = e
−ε1

n

(
B(t)

C(t)

)− 1
2n

u, (7)

where Ã(t̃) =
e−ε1A(t)√
B(t)C(t)

, B̃(t̃) = 1, C̃(t̃) = 1 and Q̃(t̃) = e−3ε1

(
Q(t)

B(t)
+

C(t)

2nB(t)2

(
B(t)

C(t)

)

t

)
.

Similarly, equation (3) might be reduced to the same form, for instance, with Ã(t̃) = 1. This

allow us to restrict without loss of generality our study to the class

ut +A(t)un ux +u2n ux +uxxx +Q(t)u = 0, (8)

due to symmetries and conservation laws obtained for class (8) can be prolonged to class (3) by

using (7).
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3 Classical Symmetries of class (8)

To apply the Lie classical method to equation (8) we consider the one-parameter Lie group of

infinitesimal transformations in (t,x,u) given by

t∗ = t + ε τ(t,x,u)+O(ε2), (9)

x∗ = x+ ε ξ (t,x,u)+O(ε2), (10)

u∗ = u+ ε η(t,x,u)+O(ε2), (11)

where ε is the group parameter. We require that this transformation leaves invariant the set of

solutions of equation (8). This yields to an overdetermined, linear system of equations for the

infinitesimals τ(t,x,u), ξ (t,x,u) and η(t,x,u). A general element of the symmetry algebra of

(8) has the form

v = τ(t,x,u)∂t +ξ (t,x,u)∂x+η(t,x,u)∂u. (12)

Having determined the infinitesimals, the symmetry variables are found by solving the charac-

teristic equation which is equivalent to solving the invariant surface condition

η(t,x,u)− τ(t,x,u)ut −ξ (t,x,u)ux = 0.

The set of solutions of equation (3) is invariant under the transformation (9)-(11) provided that

pr(3)v(∆) = 0 when ∆ = 0,

where ∆= ut +A(t)unux+u2nux+uxxx+Q(t)u, and pr(3)v is the third prolongation of the vector

field (12) which is given by

pr(3)v = v+ζ t∂ut +ζ x∂ux +ζ xxx∂uxxx, (13)

where

ζ J(t,x,u(3)) = DJ(η − τut −ξ ux)+ τuJt +ξ uJx,

with J = ( j1, . . . , jk), 1 ≤ jk ≤ 2, 1 ≤ k ≤ 3, and u(3) denote the sets of partial derivatives up to

third order [16]. Applying (13) we obtain a set of determining equations for the infinitesimals.

Simplifying this system we get, τ = τ(t), ξ = ξ (x, t) and η = η(x, t,u), where τ , ξ and η must

satisfy the following conditions:

ηuu = 0,
ηux −ξxx = 0,
τt −3ξx = 0,

τuQt −ηuuQ+3ξxuQ+ηQ+ηxunA+ηxu2n +ηxxx +ηt = 0,
τun+1At +2ξxun+1A+nηunA+2ξxu2n+1 +2nηu2n +3ηuxxu−ξxxxu−ξtu = 0.

(14)

In order to find Lie symmetries of the equation (8) is neccesary to distinguish according to pow-

ers of u which appears in (14). From determining system (14), if n, A(t) and Q(t) are arbitrary,

we obtain v1 = ∂x. For the following cases, we obtain new symmetries:
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3.1 Case 1: n 6= 1, A(t) = a(bt + c)−
1
3 , Q(t) = d (bt + c)−1

For this special form of A(t) and Q(t) we get the following infinitesimal generators

v1, v2 = (bt + c)∂t +
b

3
x∂x −

b

3n
u∂u.

3.2 Case 2: n = 1, A(t) = a(bt + c)−d, Q(t) = bd (bt + c)−1

In this case, we obtain

v1, v′2 = (bt + c)∂t +

(
b

3
x+β

)
∂x +

(
γ − b

3

)
∂u,

where γ(t) and β (t) are given by

γ(t) =
(3d −1)ab

6
(bt + c)−d , (15)

β (t) =





(3d −1)a2

6(1−2d)
(bt + c)1−2d

si d 6= 1

2
,

a2 log(bt + c)

12
si d =

1

2
.

(16)

3.3 Case 3: n =
1

2
, A(t) = 0, Q(t) arbitrary

Now, we get the following generators

vτ = τ ∂t +
τt

3
x∂x +

(
τtt

3
x− 2τt

3
u

)
∂u, vβ = β ∂x +βt∂u,

where τ = τ(t) and β = β (t) are given by

τ(t) =
a√

2Q(t)2+Qt(t)
, (17)

β (t) = b

∫
e
∫ −Q(t)dtdt + c. (18)

We can observe that in this case, we have obtained two infinitesimal generators with infinite

dimension, and therefore we obtain infinite nontrivial conservation laws.

In the above cases, a, b, c and d 6= 0 are arbitrary constants.
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4 Formal Lagrangian and adjoint equation

In order to construct conservation laws we need to set some prior concepts. We consider an

sth-order partial differential equation

F(x,u,u(1), . . . ,u(s)) = 0, (19)

and

L = vF(x,u,u(1), . . . ,u(s)), (20)

its formal Lagrangian, where v = v(x) is a new dependent variable, x = (x1, . . . ,xn) denotes the

set of independent variables, u the dependent variable and u(1) = {ui}, u(2) = {ui j}, . . . the sets

of the partial derivatives of the first, second, etc. orders, ui = ∂u/∂xi, ui j = ∂ 2u/∂xi∂x j. Let

δ

δu
=

∂

∂u
+

∞

∑
s=1

(−1)sDi1 · · ·Dis

∂

∂ui1···is
,

be the variational derivative (the Euler-Lagrange operator). Here

Di =
∂

∂xi
+ui

∂

∂u
+ui j

∂

∂u j
+ · · ·

are the total differentiations. The adjoint equation to (19) is

F∗(x,u,v,u(1),v(1), . . . ,u(s),v(s)) :=
δ (vF)

δu
= 0. (21)

Theorem 2 The adjoint equation to equation (8) is

F∗ ≡ vQ−u2nvx − vxxx −unvxA− vt . (22)

5 Nonlinearly self-adjoint equations

We use the following definition given in [14].

Definition 1 Equation (19) is said to be nonlinearly self-adjoint if the equation obtained from

the adjoint equation (21) by the substitution

v = ϕ(x,u), (23)

with a certain function ϕ(x,u) 6= 0 is identical with the original equation (19), i.e.,

F∗ |v=ϕ = λ (x,u, ...)F, (24)

for some differential function λ = λ (x,u, ...). If ϕ = u or ϕ = ϕ(u) and ϕ ′(u) 6= 0, equation

(19) is said self-adjoint or quasi self-adjoint, respectively. Furthermore, if ϕ = ϕ(x,u) such

us ϕu 6= 0 and ϕx 6= 0, equation (19) is said to be weak self-adjoint [10].
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Taking into account the expression (22) and using (23) and its derivatives we rewrite equation

(24) as

(λ +ϕu)uxxx +3ϕuuuxuxx +3ϕuxuxx +
(
unAλ +u2nλ +ϕuunA+ϕuu2n +3ϕuxx

)
ux

+3ϕuuxu2
x +ϕuuuu3

x +(λ +ϕu)ut +uQλ −ϕQ+ϕxunA+ϕxu2n +ϕxxx +ϕt = 0.
(25)

Equation (25) should be satisfied identically in all variables ut , ux, uxx, . . .. Equating to zero the

coefficients of the derivatives of u we obtain:

Theorem 3 Equation (8) with any functions A(t) and Q(t) is nonlinearly self-adjoint and

ϕ(t,x,u) is given by

ϕ = p(t)u+q(t,x),

in the following cases:

• If n =
1

2
and A = 0, we have

p(t) = c1e2
∫

Qdt − c2e2
∫

Qdt
∫

e−
∫

Qdtdt, q(t,x) = (c2x+ c3)e
∫

Qdt .

• In any other case, we obtain

p(t) = c1e2
∫

Qdt , q(t) = c2e
∫

Qdt .

With c1, c2 and c3 are arbitrary constants.

6 Conservation Laws

Conservation laws appear in many of physical, chemical and mechanical processes, such laws

enable us to solve problems in which certain physical properties do not change in the course of

time within an isolated physical system. In mathematics, the importance of conservation laws

lies in that they are strongly related with the integrability of a partial differential equation and

can be used to obtain exact solutions, among others.

A conservation law of equation (8) is a space-time divergence such that

DtT (t,x,u,ux,ut , ...)+DxX(t,x,u,ux,ut , ...) = 0, (26)

on all solutions u(t,x) of equation (8). Here, T represents the conserved density and X the
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associated flux [3], and Dx, Dt denote the total derivative operators with respect to x and t re-

spectively.

In this section, we obtain conservation laws of equation (8) using two different methods,

the general theorem on conservation laws proved by Ibragimov and the direct method of the

multipliers by Anco and Bluman.

6.1 Conservation laws by using the general theorem by Ibragimov

In [13] Ibragimov showed a new way for obtaining conserved quantities associated with any

symmetry of a given differential system wherein the number of equations is equal to the num-

ber of dependent variables. To apply this theorem, the concepts of adjoint equation and nonlin-

ear self-adjointness previously defined in Section 4 and 5 are necessary. The conserved vector

obtained by using the theorem proved in [13] provides a nonlocal conservation law for the equa-

tion. According to this theorem, conserved vectors of equation (8) can be obtained using the

following:

Theorem 4 Any Lie point, Lie-Bäcklund or non-local symmetry

v = τ(t,x,u,u(1), . . .)
∂

∂ t
+ξ (t,x,u,u(1), . . .)

∂

∂x
+η(t,x,u,u(1), . . .)

∂

∂u
,

of equation (8) provides a conservation law DtT +DxX = 0 for the simultaneous system (8),

(22). The conserved vector is given by

T = τL +W

[
∂L

∂ut

]
,

X = ξL +W

[
∂L

∂ux

+D2
x

(
∂L

∂uxxx

)]
−Dx (W )Dx

(
∂L

∂uxxx

)
+D2

x (W )
∂L

∂uxxx

,

where L is given by (20) and W is defined as follows:

W = η − τut −ξ ux.

Now, we construct conservation laws for the different cases considered in Section 3.

• From Case 1, we consider generator

v2 + k v1 = (bt + c)∂t +

(
b

3
x+ k

)
∂x −

b

3n
u∂u,

9



where k is an arbitrary constant. From Theorem 3, we have

ϕ = c1 (bt + c)
2d
b u+ c2 (bt + c)

d
b .

Thus, we obtain the conservation law (26) with the conserved vector

T = (bt + c)
d
b u

(
c1 (6d n+bn−2b)

6n
(bt + c)

d
b u+

c2 (3d n+bn−b)

3n

)
,

X =
(bt + c)

d
b

3n

(
c1 (6d n+bn−2b)

(
2uuxx −u2

x

)

2
(bt + c)

d
b + c2 (3d n+bn−b) uxx

+
c1 (6d n+bn−2b)

2n+2
(bt + c)

d
b u2n+2 +

c2 (3d n+bn−b)

2n+1
u2n+1

+
c1 a (6d n+bn−2b)

n+2
(bt + c)

d
b
− 1

3 un+2 +
c2 a (3d n+bn−b)

n+1
(bt + c)−

1
3 un+1

)
.

• From Case 2, we consider generator

v′2 = (bt + c)∂t +

(
b

3
x+β

)
∂x +

(
γ − b

3
u

)
∂u,

where γ and β are given by (15) and (16) respectively. From Theorem 3, we have ϕ is given by

ϕ = c1 (bt + c)2d
u+ c2 (bt + c)d .

Thus, we obtain the conservation law (26) with the conserved density

T =
b (bt + c)d

u

6

(
c1 (6d −1)(bt + c)d

u+ c1 a(3d−1)+6c2 d
)
+

c2 ab (3d−1)

6
.

In the case that d 6= 1

2
we get

X =
b (bt + c)d

6

(
c1 (6d −1)

(
2uuxx −u2

x +
u4

2

)
(bt + c)d +(c1 a(3d −1)+6c2 d) uxx

+(c1 a(5d −1)+2c2 d) u3
)
+

ab (c1 a(3d −1)+6c2 d) u2

12
.
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If d =
1

2
the flux is given by

X =
b
√

bt + c

12

(
2c1

(
4uuxx −2u2

x +u4
)√

bt + c+(c1 a+6c2) uxx +(3c1 a+2c2) u3
)
+

ab (c1 a+6c2) u2

24

• From Case 3, we consider generator

vτ +vβ = τ∂t +
(τt

3
x+β

)
∂x +

(
τtt

3
x− 2τt

3
u+βt

)
∂u,

where τ(t) and β (t) are given by (17) and (18) respectively. From Theorem 3, we obtain

ϕ = e2H (c1 − c2L)u+ eH(c2x+ c3),

where

H(t) =
∫

Q(t)dt, L(t) =
∫

e−
∫

Q(t)dtdt, (27)

with Q(t) arbitrary function.

Thus, we get the conservation law (26) with the conserved vector

T = e2H (c1 − c2L)u
((

τQ− τt

2

)
u+

τttx

3
+βt

)
+ eH(c2x+ c3)

(
τQu+

τttx

3
+βt

)
− eHu

(c2τu

2
− c2 β +

c3τt

3

X = e2H (c1 − c2L)

(
τQ

(
2uuxx −u2

x +
2u3

3

)
+uxx (βt − τtu)+

τttx

6

(
2uxx +u2

)
+ux

(τt

2
ux −

τtt

3

)

−u2

(
τt

3
u− βt

2

))
+ τeHQ(c2x+ c3)

(
uxx +

u2

2

)
+

eH(2uuxx +u2)

6

(
c1τtte

Hx+3c2 β − c3τt

)

−c2τeH(Qux +uuxx)+
c2eH

6

(
3τu2

x −2τu3 −2τtt

)
.

11



6.2 Conservation laws by using the direct method of the multipliers of

Bluman and Anco

Anco and Bluman [1, 2] proved a general direct construction method to obtain conservation

laws for PDEs which can be expressed in a standard Cauchy-Kovaleskaya form

ut = G(x,u,ux,uxx, . . . ,unx).

This method is based on the concept of multiplier. We call multiplier to a certain function

Λ(t,x,u,ux,uxx, ...) which holds that (ut +Aun ux+u2n ux+uxxx+Qu)Λ is a divergence expres-

sion for all functions u(t,x), not just solutions of the equation (8). We suppose, without loss of

generality, that T , X and the multiplier Λ have no dependence on ut and all derivatives of ut .

Using equation (8), we construct an equivalent conservation law in which has been removed ut

and its derivatives from the conserved vector

T̂ = T |ut=∆= T −Φ,

X̂ = X |ut=∆= X −Ψ,

where ∆ =−Aun ux −u2n ux −uxxx −Qu, so that

(
Dt T̂ (t,x,u,ux,uxx, ...)+DxX̂(t,x,u,ux,uxx, ...)

)
|ut=∆= 0,

and where

Dt |ut=∆ = ∂t +∆∂u +Dx(∆)∂ux
+ ...

Dx |ut=∆ = ∂x +ux∂u +uxx∂ux
+ ...= Dx,

is held on all solutions of the equation (8). In particular, moving off of solutions, we have the

identity

Dt = Dt |ut=∆ +(ut +Aun ux +u2n ux +uxxx +Qu)∂u +Dx(ut +Aun ux +u2n ux +uxxx +Qu)∂ux
+ ...

Taking into account the expressions given above we construct the characteristic form of the

conservation law (26)

Dt T̂ +Dx

(
X̂ + Ψ̂

)
=
(
ut +Aun ux +u2n ux +uxxx +Qu

)
Λ, (28)

12



where

Ψ̂(t,x,u,ux,ut, ...) = Eux
(T̂ )
(
ut +Aun ux +u2n ux +uxxx +Qu

)

+Euxx
(T̂ )Dx

(
ut +Aun ux +u2n ux +uxxx +Qu

)
+ ...

is a trivial flux, and where Eu = ∂u −Dx∂ux
+D2

x∂uxx
− ..., denotes the (spatial) Euler operator

with respect to u. By using the characteristic form (28) is deduced that each conserved density

in the form (26) arise from a multiplier Λ of the equation (8) which has no dependence on ut and

its differential consequences. Multipliers Λ are obtained by using that the divergence condition

must be verify identically

δ

δu

((
ut +Aun ux +u2n ux +uxxx +Qu

)
Λ
)
= 0,

where
δ

δu
= ∂u −Dx∂ux

−Dt∂ut
+DxDt∂uxt

+D2
x∂uxx

+ ..., denotes the variational derivative.

This yield us to an overdetermined system of equations for Λ which is linear in ut , utx, utxx,...

Equating to zero these coefficients we obtain the equivalent equations

−DtΛ− (Aun +u2n)DxΛ− D3
xΛ+QΛ = 0,

and

Λu = Eu(Λ), Λux
=−E

(1)
u (Λ), Λuxx

=−E
(2)
u (Λ), ...

which are verified for all solutions u(t,x) of equation (8).

The conserved density is obtained from a multiplier Λ by using a standard method [22]

T =
∫ 1

0
dλ uΛ(t,x,λu,λux,λuxx, ...).

In this case, we consider multipliers up to second order, i.e., Λ(t,x,u,ux,uxx). We obtain that

equation (8) admits, for n, A(t) and Q(t) arbitrary, the following multiplier

Λ = c̃1e2Hu+ c̃2eH .

13



From this multiplier, we obtain the conserved vector given by

T =
1

2
c̃1e2Hu2 + c̃2eHu,

X =
1

2
c̃1e2H

(
2uuxx −u2

x

)
+ c̃2eHuxx + c̃1e2H u2n+2

2n+2
+ c̃1e2HA

un+2

n+2
+ c̃2eH u2n+1

2n+1
+ c̃2eHA

un+1

n+1
.

Furthermore, in the case that n =
1

2
, A(t) = 0, we get a new multiplier

Λ = c̃3

(
eHx− e2HLu

)
.

Consequently, we obtain the following conserved vector

T =
c̃3

2

(
2eHxu− e2HLu2

)
,

X =
c̃3

6

(
eHx

(
6uxx +3u2

)
− e2HL

(
2u3 −3u2

x +6uuxx

)
−6eHux

)
.

In the above conserved vectors, c̃1, c̃2 and c̃3 are arbitrary constants, H(t) and L(t) are given by

(27).

7 Conclusions

In this work, we performed a study of a generalized variable-coefficient Gardner equation in-

volving many arbitrary smooth functions. The equation considered generalizes substantially

many other equations previously study by other authors by means of symmetries and conserva-

tion laws [11, 12, 15, 20]. We have obtained the equivalence transformation group of equation

(3), which it is an infinite dimensional group. Equivalence group allows us to enhance our study

considering a tranformation which leads us to a subclass (8) of equation (3) with fewer number

of arbitrary functions. Lie symmetries of equation (8) have been obtained.

Furthermore, we have proved that equation (8) is nonlinearly self-adjoint. In [23], it was

proved that the substitution ϕ(x,u) used in the property of nonlinear self-adjointness is identical

to the multiplier Λ(x,u). Nontrivial conservation laws have been obtained by using a general

theorem given by Ibragimov [13] and the direct method of the multipliers of Anco and Bluman

[2]. The conservation laws obtained via Ibragimov’s method can be constructed by using The-

orem 4, which does not use the integral of functions, in contrast to the multipliers method. It

can be seen that although substitutions and multipliers are similar, conservation laws provided

from them may be different.
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