Analytic study of a coupled Kerr-SBS system

Robert Conte ${ }^{1,2 *}$ and Maria Luz Gandarias ${ }^{3}$
1. LRC MESO, CEA-DAM-DIF, F-91297 Arpajon, France
2. Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. E-mailRobert.Conte@cea.fr
3. Departamento de Matematicas
Universidad de Cádiz
Casa postale 40
E-11510 Puerto Real, Cádiz, Spain.
E-mail: MariaLuz.Gandarias@uca.es

14 March 2016

Abstract

In order to describe the coupling between the Kerr nonlinearity and the stimulated Brillouin scattering, Mauger et al. recently proposed a system of partial differential equations in three complex amplitudes. We perform here its analytic study by two methods. The first method is to investigate the structure of singularities, in order to possibly find closed form singlevalued solutions obeying this structure. The second method is to look at the infinitesimal symmetries of the system in order to build reductions to a lesser number of independent variables. Our overall conclusion is that the structure of singularities is too intricate to obtain closed form solutions by the usual methods. One of our results is the proof of the nonexistence of traveling waves.

Keywords: Stimulated Brillouin scattering, Painlevé test, exact solutions, Lie symmetries, reductions.
PACS 02.20.Sv, 02.30.Jr, 42.65.-k, 42.81.Dp.

Contents

1 The coupled Kerr-SBS system 2
2 Singularity analysis 2
2.1 Generic case $g \tau \neq 0$ 3
2.2 Case $g \neq 0$ and $\tau=0$ 4
2.3 Case $g=0$ 4
3 Search for radial shock-type solutions, generic case $g \tau \neq 0$ 5
4 Lie symmetries 6
5 Reductions 7
5.1 Reductions, generic case $g \tau v_{g} \neq 0$ (10 generators) 7
5.2 Nongeneric case $v_{g}=0, g \tau \neq 0$ (11 generators) 8
6 Conclusion 15

[^0]
1 The coupled Kerr-SBS system

The coupling between Kerr effect and stimulated Brillouin scattering [1] can be described by three complex partial differential equations (PDE) in three complex amplitudes U_{1}, U_{2}, Q depending on four independent variables x, y, t, z [8, Eqs. (7)-(9)]

$$
\left\{\begin{array}{l}
i\left(U_{1, z}+v_{g} U_{1, t}\right)+\frac{U_{1, x x}+U_{1, y y}}{2 k_{0}}+b\left(\left|U_{1}\right|^{2}+2\left|U_{2}\right|^{2}\right) U_{1}+i \frac{g}{2} Q U_{2}=0 \tag{1}\\
-i\left(U_{2, z}-v_{g} U_{2, t}\right)+\frac{U_{2, x x}+U_{2, y y}}{2 k_{0}}+b\left(\left|U_{2}\right|^{2}+2\left|U_{1}\right|^{2}\right) U_{2}-i \frac{g}{2} \bar{Q} U_{1}=0 \\
\tau Q_{t}+Q-U_{1} \bar{U}_{2}=0,
\end{array}\right.
$$

in which v_{g}, k_{0}, b, g, τ are real constants. We adopt the notation of nonlinear optics, in which the time t and the longitudinal coordinate z are exchanged as compared to mathematical physics.

Although we will focus on the generic case $g \tau \neq 0$, we will also consider the two nongeneric cases $g \tau=0$, for which the system is only four-dimensional,

$$
g \tau=0:\left\{\begin{array}{r}
i\left(U_{1, z}+v_{g} U_{1, t}\right)+\frac{U_{1, x x}+U_{1, y y}}{2 k_{0}}+\left(b\left|U_{1}\right|^{2}+\left(2 b+i \frac{g}{2}\right)\left|U_{2}\right|^{2}\right) U_{1}=0 \tag{2}\\
-i\left(U_{2, z}-v_{g} U_{2, t}\right)+\frac{U_{2, x x}+U_{2, y y}}{2 k_{0}}+\left(b\left|U_{2}\right|^{2}+\left(2 b-i \frac{g}{2}\right)\left|U_{1}\right|^{2}\right) U_{2}=0
\end{array}\right.
$$

At present time, no solution is known to the generic system (11) $\left(v_{g} b g \tau \neq 0\right)$. The goal of this work is to look for possible closed form solutions by two methods: singularity analysis, infinitesimal symmetries.

A prerequisite to the search of closed form solutions is to investigate the singularity structure of the system, this is done in section 2, and this results in a triangular system of five PDEs to be obeyed in order for a closed form solution to exist.

In section 3, we look for the simplest class of possible closed form solutions, in which U_{1}, U_{2}, Q could have shock profiles. We find that, at least for the radial reduction $\left(U_{j}, Q\right)=f\left(x^{2}+y^{2}, z, t\right)$, such a solution does not exist.

In section 4, we apply the classical Lie method, derive the Lie algebra, compute the commutator table and the adjoint table [10].

Finally, in section [5, we define a few reductions to a lesser number of independent variables.

2 Singularity analysis

There exists only one limiting case in which the system (11) is integrable, this is its degeneracy to the nonlinear Schrödinger equation $U_{1}=U_{2}, g=0, \partial_{z}=0, c_{1} \partial_{x}+c_{2} \partial_{y}=0,\left(c_{1}, c_{2}\right) \neq(0,0)$. Let us prove that, except for this limiting case, the system (1) is always nonintegrable, in the sense that it always admits a multivalued behaviour around a singularity which depends on the initial conditions (i.e. what is called a movable singularity). It is convenient to denote the list of dependent variables $\left(U_{1}, \bar{U}_{1}, U_{2}, \bar{U}_{2}, Q, \bar{Q}\right)$ as the six-dimensional vector \mathbf{u}.

A necessary condition for the system (1) to display a singlevalued behaviour of the general solution around any movable singularity (i.e. what is known as the Painlevé property [3]) is that all possible Laurent series locally representing the general solution near a movable singular manifold $\varphi(x, y, z, t)-\varphi_{0}=0$,

$$
\begin{equation*}
\mathbf{u}=\sum_{j=0}^{+\infty} \mathbf{u}_{j} \chi^{j+\mathbf{p}} \tag{3}
\end{equation*}
$$

indeed exist. In the above series, the expansion variable χ vanishes when $\varphi(x, y, z, t)-\varphi_{0} \rightarrow 0$. This classical but technical computation [3] generates several necessary conditions, the main ones being the following.

1. At least one of the six components of the leading power \mathbf{p} must not be a positive integer (so that $\chi=0$ is indeed a singularity).
2. The Fuchs indices of the linearized system near the solution (3) must all be integer (whatever be their sign).
3. For any Fuchs index $j \geq 1$, the (affine) recurrence relation for \mathbf{u}_{j} must admit a solution, i.e. no logarithms are allowed to enter the expansion, and this requires some conditions (no-logarithm conditions, in short no-log conditions) to be obeyed.

2.1 Generic case $g \tau \neq 0$

There exists a dominant behaviour in which all six complex fields have simple poles (χ is here chosen as $\left.\chi=\varphi(x, y, z, t)-\varphi_{0}\right)$,

$$
\left\{\begin{array}{l}
U_{1} \sim M e^{i a_{1}} \chi^{-1}, \bar{U}_{1} \sim M e^{-i a_{1}} \chi^{-1}, U_{2} \sim M e^{i a_{2}} \chi^{-1}, \bar{U}_{2} \sim M e^{-i a_{2}} \chi^{-1} \tag{4}\\
Q \sim N e^{i a_{1}-i a_{2}} \chi^{-1}, \bar{Q} \sim N e^{i a_{2}-i a_{1}} \chi^{-1} \\
M^{2}=-\frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{3 k_{0} b}, N=\frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{3 k_{0} b \tau \varphi_{t}},\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right) \varphi_{t} \neq 0
\end{array}\right.
$$

and the two phases a_{1}, a_{2} are arbitrary functions of (x, y, z, t). These two sets of values for the moduli (M, N) define two families of movable singularities. The Fuchs indices of each family are equal to

$$
\begin{equation*}
-1,0,0,1,1,3,3,4, \frac{3}{2}+\frac{\sqrt{11}}{2 \sqrt{3}}, \frac{3}{2}-\frac{\sqrt{11}}{2 \sqrt{3}} \tag{5}
\end{equation*}
$$

and the two irrational indices prove the nonintegrability of the system. This however does not yet rule out possible singlevalued solutions.

Each of the five indices $1,1,3,3,4$ generates one necessary condition for the Laurent series (3) to exist. If they are all obeyed, the Laurent series depends on the eight arbitrary functions

$$
\begin{equation*}
\varphi, a_{1}, a_{2}, Q_{1}, \bar{Q}_{1}, U_{1,3}-\bar{U}_{1,3}, U_{2,3}-\bar{U}_{2,3}, U_{1,4}+\bar{U}_{1,4}+U_{2,4}+\bar{U}_{2,4} \tag{6}
\end{equation*}
$$

associated to the respective Fuchs indices $-1,0,0,1,1,3,3,4$. The five no-log conditions define a triangular system in the first five functions of this list, whose structure is (P denotes a polynomial of all its arguments, having degree one in its first argument, $D^{k} f$ is the set of all derivatives of f of order k, and $D^{k: l}$ is a range of such derivatives),

$$
\left\{\begin{array}{l}
Q_{1, a} \equiv P\left(D^{2} \varphi, D \varphi\right)=0 \tag{7}\\
Q_{1, b} \equiv P\left(D\left(a_{1}-a_{2}\right), D \varphi\right)=0 \\
Q_{3, a} \equiv P\left(D^{2}\left(a_{1}+a_{2}\right), D^{3: 1} \varphi\right)=0 \\
Q_{3, b} \equiv P\left(D\left(Q_{1}+\bar{Q}_{1}\right), D^{2}\left(a_{1}-a_{2}\right), D^{3: 1} \varphi\right)=0 \\
Q_{4} \equiv P\left(D^{2}\left(Q_{1}-\bar{Q}_{1}\right), D\left(Q_{1}+\bar{Q}_{1}\right), D^{3}\left(a_{1}+a_{2}\right), D^{3}\left(a_{1}-a_{2}\right), D^{5: 1} \varphi\right)=0
\end{array}\right.
$$

Unless these five conditions are all obeyed, no singlevalued particular solution exists, therefore one must find at least one particular solution of this set of five conditions.

The two necessary conditions at Fuchs index 1 are

$$
\begin{align*}
Q_{1, a} \equiv & 3\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right)^{2}\left(\tau^{-1} \varphi_{t}-\varphi_{t t}\right)+6\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right) \varphi_{t}\left(\varphi_{x} \varphi_{x t}+\varphi_{y} \varphi_{y t}\right) \\
& +\varphi_{t}^{2}\left(\varphi_{x}^{2}\left(3 \varphi_{x x}+\varphi_{y y}\right)+\varphi_{y}^{2}\left(3 \varphi_{y y}+\varphi_{x x}\right)+4 \varphi_{x} \varphi_{y} \varphi_{x y}\right)=0 \tag{8}\\
Q_{1, b} \equiv & {\left[\varphi_{x} \partial_{x}+\varphi_{y} \partial_{y}-\frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{\varphi_{t}} \partial_{t}\right]\left(a_{1}-a_{2}+\frac{g t}{3 b \tau}\right)+2 k_{0} \varphi_{z}=0 } \tag{9}
\end{align*}
$$

The first condition admits no solution in the class $\varphi=\Phi(\xi)$ with $\xi=k_{x} x+k_{y}+k_{z} z+k_{t} t$ and k_{α} constants, therefore the generic $(g \tau \neq 0)$ Kerr-SBS system (1) admits no singlevalued travelling wave solution (it does not admit plane waves either), and numerical studies [8] indeed confirm this result.

This first condition (8) is a quasilinear PDE of the Monge-Ampère type. Therefore, after switching to polar coordinates,

$$
\begin{equation*}
(x, y) \rightarrow(\rho, \theta): x=\rho \cos \theta, y=\rho \sin \theta \tag{10}
\end{equation*}
$$

one follows the classical procedure of Goursat [5. §24 p. 44, 1st English edition], and performs a hodograph transformation like

$$
\begin{equation*}
\varphi(\rho, \theta, z, t) \rightarrow T(\varphi, \rho, \theta, z) \tag{11}
\end{equation*}
$$

This maps the two PDEs (8)-(19) to an equivalent system, which is even shorter when written for $T(\varphi, R, \theta, z)$ with $T=e^{t / \tau}, R=\rho^{2 / 3}$,
$Q_{1, a} \equiv 9 T_{\theta}^{2} T_{R} T_{\varphi \varphi}+4 R^{2} T_{R} T_{\varphi}^{2} T_{R R}+3 T_{R} T_{\varphi}^{2} T_{\theta \theta}-6 T_{\theta}^{2} T_{\varphi} T_{\varphi R}-12 T_{\theta} T_{R} T_{\varphi} T_{\varphi \theta}+6 T_{\theta} T_{\varphi}^{2} T_{R \theta}=0(12)$
$Q_{1, b} \equiv b T\left[6 T_{R} \partial_{R}+\frac{27}{2 R^{2}}\left(T_{\theta} \partial_{\theta}-\frac{T_{\theta}^{2}}{T_{\varphi}} \partial_{\varphi}\right)\right]\left(a_{1}-a_{2}\right)+2 g T_{R}^{2}+27 b k_{0} R T T_{z}=0$.
Any solution is acceptable provided it fulfills the condition

$$
\begin{equation*}
\left(R^{2} T_{R}^{2}+T_{\theta}^{2}\right) T_{\varphi} \neq 0 \tag{14}
\end{equation*}
$$

inherited from the condition $\left(\varphi_{x}^{2}+\varphi_{y}^{2}\right) \varphi_{t} \neq 0$, see (4),

$$
\begin{equation*}
\varphi_{x}^{2}+\varphi_{y}^{2}=\frac{4}{9 R^{3} T_{\varphi}^{2}}\left(R^{2} T_{R}^{2}+T_{\theta}^{2}\right), \varphi_{t}=\frac{T}{\tau T_{\varphi}} \tag{15}
\end{equation*}
$$

Two particular solutions of $Q_{1, a}=0$ are easy to obtain, they are respectively defined by $T_{R}=0$ (azimutal reduction) and ($T_{\theta}=0, T_{R R}=0$) (radial reduction), but only the radial reduction allows one to also integrate $Q_{1, b}=0$, thus implicitly defining a particular solution of (8) (9) in terms of three arbitrary functions G_{0}, G_{1}, G_{2} of two variables,

$$
\begin{equation*}
\partial_{\theta}=0: e^{t / \tau}=G_{1}(\varphi, z)\left(R+G_{0}(\varphi, z)\right), a_{1}-a_{2}=-\frac{g}{3 b}\left[\frac{t}{\tau}-G_{2}(\varphi, z)\right] \tag{16}
\end{equation*}
$$

The next condition $Q_{3, a}=0$ to be solved in the triangular system (7) is a second order linear PDE for $a_{1}+a_{2}$, and, for the values (16), we could not find at least one solution.

2.2 Case $g \neq 0$ and $\tau=0$

When $g \neq 0$ and $\tau=0$, the system (2) is made of two coupled complex Ginzburg-Landau equations in $2+1$ dimensions, and, following the analysis made in [2], it admits a dominant behaviour (χ again denotes $\left.\varphi(x, y, z, t)-\varphi_{0}\right)$,

$$
\left\{\begin{array}{l}
U_{1} \sim M_{1} e^{i a_{1}} \chi^{-1+i \alpha}, \bar{U}_{1} \sim M_{1} e^{-i a_{1}} \chi^{-1-i \alpha}, U_{2} \sim M_{2} e^{i a_{2}} \chi^{-1+i \beta}, \bar{U}_{2} \sim M_{2} e^{-i a_{2}} \chi^{-1-i \beta} \tag{17}\\
M_{1}^{2}=\frac{\left(4 \beta^{2}-2 \alpha^{2}-4\right) b-3 \beta g}{12 b^{2}+g^{2}} \frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{k_{0}}, M_{2}^{2}=\frac{\left(4 \alpha^{2}-2 \beta^{2}-4\right) b+3 \alpha g}{12 b^{2}+g^{2}} \frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{k_{0}} \\
\frac{b}{g}=\frac{\beta^{2}-2}{6 \alpha-12 \beta}=\frac{2-\alpha^{2}}{6 \beta-12 \alpha}, \varphi_{x}^{2}+\varphi_{y}^{2} \neq 0
\end{array}\right.
$$

and the two phases a_{1}, a_{2} are arbitrary functions. This implies the two mutually exclusive possibilities

$$
\begin{equation*}
(\alpha+\beta=0) \text { or }\left(\alpha^{2}-3 \alpha \beta+\beta^{2}+2=0\right) \tag{18}
\end{equation*}
$$

The first one contains the unphysical reduction $U_{2}=\bar{U}_{1}$, while the second one describes a truly coupled behaviour. In both cases, just like in [2], the eight Fuchs indices are $1,0,0$ (respectively corresponding to the arbitrary functions $\varphi_{0}, a_{1}, a_{2}$) and five irrational values, therefore there is no no-log condition to compute.

2.3 Case $g=0$

For $g=0$, the system (2) is made of two coupled nonlinear Schrödinger equations in $2+1$ dimensions, of a type which is nonintegrable [4] but for which some closed form solutions have been found [7]. The system admits the same simple pole behaviour as (4), for $U_{1}, \bar{U}_{1}, U_{2}, \bar{U}_{2}$

$$
\begin{equation*}
U_{1} \sim M e^{i a_{1}} \chi^{-1}, \bar{U}_{1} \sim M e^{-i a_{1}} \chi^{-1}, U_{2} \sim M e^{i a_{2}} \chi^{-1}, \bar{U}_{2} \sim M e^{-i a_{2}} \chi^{-1}, M^{2}=-\frac{\varphi_{x}^{2}+\varphi_{y}^{2}}{3 k_{0} b} . \tag{19}
\end{equation*}
$$

The eight Fuchs indices j are then the roots of $j(3-j)=-4,0,0,4 / 3$, i.e.

$$
\begin{equation*}
-1,0,0,3,3,4,(3+\sqrt{3}) / 2,(3-\sqrt{3}) / 2 \tag{20}
\end{equation*}
$$

and the presence of noninteger indices is sufficient to prove the nonintegrability.
After a computation quite similar to that of section 2.1, we also could not find at least one particular solution to the set of five no-log conditions.

To conclude this local analysis (of the movable singularities), closed form singlevalued solutions are not impossible to find, but this will prove quite difficult. Such an investigation is performed in section 3.

3 Search for radial shock-type solutions, generic case $g \tau \neq 0$

For the radial reduction $\partial_{\theta}=0$ suggested by the local analysis, see (16), let us look for possible closed form singlevalued solutions defined by the assumption

$$
\begin{equation*}
\mathbf{u}=\sum_{j=0}^{1} \mathbf{u}_{j} \chi^{j-1}, \chi=\varphi-\varphi_{0} \tag{21}
\end{equation*}
$$

i.e.

$$
\left\{\begin{array}{l}
U_{1}=M e^{i a_{1}}\left(\chi^{-1}+U_{1,1}\right), \bar{U}_{1}=M e^{-i a_{1}}\left(\chi^{-1}+\bar{U}_{1,1}\right) \tag{22}\\
U_{2}=M e^{i a_{2}}\left(\chi^{-1}+U_{2,1}\right), \bar{U}_{2}=M e^{-i a_{2}}\left(\chi^{-1}+\bar{U}_{2,1}\right) \\
Q=N e^{i a_{1}-i a_{2}}\left(\chi^{-1}+Q_{1}\right), \bar{Q}=N e^{i a_{2}-i a_{1}}\left(\chi^{-1}+\bar{Q}_{1}\right)
\end{array}\right.
$$

in which the functions $M, N, a_{1}, a_{2}, \varphi$ must obey the relations (4) and (7), and the functions $U_{1,1}, U_{2,1}, Q_{1}$ are to be determined. When one inserts such an assumption into the six equations of the system (11), which we denote $\mathbf{E}=0$, one generates a Laurent series which also terminates

$$
\begin{equation*}
\mathbf{E}=\sum_{j=0}^{-\mathbf{q}} \mathbf{E}_{j} \chi^{j+\mathbf{q}}, \mathbf{q}=(-3,-3,-3,-3,-2,-2) \tag{23}
\end{equation*}
$$

and the method is to solve the set of 11 complex equations

$$
\begin{equation*}
\forall j: \mathbf{E}_{j}=0 \tag{24}
\end{equation*}
$$

for the 11 unknowns $M, N, a_{1}, a_{2}, \varphi$ (real) and $U_{1,1}, U_{2,1}, Q_{1}$ (complex). This is the famous "onefamily truncation" initiated by Weiss et al. [12], see details in [3]. The result is the following.

The three complex equations $j=0$ first provide M, N as in (4), and a_{1}, a_{2} remain arbitrary (because $j=0$ is a double Fuchs index).

The next three complex equations $j=1$ yield the two conditions $Q_{1, a}=0, Q_{1, b}=0$, see (9), a unique value for $U_{1,1}, U_{2,1}$, and an arbitrary value for Q_{1}.

At $j=2$, one obtains a unique value for Q_{1}, plus four real constraints on φ, a_{1}, a_{2}.
Finally, the two complex equations $j=3$ yields four more real such constraints, among them the two no-log conditions $Q_{3, a}=0, Q_{3, b}=0$.

If one now assumes the three complex amplitudes to be independent of the polar coordinate θ, in order to proceed one has to choose (16). Then one of the four constraints $j=2$ yields

$$
\begin{equation*}
a_{1}+a_{2}=R g_{1}(z, t)+g_{0}(z, t) \tag{25}
\end{equation*}
$$

in which g_{1} and g_{0} are arbitrary functions of two variables.
Finally, one of the three remaining constraints at $j=2$ yields the condition

$$
g_{1}(z, t)^{2}=\operatorname{rational}\left(z ; G_{0}(\varphi, z), G_{1}(\varphi, z)\right)
$$

in which the rhs is a rational function of z with coefficients depending on G_{0}, G_{1}, and the condition that the rhs be independent of φ admits no solution. Therefore a solution described by one family such as (22) probably does not exist when one waives the restriction $\partial_{\theta}=0$.

Because of these difficulties, we did not try to find possible pulse solutions described by the two-family truncation [3, §5.7.2].

4 Lie symmetries

For convenience, we denote the independent variales x, y, z, t as $x_{j}, j=1,2,3,4$ and the dependent variables $U_{1}, \bar{U}_{1}, U_{2}, \bar{U}_{2}, Q, \bar{Q}$ as $u_{k}, k=1, \cdots, 6$.

The method of Lie consists in unveiling the invariance properties of a given system of PDEs, in order to define reductions to another system with a lesser number of independent variables. We refer the reader to pedagogical textbooks such as [10] [11] [6] and to a recent paper (9) handling an example in full detail.

In order to apply the classical method to the system (1), we consider the one-parameter Lie group of infinitesimal transformations

$$
\left\{\begin{array}{l}
x_{j}^{*}=x_{j}+\varepsilon \xi_{j}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right) \tag{26}\\
u_{k}^{*}=u_{k}+\varepsilon \eta_{k}\left(x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)
\end{array}\right.
$$

where ε is the group parameter.
One then requires this transformation to leave invariant the set of solutions of the system (11). This yields an overdetermined, linear system of equations (called determining equations) for the infinitesimals ξ_{j}, η_{k}. Having determined the infinitesimals, the symmetry variables are found by solving the invariant surface condition

$$
\begin{equation*}
\Phi \equiv \sum_{j=1}^{4} \xi_{j} \frac{\partial f}{\partial x_{j}}+\sum_{k=1}^{6} \eta_{k} \frac{\partial f}{\partial u_{k}}-\varphi=0 \tag{27}
\end{equation*}
$$

The associated Lie algebra of infinitesimal symmetries is the set of vector fields of the form

$$
\begin{equation*}
\mathbf{v}=\xi_{1} \partial_{x_{1}}+\xi_{2} \partial_{x_{2}}+\xi_{3} \partial_{x_{3}}+\xi_{4} \partial_{x_{4}}+\eta_{1} \partial_{u_{1}}+\eta_{2} \partial_{u_{2}}+\eta_{3} \partial_{u_{3}}+\eta_{4} \partial_{u_{4}}+\eta_{5} \partial_{u_{5}}+\eta_{6} \partial_{u_{6}} \tag{28}
\end{equation*}
$$

In the generic case $g \tau v_{g} \neq 0$ (4 independent variables, 6 real dependent variables, 6 real equations), system (1) leads to a set of 65 determining equations, whose solution defines a Lie algebra with 10 generators,

$$
\left\{\begin{array}{l}
T_{x}=\partial_{x}, T_{y}=\partial_{y}, T_{z}=\partial_{z}, T_{t}=\partial_{t}, \Theta=x \partial_{y}-y \partial_{x} \tag{29}\\
E_{x}=z \partial_{x}+i k_{0} x B_{6} \\
E_{y}=z \partial_{y}+i k_{0} y B_{6} \\
B_{6}=u_{1} \partial_{u_{1}}-u_{2} \partial_{u_{2}}-u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}+2 u_{5} \partial_{u_{5}}-2 u_{6} \partial_{u_{6}} \\
B_{4}=u_{1} \partial_{u_{1}}-u_{2} \partial_{u_{2}}+u_{3} \partial_{u_{3}}-u_{4} \partial_{u_{4}} \\
A=v_{g} z B_{6}-t B_{4}
\end{array}\right.
$$

In the nongeneric case $g \tau \neq 0, v_{g}=0$, one obtains the 11 generators

$$
\left\{\begin{array}{l}
T_{x}, T_{y}, T_{z}, T_{t}, \Theta, E_{x}, E_{y}, B_{6}, F(t) B_{4} \tag{30}\\
V_{6}=x \partial_{x}+y \partial_{y}+2 z \partial_{z}-\left(u_{1} \partial_{u_{1}}+u_{2} \partial_{u_{2}}+u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}+2 u_{5} \partial_{u_{5}}+2 u_{6} \partial_{u_{6}}\right) \\
W_{6}=z V_{6}-z^{2} \partial_{z}+\frac{i k_{0}}{2}\left(x^{2}+y^{2}\right) B_{6}
\end{array}\right.
$$

in which F is an arbitrary function of one variable.
The three other nongeneric cases $g \tau=0$ (i.e. $g=0$ or $\tau=0$ or $g=\tau=0$) admit the same set of generators independent of g and τ, and these depend on whether $v_{g} \neq 0$ or $v_{g}=0$. For $g \tau=0, v_{g} \neq 0$, introducing the notation

$$
\left\{\begin{array}{l}
B_{1}=u_{1} \partial_{u_{1}}-u_{2} \partial_{u_{2}}, \tag{31}\\
B_{2}=u_{3} \partial_{u_{3}}-u_{4} \partial_{u_{4}},
\end{array}\right.
$$

there exist 14 generators

$$
\left\{\begin{array}{l}
T_{x}, T_{y}, T_{z}, T_{t}, \Theta, F_{1}\left(t-v_{g} z\right) B_{1}, F_{2}\left(t+v_{g} z\right) B_{2} \tag{32}\\
e_{x}=z \partial_{x}+i k_{0} x\left(B_{1}-B_{2}\right) \\
e_{y}=z \partial_{y}+i k_{0} y\left(B_{1}-B_{2}\right) \\
V_{4}=x \partial_{x}+y \partial_{y}+2 z \partial_{z}+2 t \partial_{t}-\left(u_{1} \partial_{u_{1}}+u_{2} \partial_{u_{2}}+u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}\right) \\
G_{x}=t \partial_{x}+i k_{0} v_{g} x\left(B_{1}+B_{2}\right) \\
G_{y}=t \partial_{y}+i k_{0} v_{g} y\left(B_{1}+B_{2}\right) \\
H_{x}=\frac{1}{2}\left(v_{g}^{2} z^{2}-t^{2}\right) \partial_{x}+i k_{0} v_{g} x\left[v_{g} z\left(B_{1}-B_{2}\right)-t\left(B_{1}+B_{2}\right)\right] \\
H_{y}=\frac{1}{2}\left(v_{g}^{2} z^{2}-t^{2}\right) \partial_{y}+i k_{0} v_{g} y\left[v_{g} z\left(B_{1}-B_{2}\right)-t\left(B_{1}+B_{2}\right)\right]
\end{array}\right.
$$

in which F_{1}, F_{2} are arbitrary functions, while for $g \tau=0, v_{g}=0$, there exist only 10 generators

$$
\left\{\begin{array}{l}
T_{x}, T_{y}, T_{z}, \Theta, B_{1}, B_{2}, e_{x}, e_{y} \tag{33}\\
V_{3}=x \partial_{x}+y \partial_{y}+2 z \partial_{z}-\left(u_{1} \partial_{u_{1}}+u_{2} \partial_{u_{2}}+u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}\right) \\
W_{4}=z V_{3}-z^{2} \partial_{z}+\frac{i k_{0}}{2}\left(x^{2}+y^{2}\right)\left(B_{1}-B_{2}\right)
\end{array}\right.
$$

Let us first define the shorthand notation

$$
\begin{equation*}
E_{n}^{ \pm}=i k_{0}\left[\left(t-v_{g} z\right)^{n} F_{1}\left(t-v_{g} z\right) B_{1} \pm\left(t+v_{g} z\right)^{n} F_{2}\left(t+v_{g} z\right) B_{2}\right], n=0,1,2 . \tag{34}
\end{equation*}
$$

For each of the four algebras (29), (30), (32), (33), we have built the commutator tables Table 1 (gathering both (29) and (30)), Table 2, Table 3, and the adjoint tables Table 4 (gathering both (29) and (30)), Table 5. Table 6, which show the separate adjoint actions of each element in a Lie algebra, as it acts on all other elements. This construction is done by summing the Lie series with the Baker-Campbell-Hausdorf formula

$$
\begin{equation*}
e^{-\varepsilon X} Y e^{\varepsilon X}=Y-\varepsilon[X, Y]+\frac{\varepsilon^{2}}{2!}[X,[X, Y]]-\frac{\varepsilon^{3}}{3!}[X,[X,[X, Y]]]+\cdots \tag{35}
\end{equation*}
$$

5 Reductions

Let us give a few examples of such reductions.

5.1 Reductions, generic case $g \tau v_{g} \neq 0$ (10 generators)

The most general generator (the coefficients a_{k} denote complex constants)

$$
\begin{align*}
& a_{x} T_{x}+a_{y} T_{y}+a_{z} T_{z}+a_{t} T_{t}+a_{1} \Theta+a_{2} E_{x}+a_{3} E_{y}+a_{4} B_{4}+a_{6} B_{6}+a_{0} A \\
& =\left[a_{2} z-a_{1} y+a_{x}\right] \partial_{x}+\left[a_{3} z+a_{1} x+a_{y}\right] \partial_{y}+a_{z} \partial_{z}+a_{t} \partial_{t} \\
& +E_{1}\left(u_{1} \partial_{u_{1}}-u_{2} \partial_{u_{2}}\right)+E_{2}\left(-u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}\right)+E_{3}\left(2 u_{5} \partial_{u_{5}}-2 u_{6} \partial_{u_{6}}\right) \tag{36}
\end{align*}
$$

in which

$$
\begin{align*}
& E_{1}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+a_{0}\left(v_{g} z-t\right)+a_{4}, \\
& E_{2}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+a_{0}\left(v_{g} z+t\right)-a_{4}, \\
& E_{3}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+a_{0} v_{g} z, \tag{37}
\end{align*}
$$

defines the first order characteristic system

$$
\begin{align*}
& \frac{\mathrm{d} x}{a_{2} z-a_{1} y+a_{x}}=\frac{\mathrm{d} y}{a_{3} z+a_{1} x+a_{y}}=\frac{\mathrm{d} z}{a_{z}}=\frac{\mathrm{d} t}{a_{t}} \\
& =\frac{\mathrm{d} u_{1}}{E_{1} u_{1}}=-\frac{\mathrm{d} u_{2}}{E_{1} u_{2}}=-\frac{\mathrm{d} u_{3}}{E_{2} u_{3}}=\frac{\mathrm{d} u_{4}}{E_{2} u_{4}}=\frac{\mathrm{d} u_{5}}{2 E_{3} u_{5}}=-\frac{\mathrm{d} u_{6}}{2 E_{3} u_{6}} \tag{38}
\end{align*}
$$

The three equations in the first line of (38) can be integrated and define three invariants only depending on x, y, z, t. When $a_{1} a_{z}$ is nonzero, these are $\left[\left(\xi_{1}, \xi_{2}\right)\right.$ are chosen so evaluate to (x, y) when $a_{2}=a_{3}=a_{x}=a_{y}=0$ and $z=0$,
$a_{1} a_{z} \neq 0:\left\{\begin{array}{l}\xi_{1}=\frac{1}{a_{1}^{2}}\left\{+\left[a_{1}\left(a_{3} z+a_{1} x+a_{y}\right)-a_{2} a_{z}\right] \cos \frac{a_{1} z}{a_{z}}-\left[a_{1}\left(a_{2} z-a_{1} y+a_{x}\right)+a_{3} a_{z}\right] \sin \frac{a_{1} z}{a_{z}}\right\}, \\ \xi_{2}=\frac{1}{a_{1}^{2}}\left\{-\left[a_{1}\left(a_{3} z+a_{1} x+a_{y}\right)-a_{2} a_{z}\right] \sin \frac{a_{1} z}{a_{z}}-\left[a_{1}\left(a_{2} z-a_{1} y+a_{x}\right)+a_{3} a_{z}\right] \cos \frac{a_{1} z}{a_{z}}\right\}, \\ \xi_{3}=a_{z} t-a_{t} z .\end{array}\right.$
When one sets $a_{0}=a_{4}=0$, six other invariants can be found. Indeed, the three expressions E_{1}, E_{2}, E_{3} are then equal and the characteristic system (38) implies

$$
\begin{equation*}
a_{1} \frac{\mathrm{~d} u_{1}}{u_{1}}-i k_{0} \mathrm{~d}\left(-a_{3} x+a_{2} y\right)=\left[a_{1} a_{6}-i k_{0}\left(-a_{3} a_{x}+a_{2} a_{y}\right)\right] \frac{\mathrm{d} z}{a_{z}} \tag{40}
\end{equation*}
$$

The corresponding reduction

$$
a_{1} a_{z} \neq 0, a_{0}=a_{4}=0:\left\{\begin{array}{l}
U_{1}=V_{1}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) e^{i k_{0} F}, U_{2}=V_{2}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) e^{-i k_{0} F} \tag{41}\\
Q=W\left(\xi_{1}, \xi_{2}, \xi_{3}\right) e^{2 i k_{0} F}, F=\frac{-a_{3} x+a_{2} y}{a_{1}}-\frac{a_{2}^{2}+a_{3}^{3}}{2 a_{1}^{2}} z
\end{array}\right.
$$

yields the reduced system,

$$
a_{1} a_{z} \neq 0:\left\{\begin{array}{c}
i\left(-a_{t}+a_{z} v_{g}\right) V_{1, \xi_{3}}+\frac{V_{1, \xi_{1} \xi_{1}}+V_{1, \xi_{2} \xi_{2}}}{2 k_{0}}+\frac{a_{1}}{a_{z}}\left(\xi_{2} V_{1, \xi_{1}}-\xi_{1} V_{1, \xi_{2}}\right) \tag{42}\\
+b\left(\left|V_{1}\right|^{2}+2\left|V_{2}\right|^{2}\right) V_{1}+i \frac{g}{2} W V_{2}=0 \\
-i\left(-a_{t}-a_{z} v_{g}\right) V_{2, \xi_{3}}+\frac{V_{2, \xi_{1} \xi_{1}}+V_{2, \xi_{2} \xi_{2}}}{2 k_{0}}+\frac{a_{1}}{a_{z}}\left(\xi_{2} V_{2, \xi_{1}}-\xi_{1} V_{2, \xi_{2}}\right) \\
+b\left(\left|V_{2}\right|^{2}+2\left|V_{1}\right|^{2}\right) V_{2}-i \frac{g}{2} \bar{W} V_{1}=0 \\
a_{z} \tau W_{\xi_{3}}+W-V_{1} \bar{V}_{2}=0
\end{array}\right.
$$

Another reduction is obtained by choosing the constants in (38) as follows,

$$
\begin{equation*}
\frac{a_{z}}{a_{1}}=\frac{a_{x}}{a_{3}}=\frac{a_{y}}{a_{2}}, a_{x}^{2}=a_{y}^{2} \tag{43}
\end{equation*}
$$

This reduction is defined by

$$
\left\{\begin{array}{l}
U_{1}=V_{1}(\xi, z, t) e^{i k_{0} F}, U_{2}=V_{2}(\xi, z, t) e^{-i k_{0} F}, Q=W(\xi, z, t) e^{2 i k_{0} F} \tag{44}\\
\xi=\frac{a_{1}}{2}\left(x^{2}+y^{2}\right)+\left(a_{3} x-a_{2} y\right) z, F=\frac{-a_{3} x+a_{2} y}{a_{1}}
\end{array}\right.
$$

and the reduced system

$$
\left\{\begin{array}{l}
i\left(V_{1, z}+v_{g} V_{1, t}\right)+\left(2 a_{1} \xi+A^{2} z^{2}\right) \frac{V_{1, \xi \xi}}{2 k_{0}}+\left(\frac{a_{1}^{2}}{k_{0}}-i k_{0} \frac{A^{2}}{a_{1}} z\right) V_{1, \xi}-\frac{A^{2} k_{0}}{2 a_{1}^{2}} V_{1}+b\left(\left|V_{1}\right|^{2}+2\left|V_{2}\right|^{2}\right) V_{1}+i \frac{g}{2} W V_{2}=0 \\
-i\left(V_{2, z}-v_{g} V_{2, t}\right)+\left(2 a_{1} \xi+A^{2} z^{2}\right) \frac{V_{2, \xi \xi}}{2 k_{0}}+\left(\frac{a_{1}^{2}}{k_{0}}+i k_{0} \frac{A^{2}}{a_{1}} z\right) V_{2, \xi}-\frac{A^{2} k_{0}}{2 a_{1}^{2}} V_{2}+b\left(\left|V_{2}\right|^{2}+2\left|V_{1}\right|^{2}\right) V_{2}-i \frac{g}{2} \bar{W} V_{1}=(45) \\
\tau W_{t}+W-V_{1} \bar{V}_{2}=0
\end{array}\right.
$$

depends on one more arbitrary constant, $A^{2}=a_{2}^{2}+a_{3}^{2}$, since a_{1} can be set to any nonzero numerical value. When $A=0$ (i.e. $a_{2}=a_{3}=0$), this reduction is identical to the radial reduction $\partial_{\theta}=0$ in polar coordinates

$$
\begin{equation*}
x=\rho \cos \theta, y=\rho \sin \theta \tag{46}
\end{equation*}
$$

5.2 Nongeneric case $v_{g}=0, g \tau \neq 0$ (11 generators)

$$
\begin{align*}
& a_{x} T_{x}+a_{y} T_{y}+a_{z} T_{z}+a_{t} T_{t}+a_{1} \Theta+a_{2} E_{x}+a_{3} E_{y}+a_{6} B_{6}+b_{4} F(t) B_{4}+c_{6} V_{6}+d_{6} W_{6} \\
& =\left[a_{2} z-a_{1} y+a_{x}+c_{6} x+d_{6} z x\right] \partial_{x}+\left[a_{3} z+a_{1} x+a_{y}+c_{6} y+d_{6} z y\right] \partial_{y}+\left[a_{z}+2 c_{6} z+d_{6} z^{2}\right] \partial_{z}+a_{t} \partial_{t} \\
& +E_{1}\left(u_{1} \partial_{u_{1}}-u_{2} \partial_{u_{2}}\right)+E_{2}\left(-u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}\right)+E_{3}\left(2 u_{5} \partial_{u_{5}}-2 u_{6} \partial_{u_{6}}\right) \\
& +\left(c_{6}+d_{6} z\right)\left(u_{1} \partial_{u_{1}}+u_{2} \partial_{u_{2}}+u_{3} \partial_{u_{3}}+u_{4} \partial_{u_{4}}+2 u_{5} \partial_{u_{5}}+2 u_{6} \partial_{u_{6}}\right) \tag{47}
\end{align*}
$$

in which

$$
\begin{align*}
& E_{1}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+d_{6} i k_{0}\left(x^{2}+y^{2}\right) / 2+b_{4} F(t) \\
& E_{2}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+d_{6} i k_{0}\left(x^{2}+y^{2}\right) / 2-b_{4} F(t) \\
& E_{3}=i k_{0}\left(a_{2} x+a_{3} y\right)+a_{6}+d_{6} i k_{0}\left(x^{2}+y^{2}\right) / 2 \tag{48}
\end{align*}
$$

defines the first order characteristic system

$$
\begin{align*}
& \frac{\mathrm{d} x}{a_{2} z-a_{1} y+a_{x}+c_{6} x+d_{6} z x}=\frac{\mathrm{d} y}{a_{3} z+a_{1} x+a_{y}+c_{6} y+d_{6} z y}=\frac{\mathrm{d} z}{a_{z}+2 c_{6} z+d_{6} z^{2}}=\frac{\mathrm{d} t}{a_{t}} \\
& =\frac{\mathrm{d} u_{1}}{\left(E_{1}+c_{6}+d_{6} z\right) u_{1}}=\frac{\mathrm{d} u_{2}}{\left(-E_{1}+c_{6}+d_{6} z\right) u_{2}}=\frac{\mathrm{d} u_{3}}{\left(-E_{2}+c_{6}+d_{6} z\right) u_{3}}=\frac{\mathrm{d} u_{4}}{\left(E_{2}+c_{6}+d_{6} z\right) u_{4}} \\
& =\frac{\mathrm{d} u_{5}}{2\left(E_{3}+c_{6}+d_{6} z\right) u_{5}}=\frac{\mathrm{d} u_{6}}{-2\left(E_{3}+c_{6}+d_{6} z\right) u_{6}} \tag{49}
\end{align*}
$$

If one requires the sought after reduction to be noncharacteristic (i.e. to preserve the total differential order ten), it is quite difficult to find such a reduction.

Table 1: 466. Commutator table for the Lie algebras (29) and (30). Example: $\left[T_{x}, \Theta\right]=T_{y}$. The 10-dim Lie algebra (29) is recovered by suppressing the two lines and columns labelled V_{6} and W_{6} and setting $F(t)=1$. For the 11-dim Lie algebra (30), suppress the line and column labelled A.

	A	Θ	T_{z}	T_{t}	T_{x}	T_{y}	E_{x}	E_{y}	B_{6}	$F(t) B_{4}$	V_{6}	W_{6}
A	0	0	$-v_{g} B_{6}$	B_{4}	0	0	0	0	0	0	$\mathrm{~N} / \mathrm{A}$	N / A
T_{z}	0	0	0	0	$-T_{y}$	T_{x}	$-E_{y}$	E_{x}	0	0	0	0
T_{t}	$v_{g} B_{6}$	0	0	0	0	0	T_{x}	T_{y}	0		$2 T_{z}$	V_{6}
T_{x}	0	B_{4}	0	0	0	0	0	0	0	0	$F^{\prime}(t) B_{4}$	0
T_{y}	0	$-T_{x}$	0	0	0	0	0	$i k_{0} B_{6}$	0	0	T_{y}	E_{y}
E_{x}	0	E_{y}	$-T_{x}$	0	$-i k_{0} B_{6}$	0	0	0	0	0	$-E_{x}$	0
E_{y}	0	$-E_{x}$	$-T_{y}$	0	0	$-i k_{0} B_{6}$	0	0	0	0	$-E_{y}$	0
B_{6}	0	0	0	0	0	0	0	0	0	0	0	0
$F(t) B_{4}$	0	0	0	$-F^{\prime}(t) B_{4}$	0	0	0	0	0	0	0	0
V_{6}	$\mathrm{~N} / \mathrm{A}$	0	$-2 T_{z}$	0	$-T_{x}$	$-T_{y}$	E_{x}	E_{y}	0	0	0	$2 W_{6}$
W_{6}	$\mathrm{~N} / \mathrm{A}$	0	$-V_{6}$	0	$-E_{x}$	$-E_{y}$	0	0	0	0	$-2 W_{6}$	0

Table 2: 444. Commutator table for the Lie algebra (32). The abbreviation $E_{n}^{ \pm}$is defined in (34).

	T_{x}	T_{y}	T_{z}	T_{t}	Θ	$F_{1} B_{1}$	$F_{2} B_{2}$	e_{x}	e_{y}	V_{4}	G_{x}	G_{y}	H_{x}	H_{y}
T_{x}	0	0	0	0	T_{y}	0	0	$i k_{0}\left(B_{1}-B_{2}\right)$	0	T_{x}	$i k_{0} v_{g}\left(B_{1}+B_{2}\right)$	0	$\left[T_{x}, H_{x}\right]$	0
T_{y}	0	0	0	0	$-T_{x}$	0	0	0	$\left[T_{x}, e_{x}\right]$	T_{y}	0	$\left[T_{x}, G_{x}\right]$	0	[$\left.T_{x}, H_{x}\right]$
T_{z}	0	0	0	0	0	$-v_{g} B_{1}$	$-v_{g} B_{2}$	T_{x}	T_{y}	$2 T_{z}$	0	0	$v_{g}^{2} e_{x}$	$v_{g}^{2} e_{y}$
T_{t}	0	0	0	0	0	$F_{1}^{\prime} B_{1}$	$F_{2}^{\prime} B_{2}$	0	0	$2 T_{t}$	T_{x}	T_{y}	$-G_{x}$	$-G_{y}$
Θ	$-T_{y}$	T_{x}	0	0	0	$F_{1} B_{1}$	$F_{2} B_{2}$	$-e_{y}$	e_{x}	0	$-G_{y}$	G_{x}	$-H_{y}$	H_{x}
$F_{1} B_{1}$	0	0	$v_{g} B_{1}$	$-F_{1}^{\prime} B_{1}$	$-F_{1} B_{1}$	0	0	0	0	$-2 F_{1}^{\prime} B_{1}$	0	0	0	0
$F_{2} B_{2}$	0	0	$v_{g} B_{2}$	$-F_{2}^{\prime} B_{2}$	$-F_{2} B_{2}$	0	0	0	0	$-2 F_{2}^{\prime} B_{2}$	0	0	0	0
e_{x}	$-i k_{0}\left(B_{1}-B_{2}\right)$	0	$-T_{x}$	0	e_{y}	0	0	0	0	$-e_{x}$	$\left[e_{x}, G_{x}\right]$	0	$\left[e_{x}, H_{x}\right]$	0
e_{y}	0	$-\left[T_{x}, e_{x}\right]$	$-T_{y}$	0	$-e_{x}$	0	0	0	0	$-e_{y}$	0	$\left[e_{x}, G_{x}\right]$	0	$\left[e_{x}, H_{x}\right]$
V_{4}	$-T_{x}$	$-T_{y}$	$-2 T_{z}$	$-2 T_{t}$	0	$2 F_{1}^{\prime} B_{1}$	$2 F_{2}^{\prime} B_{2}$	e_{x}	e_{y}	0	G_{x}	G_{y}	$3 H_{x}$	$3 H_{y}$
G_{x}	$-i k_{0} v_{g}\left(B_{1}+B_{2}\right)$	0	0	$-T_{x}$	G_{y}	0	0	$-\left[e_{x}, G_{x}\right]$	0	$-G_{x}$	0	0	$\left[G_{x}, H_{x}\right]$	0
G_{y}	0	$-\left[T_{x}, G_{x}\right]$	0	$-T_{y}$	$-G_{x}$	0	0	0	$-\left[e_{x}, G_{x}\right]$	$-G_{y}$	0	0	0	$\left[G_{x}, H_{x}\right]$
H_{x}	$-\left[T_{x}, H_{x}\right]$	0	$-v_{g}^{2} e_{x}$	G_{x}	H_{y}	0	0	$-\left[e_{x}, H_{x}\right]$	0	$-3 H_{x}$	$-\left[G_{x}, H_{x}\right]$	0	0	0
H_{y}	0	$-\left[T_{x}, H_{x}\right]$	$-v_{g}^{2} e_{y}$	G_{y}	$-H_{x}$	0	0	0	$-\left[e_{x}, H_{x}\right]$	$-3 H_{y}$	0	$-\left[G_{x}, H_{x}\right]$	0	0

$$
\begin{align*}
& {\left[e_{x}, G_{x}\right]=-E_{1}^{-},} \\
& {\left[T_{x}, H_{x}\right]=-v_{g} E_{1}^{+},} \\
& {\left[e_{x}, H_{x}\right]=E_{2}^{-} / 2,} \tag{50}\\
& {\left[G_{x}, H_{x}\right]=-v_{g} E_{2}^{+} / 2,} \\
& {\left[T_{x}, G_{x}\right]=v_{g} E_{0}^{+},} \\
& {\left[T_{x}, e_{x}\right]=E_{0}^{-},}
\end{align*}
$$

Table 3: 344. Commutator table for the Lie algebra (33).

	T_{x}	T_{y}	T_{z}	Θ	B_{1}	B_{2}	e_{x}	e_{y}	V_{3}	W_{4}
T_{x}	0	0	0	T_{y}	0	0	$i k_{0}\left(B_{1}-B_{2}\right)$	0	T_{x}	e_{x}
T_{y}	0	0	0	$-T_{x}$	0	0	0	$i k_{0}\left(B_{1}-B_{2}\right)$	T_{y}	e_{y}
T_{z}	0	0	0	0	0	0	T_{x}	T_{y}	$2 T_{z}$	V_{3}
Θ	$-T_{y}$	T_{x}	0	0	0	0	$-e_{y}$	e_{x}	0	0
B_{1}	0	0	0	0	0	0	0	0	0	0
B_{2}	0	0	0	0	0	0	0	0	0	0
e_{x}	$-i k_{0}\left(B_{1}-B_{2}\right)$	0	$-T_{x}$	e_{y}	0	0	0	0	$-e_{x}$	0
e_{y}	0	$-i k_{0}\left(B_{1}-B_{2}\right)$	$-T_{y}$	$-e_{x}$	0	0	0	0	$-e_{y}$	0
V_{3}	$-T_{x}$	$-T_{y}$	$-2 T_{z}$	0	0	0	e_{x}	e_{y}	0	$2 W_{4}$
W_{4}	$-e_{x}$	$-e_{y}$	$-V_{3}$	0	0	0	0	0	$-2 W_{4}$	0

Table 4: 466. Adjoint table for the Lie algebras (29) and (30), with the same convention than in Table T. The entry (i, j) represents $\operatorname{Ad}\left(e^{\varepsilon v_{i}}\right) \mid v_{j}$. When it evaluates to v_{j}, it is simply represented by a dot (.) symbol. The abbreviations c and s stand for $\cos \varepsilon$ and $\sin \varepsilon$. Large expressions (i, j) are listed just after the table. N/A means not applicable.

	A	Θ	T_{z}	T_{t}	T_{x}	T_{y}	E_{x}	E_{y}	B_{6}	$F(t) B_{4}$	V_{6}	W_{6}
A	.	.	$T_{z}+\varepsilon v_{g} B_{6}$	$T_{t}-\varepsilon B_{4}$.	.		.	N/A	N/A
Θ	.	.	.		$T_{x} c+T_{y} s$	$T_{y} c-T_{x} s$	$E_{x} c+E_{y} s$	$E_{y} c-E_{x} s$
T_{z}	$A-\varepsilon v_{g} B_{6}$		$E_{x}-\varepsilon T_{x}$	$E_{y}-\varepsilon T_{y}$.	.	$V_{6}-2 \varepsilon T_{z}$	$\left(T_{z}, W_{6}\right)$
T_{t}	(T_{t}, A)		$F B_{4} e^{-\varepsilon F^{\prime} / F}$.	
T_{x}	.	$\Theta-\varepsilon T_{y}$	$E_{x}-\varepsilon i k_{0} B_{6}$.	.	.	$V_{6}-\varepsilon T_{x}$	$\left(T_{x}, W_{6}\right)$
T_{y}	.	$\Theta+\varepsilon T_{x}$.		.	$E_{y}-\varepsilon i k_{0} B_{6}$.	.	$V_{6}-\varepsilon T_{y}$	$\left(T_{y}, W_{6}\right)$
E_{x}		$\Theta-\varepsilon E_{y}$	$T_{z}+T_{x} \varepsilon+\varepsilon^{2} i k_{0} B_{6} / 2$		$T_{x}+\varepsilon i k_{0} B_{6}$		$V_{6}+\varepsilon E_{x}$.
E_{y}	.	$\Theta+\varepsilon E_{x}$	$T_{z}+T_{y} \varepsilon+\varepsilon^{2} i k_{0} B_{6} / 2$.	$T_{y}+\varepsilon i k_{0} B_{6}$	$V_{6}+\varepsilon E_{y}$.
B_{6}
$F(t) B_{4}$.	.	.	$T_{t}+\varepsilon B_{4} F^{\prime}$
V_{6}	N/A	.	$T_{z} e^{2 \varepsilon}$		$T_{x} e^{\varepsilon}$	$T_{y} e^{\varepsilon}$	$E_{x} e^{-\varepsilon}$	$E_{y} e^{-\varepsilon}$.	.	.	$W_{6} e^{-2 \varepsilon}$
W_{6}	N/A	.	$T_{z}+\varepsilon V_{6}+\varepsilon^{2} W_{6}$		$T_{x}+\varepsilon E_{x}$	$T_{y}+\varepsilon E_{y}$.	.	-		$V_{6}+2 \varepsilon W_{6}$	

$$
\begin{align*}
& \left(T_{t}, A\right)=A+B_{4}\left(1-\left(F / F^{\prime}\right) e^{-\varepsilon F^{\prime} / F}\right) \\
& \left(T_{x}, W_{6}\right)=W_{6}-\varepsilon E_{x}+\varepsilon^{2} i k_{0} B_{6} / 2 \tag{51}\\
& \left(T_{y}, W_{6}\right)=W_{6}-\varepsilon E_{y}+\varepsilon^{2} i k_{0} B_{6} / 2 \\
& \left(T_{z}, W_{6}\right)=W_{6}-\varepsilon V_{6}+\varepsilon^{2} T_{z}
\end{align*}
$$

Table 5: 444. Adjoint table for the Lie algebra (32). The notation and convention are the same as in Table 4 . The abbreviation $E_{n}^{ \pm}$is defined in (34).

$$
\begin{align*}
& \left(T_{z}, H_{x}\right)=H_{x}-\varepsilon v_{g}^{2} e_{x}+\varepsilon^{2} v_{g}^{2} T_{x} / 2, \\
& \left(T_{z}, H_{y}\right)=H_{y}-\varepsilon v_{g}^{2} e_{y}+\varepsilon^{2} v_{g}^{2} T_{y} / 2, \\
& \left(T_{t}, H_{x}\right)=H_{x}+\varepsilon G_{x}-\varepsilon^{2} T_{x} / 2, \\
& \left(T_{t}, H_{y}\right)=H_{y}+\varepsilon G_{y}-\varepsilon^{2} T_{y} / 2, \\
& \left(e_{x}, T_{z}\right)=T_{z}+\varepsilon T_{x}+\varepsilon^{2} E_{0}^{-} / 2, \\
& \left(e_{y}, T_{z}\right)=T_{z}+\varepsilon T_{y}+\varepsilon^{2} E_{0}^{-} / 2, \\
& \left(H_{x}, T_{z}\right)=T_{z}+\varepsilon v_{g}^{2} e_{x}+\varepsilon^{2} v_{g}^{2} E_{2}^{-} / 4, \tag{52}\\
& \left(H_{y}, T_{z}\right)=T_{z}+\varepsilon v_{g}^{2} e_{y}+\varepsilon^{2} v_{g}^{2} E_{2}^{-} / 4, \\
& \left(G_{x}, T_{t}\right)=T_{t}+\varepsilon T_{x}+\varepsilon^{2} v_{g} E_{0}^{+} / 2, \\
& \left(G_{y}, T_{t}\right)=T_{t}+\varepsilon T_{y}+\varepsilon^{2} v_{g} E_{0}^{+} / 2, \\
& \left(H_{x}, T_{t}\right)=T_{t}-\varepsilon G_{x}+\varepsilon^{2} v_{g}^{2} E_{2}^{+} / 4, \\
& \left(H_{y}, T_{t}\right)=T_{t}-\varepsilon G_{y}-\varepsilon^{2} v_{g}^{2} E_{2}^{+} / 4 .
\end{align*}
$$

Table 6: 344. Adjoint table for the Lie algebra (33). The notation and convention are the same as in Table 4, $F_{0}^{ \pm}=i k_{0}\left[B_{1} \pm B_{2}\right]$.

6 Conclusion

We have unveiled both the singularity structure and the underlying symmetries of a nonlinear optics system which has great potential applications. However, this analytic structure is too intricate to allow us to derive close form solutions. Since the original nonlinear system results from a reductive perturbation method, maybe another physical assumption during its derivation could make it tractable by the analytic techniques investigated here.

Acknowledgments

Both authors are happy to acknowledge the generous support of the Centro internacional de Ciencias in Cuernavaca. RC is grateful to Universidad de Cádiz for his visit, and thanks the organizers of the Workshop on laser-matter interaction (WLMI, Porquerolles, 2012) for their invitation.

References

[1] G.P. Agrawal, Nonlinear fiber optics, 3rd edition (Academic press, Boston, 2001).
[2] R. Conte and M. Musette, Analytic expressions of hydrothermal waves, Reports on mathematical physics 46 (2000) 77-88. http://arXiv.org/abs/nlin.SI/0009022
[3] R. Conte and M. Musette, The Painlevé handbook (Springer, Berlin, 2008). Russian translation Metod Penleve y ego prilozhenia (Regular and chaotic dynamics, Moscow, 2011).
[4] A. P. Fordy and P. P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras, Commun. Math. Phys. 89 427-443 (1983).
[5] É. Goursat, Cours d'analyse mathématique (Gauthier-Villars, Paris, 1924). 1949 (septième édition), 1956. English : A course in mathematical analysis vol. I (Ginn and co., Boston, 1904), reprinted (Dover, New York, 1956).
[6] N.H. Ibragimov (ed.), CRC Handbook of Lie group analysis of differential equations, volumes 1, 2 and 3 (CRC Press, Boca Raton, 1994).
[7] V. Z. Khukhunashvili, Integrability of a system of two nonlinear Schrödinger equations, Teoreticheskaya i Matematicheskaya Fizika 79 (1989) 180-184 [English : Theor. and Math. Phys. 79 (1989) 467-469].
[8] S. Mauger, L. Bergé and S. Skupin, Controlling the stimulated Brillouin scattering of selffocusing nanosecond laser pulses in silica glasses, Phys. Rev. A 83 (2011) 063829 (14 pp).
[9] S. Moyo, S.V. Meleshko and G.F. Oguis, Complete group classification of systems of two linear second-order ordinary differential equations, Commun. nonlinear sci. numer. simul. 18 (2013) 2972-2983
[10] P.J. Olver, Applications of Lie groups to differential equations (Springer, Berlin, 1986).
[11] L.V. Ovsiannikov, Group properties of differential equations, (Siberian section of the Academy of Sciences of the USSR, Novosibirsk, 1962) in Russian. Translated by G.W. Bluman (1967), Group analysis of differential equations (Academic press, New York, 1982).
[12] J. Weiss, M. Tabor and G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983) 522-526.

[^0]: * Corresponding author.

