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Abstract

In order to describe the coupling between the Kerr nonlinearity and the stimulated Brillouin

scattering, Mauger et al. recently proposed a system of partial differential equations in three

complex amplitudes. We perform here its analytic study by two methods. The first method is

to investigate the structure of singularities, in order to possibly find closed form singlevalued

solutions obeying this structure. The second method is to look at the infinitesimal symmetries

of the system in order to build reductions to a lesser number of independent variables. Our

overall conclusion is that the structure of singularities is too intricate to obtain closed form

solutions by the usual methods. One of our results is the proof of the nonexistence of traveling

waves.

Keywords : Stimulated Brillouin scattering, Painlevé test, exact solutions, Lie symmetries, reduc-
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1 The coupled Kerr-SBS system

The coupling between Kerr effect and stimulated Brillouin scattering [1] can be described by three
complex partial differential equations (PDE) in three complex amplitudes U1, U2, Q depending on
four independent variables x, y, t, z [8, Eqs. (7)–(9)]



















i(U1,z + vgU1,t) +
U1,xx + U1,yy

2k0
+ b

(

|U1|2 + 2|U2|2
)

U1 + i
g

2
QU2 = 0,

−i(U2,z − vgU2,t) +
U2,xx + U2,yy

2k0
+ b

(

|U2|2 + 2|U1|2
)

U2 − i
g

2
QU1 = 0,

τQt +Q− U1U2 = 0,

(1)

in which vg, k0, b, g, τ are real constants. We adopt the notation of nonlinear optics, in which the
time t and the longitudinal coordinate z are exchanged as compared to mathematical physics.

Although we will focus on the generic case gτ 6= 0, we will also consider the two nongeneric
cases gτ = 0, for which the system is only four-dimensional,

gτ = 0 :











i(U1,z + vgU1,t) +
U1,xx + U1,yy

2k0
+
(

b|U1|2 +
(

2b+ i
g

2

)

|U2|2
)

U1 = 0,

−i(U2,z − vgU2,t) +
U2,xx + U2,yy

2k0
+
(

b|U2|2 +
(

2b− i
g

2

)

|U1|2
)

U2 = 0.
(2)

At present time, no solution is known to the generic system (1) (vgbgτ 6= 0). The goal of this
work is to look for possible closed form solutions by two methods: singularity analysis, infinitesimal
symmetries.

A prerequisite to the search of closed form solutions is to investigate the singularity structure
of the system, this is done in section 2, and this results in a triangular system of five PDEs to be
obeyed in order for a closed form solution to exist.

In section 3, we look for the simplest class of possible closed form solutions, in which U1, U2, Q
could have shock profiles. We find that, at least for the radial reduction (Uj , Q) = f(x2 + y2, z, t),
such a solution does not exist.

In section 4, we apply the classical Lie method, derive the Lie algebra, compute the commutator
table and the adjoint table [10].

Finally, in section 5, we define a few reductions to a lesser number of independent variables.

2 Singularity analysis

There exists only one limiting case in which the system (1) is integrable, this is its degeneracy
to the nonlinear Schrödinger equation U1 = U2, g = 0, ∂z = 0, c1∂x + c2∂y = 0, (c1, c2) 6= (0, 0).
Let us prove that, except for this limiting case, the system (1) is always nonintegrable, in the
sense that it always admits a multivalued behaviour around a singularity which depends on the
initial conditions (i.e. what is called a movable singularity). It is convenient to denote the list of
dependent variables (U1, U1, U2, U2, Q,Q) as the six-dimensional vector u.

A necessary condition for the system (1) to display a singlevalued behaviour of the general
solution around any movable singularity (i.e. what is known as the Painlevé property [3]) is that
all possible Laurent series locally representing the general solution near a movable singular manifold
ϕ(x, y, z, t)− ϕ0 = 0,

u =

+∞
∑

j=0

ujχ
j+p, (3)

indeed exist. In the above series, the expansion variable χ vanishes when ϕ(x, y, z, t) − ϕ0 → 0.
This classical but technical computation [3] generates several necessary conditions, the main ones
being the following.

1. At least one of the six components of the leading power p must not be a positive integer (so
that χ = 0 is indeed a singularity).
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2. The Fuchs indices of the linearized system near the solution (3) must all be integer (whatever
be their sign).

3. For any Fuchs index j ≥ 1, the (affine) recurrence relation for uj must admit a solution,
i.e. no logarithms are allowed to enter the expansion, and this requires some conditions
(no-logarithm conditions, in short no-log conditions) to be obeyed.

2.1 Generic case gτ 6= 0

There exists a dominant behaviour in which all six complex fields have simple poles (χ is here
chosen as χ = ϕ(x, y, z, t)− ϕ0),















U1 ∼ Meia1χ−1, U1 ∼ Me−ia1χ−1, U2 ∼ Meia2χ−1, U2 ∼ Me−ia2χ−1,
Q ∼ Neia1−ia2χ−1, Q ∼ Neia2−ia1χ−1,

M2 = −
ϕ2
x + ϕ2

y

3k0b
, N =

ϕ2
x + ϕ2

y

3k0bτϕt
, (ϕ2

x + ϕ2
y)ϕt 6= 0.

(4)

and the two phases a1, a2 are arbitrary functions of (x, y, z, t). These two sets of values for the
moduli (M,N) define two families of movable singularities. The Fuchs indices of each family are
equal to

−1, 0, 0, 1, 1, 3, 3, 4,
3

2
+

√
11

2
√
3
,
3

2
−

√
11

2
√
3
, (5)

and the two irrational indices prove the nonintegrability of the system. This however does not yet
rule out possible singlevalued solutions.

Each of the five indices 1, 1, 3, 3, 4 generates one necessary condition for the Laurent series (3)
to exist. If they are all obeyed, the Laurent series depends on the eight arbitrary functions

ϕ, a1, a2, Q1, Q1, U1,3 − U1,3, U2,3 − U2,3, U1,4 + U1,4 + U2,4 + U2,4, (6)

associated to the respective Fuchs indices −1, 0, 0, 1, 1, 3, 3, 4. The five no-log conditions define a
triangular system in the first five functions of this list, whose structure is (P denotes a polynomial
of all its arguments, having degree one in its first argument, Dkf is the set of all derivatives of f
of order k, and Dk:l is a range of such derivatives),























Q1,a ≡ P (D2ϕ,Dϕ) = 0,
Q1,b ≡ P (D(a1 − a2), Dϕ) = 0,
Q3,a ≡ P (D2(a1 + a2), D

3:1ϕ) = 0,
Q3,b ≡ P (D(Q1 +Q1), D

2(a1 − a2), D
3:1ϕ) = 0,

Q4 ≡ P (D2(Q1 −Q1), D(Q1 +Q1), D
3(a1 + a2), D

3(a1 − a2), D
5:1ϕ) = 0.

(7)

Unless these five conditions are all obeyed, no singlevalued particular solution exists, therefore
one must find at least one particular solution of this set of five conditions.

The two necessary conditions at Fuchs index 1 are

Q1,a ≡ 3
(

ϕ2
x + ϕ2

y

)2
(τ−1ϕt − ϕtt) + 6

(

ϕ2
x + ϕ2

y

)

ϕt(ϕxϕxt + ϕyϕyt)

+ ϕ2
t (ϕ

2
x(3ϕxx + ϕyy) + ϕ2

y(3ϕyy + ϕxx) + 4ϕxϕyϕxy) = 0, (8)

Q1,b ≡
[

ϕx∂x + ϕy∂y −
ϕ2
x + ϕ2

y

ϕt
∂t

]

(

a1 − a2 +
gt

3bτ

)

+ 2k0ϕz = 0. (9)

The first condition admits no solution in the class ϕ = Φ(ξ) with ξ = kxx+ ky + kzz + ktt and
kα constants, therefore the generic (gτ 6= 0) Kerr-SBS system (1) admits no singlevalued travelling
wave solution (it does not admit plane waves either), and numerical studies [8] indeed confirm this
result.

This first condition (8) is a quasilinear PDE of the Monge-Ampère type. Therefore, after
switching to polar coordinates,

(x, y) → (ρ, θ) : x = ρ cos θ, y = ρ sin θ, (10)
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one follows the classical procedure of Goursat [5, §24 p. 44, 1st English edition], and performs a
hodograph transformation like

ϕ(ρ, θ, z, t) → T (ϕ, ρ, θ, z). (11)

This maps the two PDEs (8)–(9) to an equivalent system, which is even shorter when written for
T (ϕ,R, θ, z) with T = et/τ , R = ρ2/3,

Q1,a ≡ 9T 2
θ TRTϕϕ + 4R2TRT

2
ϕTRR + 3TRT

2
ϕTθθ − 6T 2

θ TϕTϕR − 12TθTRTϕTϕθ + 6TθT
2
ϕTRθ = 0,(12)

Q1,b ≡ bT

[

6TR∂R +
27

2R2

(

Tθ∂θ −
T 2
θ

Tϕ
∂ϕ

)]

(a1 − a2) + 2gT 2
R + 27bk0RTTz = 0. (13)

Any solution is acceptable provided it fulfills the condition

(R2T 2
R + T 2

θ )Tϕ 6= 0, (14)

inherited from the condition (ϕ2
x + ϕ2

y)ϕt 6= 0, see (4),

ϕ2
x + ϕ2

y =
4

9R3T 2
ϕ

(R2T 2
R + T 2

θ ), ϕt =
T

τTϕ
. (15)

Two particular solutions of Q1,a = 0 are easy to obtain, they are respectively defined by TR = 0
(azimutal reduction) and (Tθ = 0, TRR = 0) (radial reduction), but only the radial reduction allows
one to also integrate Q1,b = 0, thus implicitly defining a particular solution of (8)–(9) in terms of
three arbitrary functions G0, G1, G2 of two variables,

∂θ = 0 : et/τ = G1(ϕ, z)(R+G0(ϕ, z)), a1 − a2 = − g

3b

[

t

τ
−G2(ϕ, z)

]

. (16)

The next condition Q3,a = 0 to be solved in the triangular system (7) is a second order linear
PDE for a1 + a2, and, for the values (16), we could not find at least one solution.

2.2 Case g 6= 0 and τ = 0

When g 6= 0 and τ = 0, the system (2) is made of two coupled complex Ginzburg-Landau equations
in 2+1 dimensions, and, following the analysis made in [2], it admits a dominant behaviour (χ again
denotes ϕ(x, y, z, t)− ϕ0),























U1 ∼ M1e
ia1χ−1+iα, U1 ∼ M1e

−ia1χ−1−iα, U2 ∼ M2e
ia2χ−1+iβ , U2 ∼ M2e

−ia2χ−1−iβ ,

M2
1 =

(4β2 − 2α2 − 4)b− 3βg

12b2 + g2
ϕ2
x + ϕ2

y

k0
, M2

2 =
(4α2 − 2β2 − 4)b+ 3αg

12b2 + g2
ϕ2
x + ϕ2

y

k0
,

b

g
=

β2 − 2

6α− 12β
=

2− α2

6β − 12α
, ϕ2

x + ϕ2
y 6= 0,

(17)

and the two phases a1, a2 are arbitrary functions. This implies the two mutually exclusive possi-
bilities

(α+ β = 0) or (α2 − 3αβ + β2 + 2 = 0). (18)

The first one contains the unphysical reduction U2 = U1, while the second one describes a truly
coupled behaviour. In both cases, just like in [2], the eight Fuchs indices are 1, 0, 0 (respectively
corresponding to the arbitrary functions ϕ0, a1, a2) and five irrational values, therefore there is no
no-log condition to compute.

2.3 Case g = 0

For g = 0, the system (2) is made of two coupled nonlinear Schrödinger equations in 2+1 dimen-
sions, of a type which is nonintegrable [4] but for which some closed form solutions have been found
[7]. The system admits the same simple pole behaviour as (4), for U1, U1, U2, U2

U1 ∼ Meia1χ−1, U1 ∼ Me−ia1χ−1, U2 ∼ Meia2χ−1, U2 ∼ Me−ia2χ−1, M2 = −
ϕ2
x + ϕ2

y

3k0b
· (19)
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The eight Fuchs indices j are then the roots of j(3− j) = −4, 0, 0, 4/3, i.e.

−1, 0, 0, 3, 3, 4, (3+
√
3)/2, (3−

√
3)/2, (20)

and the presence of noninteger indices is sufficient to prove the nonintegrability.
After a computation quite similar to that of section 2.1, we also could not find at least one

particular solution to the set of five no-log conditions.
To conclude this local analysis (of the movable singularities), closed form singlevalued solutions

are not impossible to find, but this will prove quite difficult. Such an investigation is performed in
section 3.

3 Search for radial shock-type solutions, generic case gτ 6= 0

For the radial reduction ∂θ = 0 suggested by the local analysis, see (16), let us look for possible
closed form singlevalued solutions defined by the assumption

u =
1

∑

j=0

ujχ
j−1, χ = ϕ− ϕ0, (21)

i.e.






U1 = Meia1(χ−1 + U1,1), U1 = Me−ia1(χ−1 + U1,1),
U2 = Meia2(χ−1 + U2,1), U2 = Me−ia2(χ−1 + U2,1),
Q = Neia1−ia2(χ−1 +Q1), Q = Neia2−ia1(χ−1 +Q1),

(22)

in which the functions M,N, a1, a2, ϕ must obey the relations (4) and (7), and the functions
U1,1, U2,1, Q1 are to be determined. When one inserts such an assumption into the six equations
of the system (1), which we denote E = 0, one generates a Laurent series which also terminates

E =

−q
∑

j=0

Ejχ
j+q, q = (−3,−3,−3,−3,−2,−2), (23)

and the method is to solve the set of 11 complex equations

∀j : Ej = 0 (24)

for the 11 unknowns M,N, a1, a2, ϕ (real) and U1,1, U2,1, Q1 (complex). This is the famous “one-
family truncation” initiated by Weiss et al. [12], see details in [3]. The result is the following.

The three complex equations j = 0 first provide M,N as in (4), and a1, a2 remain arbitrary
(because j = 0 is a double Fuchs index).

The next three complex equations j = 1 yield the two conditions Q1,a = 0, Q1,b = 0, see (9), a
unique value for U1,1, U2,1, and an arbitrary value for Q1.

At j = 2, one obtains a unique value for Q1, plus four real constraints on ϕ, a1, a2.
Finally, the two complex equations j = 3 yields four more real such constraints, among them

the two no-log conditions Q3,a = 0, Q3,b = 0.
If one now assumes the three complex amplitudes to be independent of the polar coordinate θ,

in order to proceed one has to choose (16). Then one of the four constraints j = 2 yields

a1 + a2 = Rg1(z, t) + g0(z, t), (25)

in which g1 and g0 are arbitrary functions of two variables.
Finally, one of the three remaining constraints at j = 2 yields the condition

g1(z, t)
2 = rational(z;G0(ϕ, z), G1(ϕ, z)),

in which the rhs is a rational function of z with coefficients depending on G0, G1, and the condition
that the rhs be independent of ϕ admits no solution. Therefore a solution described by one family
such as (22) probably does not exist when one waives the restriction ∂θ = 0.

Because of these difficulties, we did not try to find possible pulse solutions described by the
two-family truncation [3, §5.7.2].
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4 Lie symmetries

For convenience, we denote the independent variales x, y, z, t as xj , j = 1, 2, 3, 4 and the dependent
variables U1, U1, U2, U2, Q,Q as uk, k = 1, · · · , 6.

The method of Lie consists in unveiling the invariance properties of a given system of PDEs,
in order to define reductions to another system with a lesser number of independent variables. We
refer the reader to pedagogical textbooks such as [10] [11] [6], and to a recent paper [9] handling
an example in full detail.

In order to apply the classical method to the system (1), we consider the one-parameter Lie
group of infinitesimal transformations

{

x∗

j = xj + εξj(x1, x2, x3, x4, u1, u2, u3, u4, u5, u6),
u∗

k = uk + εηk(x1, x2, x3, x4, u1, u2, u3, u4, u5, u6),
(26)

where ε is the group parameter.
One then requires this transformation to leave invariant the set of solutions of the system (1).

This yields an overdetermined, linear system of equations (called determining equations) for the
infinitesimals ξj , ηk. Having determined the infinitesimals, the symmetry variables are found by
solving the invariant surface condition

Φ ≡
4

∑

j=1

ξj
∂f

∂xj
+

6
∑

k=1

ηk
∂f

∂uk
− ϕ = 0. (27)

The associated Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v = ξ1∂x1
+ ξ2∂x2

+ ξ3∂x3
+ ξ4∂x4

+ η1∂u1
+ η2∂u2

+ η3∂u3
+ η4∂u4

+ η5∂u5
+ η6∂u6

. (28)

In the generic case gτvg 6= 0 (4 independent variables, 6 real dependent variables, 6 real
equations), system (1) leads to a set of 65 determining equations, whose solution defines a Lie
algebra with 10 generators,































Tx = ∂x, Ty = ∂y, Tz = ∂z, Tt = ∂t, Θ = x∂y − y∂x,
Ex = z∂x + ik0xB6,
Ey = z∂y + ik0yB6,
B6 = u1∂u1

− u2∂u2
− u3∂u3

+ u4∂u4
+ 2u5∂u5

− 2u6∂u6
,

B4 = u1∂u1
− u2∂u2

+ u3∂u3
− u4∂u4

,
A = vgzB6 − tB4.

(29)

In the nongeneric case gτ 6= 0, vg = 0, one obtains the 11 generators










Tx, Ty, Tz, Tt, Θ, Ex, Ey , B6, F (t)B4,
V6 = x∂x + y∂y + 2z∂z − (u1∂u1

+ u2∂u2
+ u3∂u3

+ u4∂u4
+ 2u5∂u5

+ 2u6∂u6
),

W6 = zV6 − z2∂z +
ik0
2

(x2 + y2)B6,

(30)

in which F is an arbitrary function of one variable.
The three other nongeneric cases gτ = 0 (i.e. g = 0 or τ = 0 or g = τ = 0) admit the same

set of generators independent of g and τ , and these depend on whether vg 6= 0 or vg = 0. For
gτ = 0, vg 6= 0, introducing the notation

{

B1 = u1∂u1
− u2∂u2

,
B2 = u3∂u3

− u4∂u4
,

(31)

there exist 14 generators






















































Tx, Ty, Tz, Tt, Θ, F1(t− vgz)B1, F2(t+ vgz)B2,
ex = z∂x + ik0x(B1 −B2),
ey = z∂y + ik0y(B1 −B2),
V4 = x∂x + y∂y + 2z∂z + 2t∂t − (u1∂u1

+ u2∂u2
+ u3∂u3

+ u4∂u4
),

Gx = t∂x + ik0vgx(B1 +B2),
Gy = t∂y + ik0vgy(B1 +B2),

Hx =
1

2
(v2gz

2 − t2)∂x + ik0vgx[vgz(B1 −B2)− t(B1 +B2)],

Hy =
1

2
(v2gz

2 − t2)∂y + ik0vgy[vgz(B1 −B2)− t(B1 +B2)],

(32)
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in which F1, F2 are arbitrary functions, while for gτ = 0, vg = 0, there exist only 10 generators











Tx, Ty, Tz, Θ, B1, B2, ex, ey,
V3 = x∂x + y∂y + 2z∂z − (u1∂u1

+ u2∂u2
+ u3∂u3

+ u4∂u4
),

W4 = zV3 − z2∂z +
ik0
2

(x2 + y2)(B1 −B2).

(33)

Let us first define the shorthand notation

E±

n = ik0 [(t− vgz)
nF1(t− vgz)B1 ± (t+ vgz)

nF2(t+ vgz)B2] , n = 0, 1, 2. (34)

For each of the four algebras (29), (30), (32), (33), we have built the commutator tables Table 1
(gathering both (29) and (30)), Table 2, Table 3, and the adjoint tables Table 4 (gathering both
(29) and (30)), Table 5, Table 6, which show the separate adjoint actions of each element in a Lie
algebra, as it acts on all other elements. This construction is done by summing the Lie series with
the Baker-Campbell-Hausdorf formula

e−εXY eεX = Y − ε[X,Y ] +
ε2

2!
[X, [X,Y ]]− ε3

3!
[X, [X, [X,Y ]]] + · · · (35)

5 Reductions

Let us give a few examples of such reductions.

5.1 Reductions, generic case gτvg 6= 0 (10 generators)

The most general generator (the coefficients ak denote complex constants)

axTx + ayTy + azTz + atTt + a1Θ+ a2Ex + a3Ey + a4B4 + a6B6 + a0A

= [a2z − a1y + ax] ∂x + [a3z + a1x+ ay] ∂y + az∂z + at∂t

+E1(u1∂u1
− u2∂u2

) + E2(−u3∂u3
+ u4∂u4

) + E3(2u5∂u5
− 2u6∂u6

), (36)

in which

E1 = ik0(a2x+ a3y) + a6 + a0(vgz − t) + a4,

E2 = ik0(a2x+ a3y) + a6 + a0(vgz + t)− a4,

E3 = ik0(a2x+ a3y) + a6 + a0vgz, (37)

defines the first order characteristic system

dx

a2z − a1y + ax
=

dy

a3z + a1x+ ay
=

dz

az
=

dt

at

=
du1

E1u1

= − du2

E1u2

= − du3

E2u3

=
du4

E2u4

=
du5

2E3u5

= − du6

2E3u6

. (38)

The three equations in the first line of (38) can be integrated and define three invariants only
depending on x, y, z, t. When a1az is nonzero, these are [(ξ1, ξ2) are chosen so evaluate to (x, y)
when a2 = a3 = ax = ay = 0 and z = 0],

a1az 6= 0 :























ξ1 =
1

a21

{

+[a1(a3z + a1x+ ay)− a2az] cos
a1z

az
− [a1(a2z − a1y + ax) + a3az] sin

a1z

az

}

,

ξ2 =
1

a21

{

−[a1(a3z + a1x+ ay)− a2az] sin
a1z

az
− [a1(a2z − a1y + ax) + a3az] cos

a1z

az

}

,

ξ3 = azt− atz.

(39)

When one sets a0 = a4 = 0, six other invariants can be found. Indeed, the three expressions
E1, E2, E3 are then equal and the characteristic system (38) implies

a1
du1

u1

− ik0d(−a3x+ a2y) = [a1a6 − ik0(−a3ax + a2ay)]
dz

az
. (40)
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The corresponding reduction

a1az 6= 0, a0 = a4 = 0 :







U1 = V1(ξ1, ξ2, ξ3) e
ik0F , U2 = V2(ξ1, ξ2, ξ3) e

−ik0F ,

Q = W (ξ1, ξ2, ξ3) e
2ik0F , F =

−a3x+ a2y

a1
− a22 + a33

2a21
z,

(41)

yields the reduced system,

a1az 6= 0 :











































i(−at + azvg)V1,ξ3 +
V1,ξ1ξ1 + V1,ξ2ξ2

2k0
+

a1
az

(ξ2V1,ξ1 − ξ1V1,ξ2)

+ b
(

|V1|2 + 2|V2|2
)

V1 + i
g

2
WV2 = 0,

−i(−at − azvg)V2,ξ3 +
V2,ξ1ξ1 + V2,ξ2ξ2

2k0
+

a1
az

(ξ2V2,ξ1 − ξ1V2,ξ2)

+ b
(

|V2|2 + 2|V1|2
)

V2 − i
g

2
WV1 = 0,

azτWξ3 +W − V1V 2 = 0.

(42)

Another reduction is obtained by choosing the constants in (38) as follows,

az
a1

=
ax
a3

=
ay
a2

, a2x = a2y. (43)

This reduction is defined by






U1 = V1(ξ, z, t) e
ik0F , U2 = V2(ξ, z, t) e

−ik0F , Q = W (ξ, z, t) e2ik0F ,

ξ =
a1
2
(x2 + y2) + (a3x− a2y)z, F =

−a3x+ a2y

a1
,

(44)

and the reduced system






















i(V1,z + vgV1,t) + (2a1ξ +A2z2)
V1,ξξ

2k0
+ (

a21
k0

− ik0
A2

a1
z)V1,ξ −

A2k0
2a21

V1 + b
(

|V1|2 + 2|V2|2
)

V1 + i
g

2
WV2 = 0,

−i(V2,z − vgV2,t) + (2a1ξ +A2z2)
V2,ξξ

2k0
+ (

a21
k0

+ ik0
A2

a1
z)V2,ξ −

A2k0
2a21

V2 + b
(

|V2|2 + 2|V1|2
)

V2 − i
g

2
WV1 = 0,

τWt +W − V1V 2 = 0,

(45)

depends on one more arbitrary constant, A2 = a22+a23, since a1 can be set to any nonzero numerical
value. When A = 0 (i.e. a2 = a3 = 0), this reduction is identical to the radial reduction ∂θ = 0 in
polar coordinates

x = ρ cos θ, y = ρ sin θ. (46)

5.2 Nongeneric case vg = 0, gτ 6= 0 (11 generators)

axTx + ayTy + azTz + atTt + a1Θ+ a2Ex + a3Ey + a6B6 + b4F (t)B4 + c6V6 + d6W6

= [a2z − a1y + ax + c6x+ d6zx]∂x + [a3z + a1x+ ay + c6y + d6zy]∂y +
[

az + 2c6z + d6z
2
]

∂z + at∂t

+E1(u1∂u1
− u2∂u2

) + E2(−u3∂u3
+ u4∂u4

) + E3(2u5∂u5
− 2u6∂u6

)

+(c6 + d6z)(u1∂u1
+ u2∂u2

+ u3∂u3
+ u4∂u4

+ 2u5∂u5
+ 2u6∂u6

), (47)

in which

E1 = ik0(a2x+ a3y) + a6 + d6ik0(x
2 + y2)/2 + b4F (t),

E2 = ik0(a2x+ a3y) + a6 + d6ik0(x
2 + y2)/2− b4F (t),

E3 = ik0(a2x+ a3y) + a6 + d6ik0(x
2 + y2)/2, (48)

defines the first order characteristic system

dx

a2z − a1y + ax + c6x+ d6zx
=

dy

a3z + a1x+ ay + c6y + d6zy
=

dz

az + 2c6z + d6z2
=

dt

at

=
du1

(E1 + c6 + d6z)u1

=
du2

(−E1 + c6 + d6z)u2

=
du3

(−E2 + c6 + d6z)u3

=
du4

(E2 + c6 + d6z)u4

=
du5

2(E3 + c6 + d6z)u5

=
du6

−2(E3 + c6 + d6z)u6

. (49)
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If one requires the sought after reduction to be noncharacteristic (i.e. to preserve the total
differential order ten), it is quite difficult to find such a reduction.
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Table 1: 466. Commutator table for the Lie algebras (29) and (30). Example: [Tx,Θ] = Ty. The
10-dim Lie algebra (29) is recovered by suppressing the two lines and columns labelled V6 and W6

and setting F (t) = 1. For the 11-dim Lie algebra (30), suppress the line and column labelled A.

A Θ Tz Tt Tx Ty Ex Ey B6 F (t)B4 V6 W6

A 0 0 −vgB6 B4 0 0 0 0 0 0 N/A N/A

Θ 0 0 0 0 −Ty Tx −Ey Ex 0 0 0 0

Tz vgB6 0 0 0 0 0 Tx Ty 0 2Tz V6

Tt −B4 0 0 0 0 0 0 0 0 F ′(t)B4 0 0

Tx 0 Ty 0 0 0 0 ik0B6 0 0 0 Tx Ex

Ty 0 −Tx 0 0 0 0 0 ik0B6 0 0 Ty Ey

Ex 0 Ey −Tx 0 −ik0B6 0 0 0 0 0 −Ex 0

Ey 0 −Ex −Ty 0 0 −ik0B6 0 0 0 0 −Ey 0

B6 0 0 0 0 0 0 0 0 0 0 0 0

F (t)B4 0 0 0 −F ′(t)B4 0 0 0 0 0 0 0 0

V6 N/A 0 −2Tz 0 −Tx −Ty Ex Ey 0 0 0 2W6

W6 N/A 0 −V6 0 −Ex −Ey 0 0 0 0 −2W6 0
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Table 2: 444. Commutator table for the Lie algebra (32). The abbreviation E±
n is defined in (34).

Tx Ty Tz Tt Θ F1B1 F2B2 ex ey V4 Gx Gy Hx Hy

Tx 0 0 0 0 Ty 0 0 ik0(B1 − B2) 0 Tx ik0vg(B1 +B2) 0 [Tx,Hx] 0

Ty 0 0 0 0 −Tx 0 0 0 [Tx, ex] Ty 0 [Tx, Gx] 0 [Tx,Hx]

Tz 0 0 0 0 0 −vgB1 −vgB2 Tx Ty 2Tz 0 0 v2gex v2gey

Tt 0 0 0 0 0 F ′

1
B1 F ′

2
B2 0 0 2Tt Tx Ty −Gx −Gy

Θ −Ty Tx 0 0 0 F1B1 F2B2 −ey ex 0 −Gy Gx −Hy Hx

F1B1 0 0 vgB1 −F ′

1
B1 −F1B1 0 0 0 0 −2F ′

1
B1 0 0 0 0

F2B2 0 0 vgB2 −F ′

2
B2 −F2B2 0 0 0 0 −2F ′

2
B2 0 0 0 0

ex −ik0(B1 − B2) 0 −Tx 0 ey 0 0 0 0 −ex [ex, Gx] 0 [ex, Hx] 0

ey 0 −[Tx, ex] −Ty 0 −ex 0 0 0 0 −ey 0 [ex, Gx] 0 [ex, Hx]

V4 −Tx −Ty −2Tz −2Tt 0 2F ′

1
B1 2F ′

2
B2 ex ey 0 Gx Gy 3Hx 3Hy

Gx −ik0vg(B1 +B2) 0 0 −Tx Gy 0 0 −[ex, Gx] 0 −Gx 0 0 [Gx,Hx] 0

Gy 0 −[Tx, Gx] 0 −Ty −Gx 0 0 0 −[ex, Gx] −Gy 0 0 0 [Gx,Hx]

Hx −[Tx, Hx] 0 −v2gex Gx Hy 0 0 −[ex,Hx] 0 −3Hx −[Gx, Hx] 0 0 0

Hy 0 −[Tx,Hx] −v2gey Gy −Hx 0 0 0 −[ex,Hx] −3Hy 0 −[Gx,Hx] 0 0

[ex, Gx] = −E−

1 ,
[Tx, Hx] = −vgE

+

1 ,
[ex, Hx] = E−

2 /2,
[Gx, Hx] = −vgE

+

2 /2,
[Tx, Gx] = vgE

+
0 ,

[Tx, ex] = E−

0 ,

(50)
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Table 3: 344. Commutator table for the Lie algebra (33).

Tx Ty Tz Θ B1 B2 ex ey V3 W4

Tx 0 0 0 Ty 0 0 ik0(B1 −B2) 0 Tx ex

Ty 0 0 0 −Tx 0 0 0 ik0(B1 − B2) Ty ey

Tz 0 0 0 0 0 0 Tx Ty 2Tz V3

Θ −Ty Tx 0 0 0 0 −ey ex 0 0

B1 0 0 0 0 0 0 0 0 0 0

B2 0 0 0 0 0 0 0 0 0 0

ex −ik0(B1 − B2) 0 −Tx ey 0 0 0 0 −ex 0

ey 0 −ik0(B1 −B2) −Ty −ex 0 0 0 0 −ey 0

V3 −Tx −Ty −2Tz 0 0 0 ex ey 0 2W4

W4 −ex −ey −V3 0 0 0 0 0 −2W4 0
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Table 4: 466. Adjoint table for the Lie algebras (29) and (30), with the same convention than in Table 1. The entry (i, j) represents Ad(eεvi)|vj . When it
evaluates to vj , it is simply represented by a dot (.) symbol. The abbreviations c and s stand for cos ε and sin ε. Large expressions (i, j) are listed just after
the table. N/A means not applicable.

A Θ Tz Tt Tx Ty Ex Ey B6 F (t)B4 V6 W6

A . . Tz + εvgB6 Tt − εB4 . . . . . . N/A N/A

Θ . . . . Txc+ Tys Tyc− Txs Exc+Eys Eyc−Exs . . . .

Tz A− εvgB6 . . . . . Ex − εTx Ey − εTy . . V6 − 2εTz (Tz ,W6)

Tt (Tt, A) . . . . . . . . FB4e−εF ′/F . .

Tx . Θ− εTy . . . . Ex − εik0B6 . . . V6 − εTx (Tx,W6)

Ty . Θ+ εTx . . . . . Ey − εik0B6 . . V6 − εTy (Ty ,W6)

Ex . Θ− εEy Tz + Txε+ ε2ik0B6/2 . Tx + εik0B6 . . . . . V6 + εEx .

Ey . Θ+ εEx Tz + Tyε+ ε2ik0B6/2 . . Ty + εik0B6 . . . . V6 + εEy .

B6 . . . . . . . . . . . .

F (t)B4 . . . Tt + εB4F ′ . . . . . . . .

V6 N/A . Tze2ε . Txeε Tyeε Exe−ε Eye−ε . . . W6e−2ε

W6 N/A . Tz + εV6 + ε2W6 . Tx + εEx Ty + εEy . . . . V6 + 2εW6 .

(Tt, A) = A+B4(1 − (F/F ′)e−εF ′/F ),
(Tx,W6) = W6 − εEx + ε2ik0B6/2,
(Ty,W6) = W6 − εEy + ε2ik0B6/2,
(Tz,W6) = W6 − εV6 + ε2Tz

(51)
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Table 5: 444. Adjoint table for the Lie algebra (32). The notation and convention are the same as in Table 4. The abbreviation E±
n is defined in (34).

Tx Ty Tz Tt Θ F1B1 F2B2 ex ey V4 Gx Gy Hx Hy

Tx . . . . Θ− εTy . . ex − εE−

0
. . Gx − εvgE

+

0
. Hx + εE+

1
.

Ty . . . . Θ+ εTx . . . ey − εE−

0
. . Gy − εvgE

+

0
. Hy + εE+

1

Tz . . . . . F1B1eεvg/F1 F2B2eεvg/F2 ex − εTx ey − εTy V4 − 2εTz . . (Tz ,Hx) (Tz , Hy)

Tt . . . . . F1B1e
−εF ′

1
/F1 F2B1e

−εF ′

2
/F2 . . V4 − 2εTt Gx − εTx Gy − εTy (Tt, Hx) (Tt,Hy)

Θ Txc+ Tys Tyc− Txs . . . F1B1e−ε F2B2e−ε exc+ eys eyc− exs . Gxc+Gys Gyc−Gxs Hxc+Hys Hyc−Hxs

F1B1 . . Tz − εvgB1 Tt + εF ′

1
B1Θ+ εF1B1 . . . . V4 + 2εF ′

1
B1 . . . .

F2B2 . . Tz − εvgB2 Tt + εF ′

2
B2Θ+ εF2B2 . . . . V4 + 2εF ′

2
B2 . . . .

ex Tx + εE−

0
. (ex, Tz) . Θ− εey . . . . V4 + εex Gx + εE−

1
. Hx − εE−

2
/2 .

ey . Ty + εE−

0
(ey , Tz) . Θ+ εex . . . . V4 + εey . Gy + εE−

1
. Hy − εE−

2
/2

V4 Txeε Tyeε Tze2ε Tte2ε . F1B1e
−2εF ′

1
/F1 F2B2e

−2εF ′

2
/F2 exe−ε eye−ε . Gxe−ε Gye−ε Hxe−3ε Hye−3ε

Gx Tx + εvgE
+

0
. . (Gx, Tt) Θ− εGy . . ex − εE−

1
. V4 + εGx . . Hx + εE+

2
/2 .

Gy . Ty + εvgE
+

0
. (Gy , Tt) Θ + εGx . . . ey − εE−

1
V4 + εGy . . . Hy − εE+

2
/2

Hx Tx − εvgE
+

1
. (Hx, Tz) (Hx, Tt) Θ− εHy . . ex + εE−

2
/2 . V4 + 3εHx Gx − εE+

2
/2 . . .

Hy . Ty − εvgE
+

1
(Hy , Tz) (Hy , Tt) Θ + εHx . . . ey + εE−

2
/2V4 + 3εHy . Gy + εE+

2
/2 . .

(Tz, Hx) = Hx − εv2gex + ε2v2gTx/2,

(Tz, Hy) = Hy − εv2gey + ε2v2gTy/2,
(Tt, Hx) = Hx + εGx − ε2Tx/2,
(Tt, Hy) = Hy + εGy − ε2Ty/2,
(ex, Tz) = Tz + εTx + ε2E−

0 /2,
(ey, Tz) = Tz + εTy + ε2E−

0 /2,
(Hx, Tz) = Tz + εv2gex + ε2v2gE

−

2 /4,

(Hy , Tz) = Tz + εv2gey + ε2v2gE
−

2 /4,
(Gx, Tt) = Tt + εTx + ε2vgE

+
0 /2,

(Gy , Tt) = Tt + εTy + ε2vgE
+

0 /2,
(Hx, Tt) = Tt − εGx + ε2v2gE

+
2 /4,

(Hy , Tt) = Tt − εGy − ε2v2gE
+

2 /4.

(52)
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Table 6: 344. Adjoint table for the Lie algebra (33). The notation and convention are the same as
in Table 4. F±

0 = ik0 [B1 ±B2].

Tx Ty Tz Θ B1 B2 ex ey V3 W4

Tx . . . Θ− εTy . . ex − εF−

0
. V3 − εTx W4 − εex + ε2F−

0
/2

Ty . . . Θ+ εTx . . . ey − εF−

0
V3 − εTy W4 − εey + ε2F−

0
/2

Tz . . . . . . ex − εTx ey − εTy . .

Θ Txc+ Tys Tyc− Txs . . . . exc+ eys eyc− exs . .

B1 . . . . . . . . . .

B2 . . . . . . . . . .

ex Tx + εF−

0
. Tz + εTx + ε2F−

0
/2 Θ− εey . . . . . .

ey Tx + εF−

0
. Tz + εTy + ε2F−

0
/2 Θ− εey . . . . . .

V3 Txeε Tyeε Tze2ε . . . exe−ε eye−ε . W4e−2ε

W4 Tx + εex Ty + εey Tz + εV3 + ε2W4 . . . . . V3 + 2εW4 .

6 Conclusion

We have unveiled both the singularity structure and the underlying symmetries of a nonlinear
optics system which has great potential applications. However, this analytic structure is too
intricate to allow us to derive close form solutions. Since the original nonlinear system results from
a reductive perturbation method, maybe another physical assumption during its derivation could
make it tractable by the analytic techniques investigated here.
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