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Abstract

The power law distribution is usually used to fit data in the upper
tail of the distribution. However, commonly it is not valid to model
data in all the range. In this paper, we present a new family of dis-
tributions, the so-called Generalized Power Law (GPL), which can be
useful for modeling data in all the range and possess power law tails.
To do that, we model the exponent of the power law using a non-
linear function which depends on data and two parameters. Then, we
provide some basic properties and some specific models of that new
family of distributions. After that, we study a relevant model of the
family, with special emphasis on the quantile and hazard functions,
and the corresponding estimation and testing methods. Finally, as an
empirical evidence, we study how the debt is distributed across mu-
nicipalities in Spain. We check that power law model is only valid in
the upper tail; we show analytically and graphically the competence
of the new model with municipal debt data in the whole range; and
we compare the new distribution with other well-known distributions
including the Lognormal, the Generalized Pareto, the Fisk, the Burr
type XII and the Dagum models.

Key Words: Power law behavior; Whole range fitting; Complexity; Munic-
ipal debt

1 Introduction

Many empirical analysis of diverse real phenomena (the population of
the cities, the annual income of the people, the solar flare intensity, the
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failures in power grids, the protein interaction degree, etc) have confirmed
the power law behavior in the upper tail of their distributions - the largest
values of the variable of interest, above a certain lower bound, can be modeled
statistically by a classical Pareto distribution, with shape parameter α also
known as exponent of the power law or simply constant α (see, for example,
[1, 2, 3, 4, 5]). That empirical evidence comes with many advantages: it can
help us to understand the underlying data generating process [6]; it gives us
tools for computer simulation of those phenomena [7]; etc.

However, Pareto distribution is not usually valid to model those real phe-
nomena in the whole range - if we consider high, medium and low ranges
of those data all together, the power law behaviour usually disappears. For
example: failures in power grids can be described by the Lomax distribu-
tion [8, 9]; or in the case of protein interaction networks of three species
(C.elegans, S.cerevisiae and E.coli), or in the case of the metabolic networks
with human and yeast data, the lognormal distribution provides the best
description for the empirical data [10], in the whole range.

The Pareto distribution hierarchy, composed by Pareto type I (Power
Law), Pareto type II (with Lomax distribution as a special case), Pareto type
III and type IV, is a well known extension of the power law [11, 12]. Those
family of distributions, also known as Generalized Pareto distributions, have
extended the scope of the classical Pareto model, as for example, with the
failures in power grids and the Lomax distribution, as mentioned previously.

The aim of this study is twofold. Firstly, to explore the properties of a
new family of GPL distributions that we could use to model real phenomena
in the whole range, phenomena with power law tail. Secondly, to provide
empirical evidence of the efficacy of those distributions with real datasets.
Our primary hypothesis was that Pareto shape parameter, the exponent α, is
not constant and varies according to a non-linear function g which depends
on data [13]. We found a surprisingly rich family of distributions, with only
three parameters, which includes Pareto and Pareto Positive Stable (PPS)
distributions as special cases, and we also found that a new distribution, a
relevant model of that family, is a good alternative for modeling debt data
of the indebted municipalities in Spain in the whole range.

The rest of this paper is organized as follows: in Section 2, we introduce
a new family of GPL distributions; in Section 3, we present a new distribu-
tion, which belongs to that new family; an empirical application of that new
distribution to municipal debt with Spanish data is included in Section 4;
finally, the conclusions are given in Section 5.
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2 A new family of Generalized Power Law

distributions

In this section we obtain the new family of Generalized Power Law (GPL)
distributions. Our idea is to construct an extension of the Power law, where
the exponent is not constant and is modeled by using a non-linear function
of the data. Then, let consider a real function g : (1,∞) → R

+ continuous,
positive and differentiable on (1,∞) satisfying the following conditions,

lim
z→1+

zg(z) = 1 and lim
z→∞

zg(z) = ∞, (1)

and
g′(z)

g(z)
>

−1

z log(z)
, ∀ z > 1. (2)

Now, using g(·), we define the function

F (x) = 1−
(x

σ

)−g(x/σ)

, x > σ, (3)

and F (x) = 0 if x ≤ σ. Note that σ is a scale parameter. We have the
following Theorem.

Theorem 1 Let consider the functional form defined in (3), where the func-
tion g(·) satisfies conditions (1) and (2). Then (3) is a genuine cumulative
distribution function (cdf).

Proof: It is direct to check that F (−∞) = 0, F (∞) = 1 and F (x) is right
continuous. Finally, F (x) is nondecreasing since,

g
(x

σ

)

+
x

σ
log

(x

σ

)

g′
(x

σ

)

> 0, ∀x > σ,

using condition (2).
The family of distributions define in Eq.(3) includes the classical Pareto

distribution (also known as Power Law or Pareto type I distribution) [11, 14]
as a special case when g(z) = α, ∀ z > 1 with α > 0.
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2.1 Basic Properties

The survival function S(x) = Pr(X > x) = 1− F (x) is given by:

S(x) =
(x

σ

)−g(x/σ)

, x > σ,

and S(x) = 1 if x ≤ σ.
The probability density function (pdf) of that family of distributions is

given by,

f(x) =
dF (x)

dx
=

{

g
(x

σ

)

+
(x

σ

)

log
(x

σ

)

g′
(x

σ

)} S(x)

x
,

if x > σ and f(x) = 0 if x ≤ σ.

The hazard function h(x) = f(x)
Pr(X>x)

= f(x)
S(x)

is as follows:

h(x) =
g
(x

σ

)

+
(x

σ

)

log
(x

σ

)

g′
(x

σ

)

x
,

if x > σ and h(x) = 0 if x ≤ σ. Some graphics of this family are included in
Section 3 for a relevant special case.

2.2 Some models of generalized power law and exten-

sions

In this section we present some specific models of Generalized Power Law
distributions and we also provide some extensions of that new family of
distributions. To model the g(·) function, we choose some flexible functions
which depend on two parameters α and β, and that include as special case
the constant function by setting β = 0.

Table 1 provides some models of Generalized Power Law distributions,
where we have reported the g(z) function, the survival function and the pdf.
The simplest choice, that is, g(z) = α, corresponds to the usual power law,
or classical Pareto distribution. The choice g(z) = α logβ(z) corresponds to
the PPS distribution [13, 15]. As far as we know, the rest of models are new.

On the other hand, we can consider some extensions of these models.
These extensions can be obtained using the Pareto types II or IV models
[12, 16, 17], instead of the usual classical Pareto distribution. In these exten-
sions, we incorporate a new location parameter or new location and shape
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Table 1

Some examples of distributions which belongs to the new family of distributions described.

g(z) β S(x) f(x)

α
(x

σ

)−α
α
S(x)

x

α logβ(z) β > −1
(x

σ

)−α logβ (x/σ)
α(β + 1) logβ(x/σ)

S(x)

x

αzβ β ≥ 0
(x

σ

)−α(x/σ)β

α[1 + β log(x/σ)]
(x

σ

)β S(x)

x

α+ β log z β ≥ 0
(x

σ

)−α−β log(x/σ)
[α+ 2β log(x/σ)]

S(x)

x

α+ βz β ≥ 0
(x

σ

)−α−β(x/σ)
[α+ β(x/σ)(1 + log(x/σ))]

S(x)

x

α− β

(

z − 1

z log z

)

β ≤ α
(x

σ

)−α+β
[

(x/σ)−1
(x/σ) log(x/σ)

]

[

α−
β

(x/σ)

]

S(x)

x

α−
β

z
β ≤ α

(x

σ

)−α+βσ/x
[

α+
β

(x/σ)
(log(x/σ) − 1)

]

S(x)

x

α+ β

(

z − 1

log(z)

)

β ≥ 0
(x

σ

)−α−β
[

(x/σ)−1
log(x/σ)

]

[α+ β(x/σ)]
S(x)

x

α+ β

(

log z

1 + log z

)

β ≥ −α
(x

σ

)−α−β
[

log(x/σ)
log(x/σ)+1

]

[

α+ β
log(x/σ)[log(x/σ) + 2]

[log(x/σ) + 1]2

]

S(x)

x

α+ β

(

z − 1

z

)

β ≥ −α
(x

σ

)−α−β
[

(x/σ)−1
(x/σ)

]

[

α+ β
log(x/σ) − 1 + (x/σ)

(x/σ)

]

S(x)

x

α

(

log z

1 + log z

)β

β > −1
(x

σ

)−α
[

log(x/σ)
log(x/σ)+1

]β

α

[

log(x/σ) + 1 + β

log(x/σ) + 1

] [

log(x/σ)

log(x/σ) + 1

]β S(x)

x

α

(

z − 1

z

)β

β ≥ −1
(x

σ

)−α
[

(x/σ)−1
(x/σ)

]β

α

[

(x/σ) − 1 + β log(x/σ)

(x/σ) − 1

] [

(x/σ) − 1

(x/σ)

]β S(x)

x
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parameters, respectively, and the support of the distribution is (µ,∞),where
µ ≥ 0. In this situation, the g(·) function is continuous, positive and differ-
entiable on the interval (0,∞) and satisfy:

lim
z→0+

(1 + z)g(z) = 1 and lim
z→∞

(1 + z)g(z) = ∞, (4)

and
g′(z)

g(z)
>

−1

(1 + z) log(1 + z)
, ∀ z > 0. (5)

In the case of Pareto II distribution, the new family of distributions is
defined in terms of the cdf,

F (x;µ, σ) = 1−

[

1 +

(

x− µ

σ

)]−g{(x−µ)/σ}

, x > µ,

and F (x) = 0 if x ≤ µ, where µ is a location parameter, σ > 0 is a scale
parameter and g(·) satisfies conditions (4) and (5).

In the case of the Pareto IV distribution, the new family of distributions
is given by,

F (x;µ, σ, γ) = 1−



1 +

(

x− µ

σ

)(1/γ)




−g{[(x−µ)/σ]1/γ}

, x > µ,

and F (x) = 0 if x ≤ µ, where µ is a location parameter, σ > 0 is a scale pa-
rameter, γ > 0 a shape parameter and g(·) satisfies again conditions (4),(5).

3 A relevant model

In this section we study a relevant model of Generalized Power Law dis-

tribution. This model corresponds to the choice g(z) = α
(

log z
1+log z

)β

in Table

1, and the cdf is given by,

F (x;α, β, σ) = 1− exp

{

−α
[log(x/σ)]β+1

[log(x/σ) + 1]β

}

, x ≥ σ, (6)

and F (x) = 0 if x < σ, where α > 0 and β > −1 are shape parameters, and
σ > 0 is a scale parameter. A random variable with cdf given by Eq.(6) will
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be denoted by X ∼ GPL(α, β, σ). This family includes the classical Pareto
distribution (Power Law) when β = 0. We have GPL(α, 0, σ) ≡ Pa(α, σ).

The concept of tail equivalent (see [18, 19, 20, 21, 22, 23, 24]) is satisfied
by the GPL(α, β, σ) distribution. The following Theorem shows that the
GPL(α, β, σ) distribution exhibit a power law behaviour when x is large.

Theorem 2 The GPL(α, β, σ) distribution, defined in Eq.(6), and the Pareto
distribution are right tail equivalent

Proof: The proof is direct and it is based on the fact that,

lim
x→∞

1− F (x)

1−G(x)
= lim

x→∞

exp
{

−α [log(x/σ)]β+1

[log(x/σ)+1]β

}

(x/σ)−α
= 1,

where G(x) is the cumulative distribution function of the Pareto distribution.

In the following Theorem we show the domain of attraction for maxima
(see [2, 25, 26, 27, 28, 29, 30, 31])

Theorem 3 The GPL(α, β, σ) distribution belongs to the Maximum Domain
of Attraction of the Fréchet distribution GPL(α, β, σ) ∈ MDA(Φα)

Proof: We must check that 1− F (x) is of regular variation of index −α,

lim
x→∞

1− F (tx)

1− F (x)
= t−α, ∀t > 0,

or in other words, 1 − F (x) can be expressed as L(x)x−α where L(x) is a
slowly varying function ( lim

x→∞
L(tx)/L(x) = 1, for any t > 0):

1− F (x) = (x/σ)
−α

{

[ log(x/σ)
log(x/σ)+1 ]

β
−1

}

(x/σ)−α ∼ L(x)x−α,

which means that GPL(α, β, σ) is a heavy-tailed distribution and, for that,
it can be useful for statistical modeling of phenomena with extremely large
observations.
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3.1 Basic Properties

The survival function S(x) = Pr(X > x) = 1− F (x) is given by:

S(x) = exp

{

−α
[log(x/σ)]β+1

[log(x/σ) + 1]β

}

, x ≥ σ, (7)

and S(x) = 1 if x < σ. Figure 1 shows the survival function S(x) of the
GPL(α, β, σ) distribution, given by Eq.(7), for different values of the shape
parameters α and β, in log-log scale.

The pdf of the GPL(α, β, σ) distribution is given by,

f(x) =
α

x

[

log(x/σ) + 1 + β

log(x/σ) + 1

] [

log(x/σ)

log(x/σ) + 1

]β

exp

{

−α
[log(x/σ)]β+1

[log(x/σ) + 1]β

}

, x ≥ σ

(8)
and f(x) = 0 if x < σ. Figure 2 shows the probability density function
f(x), given by Eq.(8), for zero-modal and uni-modal curves. Remark that
GPL(α, β, σ) distribution, as a distribution of the MDA of the Fréchet dis-
tribution, satisfies the von Mises condition [32]:

lim
x→∞

xf(x)

S(x)
= lim

x→∞
α

[

log(x/σ) + 1 + β

log(x/σ) + 1

] [

log(x/σ)

log(x/σ) + 1

]β

= α > 0.

The hazard function is given by (see also Section 2.1):

h(x) =
f(x)

Pr(X > x)
=

f(x)

S(x)
=

α

x

[

log(x/σ) + 1 + β

log(x/σ) + 1

] [

log(x/σ)

log(x/σ) + 1

]β

, x ≥ σ,

and h(x) = 0 if x < σ. See Figure 3 for different shapes.
The quantile function Q(p) = F−1(p) is defined implicitly as follows,

− log(1− p) (log [Q(p)/σ] + 1)β

(log [Q(p)/σ])β+1
= α, 0 < p < 1,

which can be used to simulate the random variable X ∼ GPL(α, β, σ) of our
interest by the inverse transform method, from a random variable uniformly
distributed U ∼ U(0, 1) and X = F−1(U) [33, 34].
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Figure 1: Plots of the survival function of the GPL(α, β, σ) distribution with σ = 1 and:
(up-left) α = 1 and β = −0.9,−0.6,−0.3, 0; (up-right) α = 1 and β = 1, 2, 3, 4; (down-left)
β = 1 and α = 1, 2, 3, 4; (down-right) β = 10 and α = 1, 2, 3, 4
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σ = 1 and: (up-left) α = 1 and β = −0.9,−0.6,−0.3, 0; (up-right) α = 1 and β = 1, 2, 3, 4;
(down-left) β = 1 and α = 1, 2, 3, 4; (down-right) β = 10 and α = 1, 2, 3, 4

10



1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20

x

h(
x)

α = 10
σ = 1

β = − 0.1
β = − 0.05
β = 0
β = 0.05
β = 0.1

5 10 15 20

0
1

2
3

4

x
h(

x)

α = 10
σ = 1

β = 1
β = 2
β = 3
β = 4
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3.2 Estimation and Testing

The GPL(α, β, σ) distribution can be fitted using the method of max-
imum likelihood [35]. Let x1, . . . , xn be a sample of size n drawn from a
GPL(α, β, σ) distribution. The log-likelihood function can be expressed as
follows,

log ℓ(α, β, σ) =

n
∑

i=1

log f(xi) = n log(α)−

n
∑

i=1

log(xi)

+
n

∑

i=1

log[log(xi/σ) + 1 + β] + β
n

∑

i=1

log[log(xi/σ)]

− (β + 1)

n
∑

i=1

log[log(xi/σ) + 1]− α

n
∑

i=1

logβ+1(xi/σ)

[log(xi/σ) + 1]β
,

(9)

where (α, β, σ) is the unknown parameter vector of the model, f(x) is the pdf
of the GPL(α, β, σ) distribution defined in Eq.(8), and the maximum likeli-
hood estimation of the parameter vector (α̂, β̂, σ̂) is the one that maximizes
the likelihood function log ℓ(α, β, σ).

The normal equations can be obtained by taking partial derivatives of
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Eq.(9) with respect to α, β, σ, and equating them to zero. If we use the
auxiliar random variableW = log(X/σ), and we represent its observed values
by wi = log(xi/σ), i = 1, . . . , n, the normal equations can be expressed as:

∂ log ℓ

∂α
= 0 ⇒ α = n

[

n
∑

i=1

wβ+1
i

(wi + 1)β

]−1

,

∂ log ℓ

∂β
= 0 ⇒

n
∑

i=1

1

wi + 1 + β
+ log

(

wi

wi + 1

)

[

1−
αwβ+1

i

(wi + 1)β

]

= 0,

(10)

∂ log ℓ

∂σ
= 0 ⇒

n
∑

i=1

β(β + 1)[log(wi) + 1]β − αwi log
β+1(wi)[log(wi) + 1 + β]2

wi log(wi)[log(wi) + 1]β+1[log(wi) + 1 + β]
= 0.

The previous equations (10) can be solved by numerical methods. In this
study, maximum likelihood estimates of the parameters α, β and σ were
computed by using the R software function optimx [36, 37], with the limited
memory quasi-Newton L-BFGS-B algorithm (in which bounds contraints are
permited) [38, 39, 40] - for that, we took σ0 equal to half of the smallest value
of the sample, as the initial value of σ, and α0, β0 the values obtained from
the first two partial derivatives (in Eq.(10)) just plugging σ0 into them.

We can compare the GPL(α, β, σ) distribution with other different mod-
els by using two model selection criteria: the Akaike information criterion
(AIC), defined by [41],

AIC = −2 logL+ 2d;

or the Bayesian information criterion (BIC), defined by [42]

BIC = logL−
1

2
d logn; (11)

where logL = log ℓ(α̂, β̂, σ̂) is the log-likelihood (see Eq. 9) of the model
evaluated at the maximum likelihood estimates, d is the number of parame-
ters (in the case of the GPL(α, β, σ) distribution, d = 3) and n is the number
of data. The model chosen is the one with the smallest value of AIC statistic
or with the largest value of BIC statistic.

We can use rank-size plots (on a log-log scale) for graphical model vali-
dation. We can plot the complementary of the theoretical cdf (multiplied by
n+1) of the GPL(α, β, σ) model together with the scatter plot of the points
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(observed data) log(ranki) versus log(x(i)), i = 1, . . . , n, where x(1) ≤ · · · ≤
x(i) ≤ · · · ≤ x(n) is the ordered sample of X and ranki = n + 1− i [8].

Finally, we can test the goodness-of-fit of the GPL(α, β, σ) model by
a Kolmogorov-Smirnov (KS) test method based on bootstrap resampling
[2, 8, 43, 44, 45, 46, 47] as follows: (1) calculating the empirical KS statis-
tic of the GPL(α, β, σ) model for the observed data, KS = sup |Fn(xi) −
F (xi; α̂, β̂, σ̂)|, i = 1, 2, . . . , n, where F (xi; α̂, β̂, σ̂) is the theoretical cdf of
the GPL(α, β, σ) model fitted by maximum likelihood, in a sample value,
and Fn(xi) ≈ (n + 1)−1

∑n
j=1 I[xj≤xi] is the empirical cdf in a sample value

with the indicated plotting position formula [48]; (2) generate, by simula-
tion, enough GPL(α, β, σ) synthetic data sets (in this study, we generated
10000 data sets), with the same sample size n - notice that the GPL(α, β, σ)
quantile function Q(p) = F−1(p) is defined implicitly, then, for this study,
we used the R software function uniroot [36]; (3) fit each GPL(α, β, σ) syn-
thetic data set by maximum likelihood and obtained its theoretical cdf; (4)
calculate the KS statistic for each GPL(α, β, σ) synthetic data set - with its
own theoretical cdf; (5) calculate the p-value as the fraction of GPL(α, β, σ)
synthetic data sets with a KS statistic greater than the empirical KS statis-
tic; (6) null hypothesis H0: the data follow the GPL(α, β, σ) model can be
rejected with the 0.1 level of significance if p-value< 0.1.

4 Empirical application to municipal debt in

Spain

In this section, as an illustration, we show that GPL(α, β, σ) distribution
can be useful for modeling Spanish municipalities debt.

4.1 The data

We considered debt data of the indebted municipalities in Spain. There
are three levels of government in Spain: the State, the Autonomous Commu-
nities and the Local Entities [49, 50]. Municipalities belong to the third one
- as a reference, there were 8117 municipalities in Spain in 2014 [51]. The
expenditure of those councils, directed at providing essential local services to
their citizens (street cleaning, local police, etc.), is financed through different
sources: transfers, local taxes, public fares, etc. For several reasons (in-
frastructure investment, etc.), they can decide to contract debt - taking into
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account the municipal debt control of the institutional borrowing restrictions
[52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. Our data sets were composed of
information of Spanish indebted municipalities, whose debt was at least one
thousand euros, dated on the 31st of December of each year, in the period
2008-2014, expressed in thousand of euros (kAC), published by the Spanish
Ministry of the Finance and Public Administrations (see [63]).

Table 2 show the main empirical characteristics of the variable of our
interest: the number of Spanish indebted municipalities analyzed (n); the
total amount of borrowing of those indebted municipalities; the debt of the
most indebted council; the minimum value of debt considered; the mean and
standard deviation (in kAC); the skewness and kurtosis of that municipal debt.

Table 2

Some relevant information about the datasets considered.

Year 2008 2009 2010 2011 2012 2013 2014

Indebted Municip. (n) 4,981 5,083 5,039 4,979 5,059 5,028 4,668
Total Amount (kAC) 25.2 × 106 28.1× 106 28.5× 106 28.2× 106 35.2× 106 34.9× 106 31.3× 106

Maximum (kAC) 6.7× 106 6.8× 106 6.5× 106 6.3× 106 7.4× 106 7.0× 106 5.9× 106

Minimum (kAC) 1 1 1 1 1 1 1.78
Mean (kAC) 5,059.2 5,532.2 5,649.1 5,655.6 6,950.6 6,942.4 6,715.4
Std. Dev. (kAC) 97,714.1 98,603.0 95,643.6 94,555.1 109,764.6 104,657.1 92,645.3
Skewness 64.5 64.1 61.6 61.3 61.7 60.9 57.0
Kurtosis 4,384.5 4,378.4 4,105.7 4,072.0 4,138.9 4,051.3 3,604.9

4.2 Power Law behavior in the upper tail

We analyzed the power law behavior of the Spanish municipal debt. For
that, we followed the methodology proposed in Clauset et al. [64], based on:
(1) the maximum likelihood method, for fitting the Pareto distribution to the
data - in this case, the maximum likelihood estimator for the scale parameter
is the minimum value of the sample: σ̂ = xmin, and the maximum likelihood
estimator for the shape parameter α̂ is the Hill estimator [65] given by

α̂ = n

[

n
∑

i=1

log(xi/xmin)

]−1

;

(2) the Kolmogorov-Smirnov (KS) test method based on bootstrap resam-
pling, for testing the goodness-of-fit of Pareto model; and (3), for estimating
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the lower bound xmin of the power law behavior, an iterative algorithm where
xmin is given by the minimum sample value in which the null hypothesis H0:
the data follow a power law model can’t be rejected at 0.1 level of significance.

Table 3 shows, for each year: the shape parameter estimates α̂ obtained
from the datasets analyzed; the corresponding scale parameter estimates σ̂,
which give us the minimum local debt that follows the power law behavior
(in kAC); the number of municipalities that follow that behavior; the empir-
ical KS statistics and the p-values obtained. It can be seen that power law
behavior is only valid in the upper tail of the distribution - only the largest
debts can be modeled with a classical Pareto distribution - since null hy-
pothesis H0: the data follow a power law model can be rejected at the 0.1
level of significance for values of xmin less than σ̂ and, in particular, it can
be rejected if we considered the whole range of the distribution.

In addition, table 3 shows that shape parameter estimates α̂ are very
close to 1 (Zipf’s law for many authors, [66, 67, 68, 69, 70, 71, 72, 73, 74])
for the first four years analyzed (2008-2011), and that they change in 2012
(likewise, σ̂ and n) - coinciding with the political scene change after the
Spanish municipal, regional and general elections held on 2011.

Table 3

Parameter estimates (α̂, σ̂) from the Power Law model to the upper tail of the local debt
datasets by maximum likelihood; number of municipalities (n) with the largest debts,
which follow a power law behaviour; empirical KS statistics; and bootstrap p-values for
that model (values of p < 0.1 indicate that the models can be ruled out with the 0.1 level
of significance).

Year 2008 2009 2010 2011 2012 2013 2014

α̂: shape parameter estimates 0.9981 1.0116 0.9990 1.0207 0.8557 0.8455 0.8322
σ̂: lower bound (kAC) , scale par. estim. 9253 10582 10692 12563 4677 5014 4101
n: size (municipalities) of the upper tail 343 348 345 298 760 700 742
Empirical KS statistics 0.0513 0.0505 0.0505 0.0529 0.0350 0.0364 0.0351
p-value (> 0.1 favor power law model) 0.1037 0.1100 0.1114 0.1293 0.1056 0.1050 0.1084

Figure 4 shows, as a graphical model validation, the rank-size plots (on
log-log scale) in the selected years 2008, 2011 and 2014, for the whole range
of the datasets (left) and for the upper tail of the distribution (right). Those
plots confirm, graphically, that power law model can be ruled out as an
adequate model for the whole range of indebted municipalities, and that
power law model may serve as an adequate model for municipalities with
largest debts above a certain lower bound, in accordance with Table 3.
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Figure 4: Rank-size plots of the complementary of the cdf multiplied by n + 1 (solid
lines) of the classical Pareto distribution (power law model) and the observed data, on
log-log scale. Left: Whole range. Right: Upper Tail. Data: Debt of the Spanish indebted
municipalities in 2008, 2011 and 2014, whose debt was at least one thousand euros, dated
on the 31st of December of each year, in thousand of euros, published by the Spanish
Ministry of the Finance and Public Administrations.
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4.3 The new distribution in the whole range

In this section, we compare the GPL(α, β, σ) distribution with other eight
models, and we test the adequacy of the GPL(α, β, σ) distribution to the
datasets in the whole range.

We fitted the GPL(α, β, σ) model and those eight known models to the
datasets, in the whole range, by maximum likelihood, from 2008 to 2014.
Four of those eight models with two parameters: Pareto (Power Law); Lo-
max (Pareto type II with location parameter µ = 0) [75]; Lognormal [76] and
Fisk (Log-logistic) [77] distributions. The other four models with three pa-
rameters: Pareto type II; three-parameter lognormal; Burr type XII (Singh-
Maddala) [78, 79] and Dagum [80] distributions. Table 4 shows the cumula-
tive distribution functions F (x) and the probability density functions f(x)
of the nine models considered.

We compared those models using the Bayesian information criterion (BIC,
see Eq.(11)). Table 5 shows the BIC statistics obtained, from the nine se-
lected models (ranked by BIC), corresponding to our datasets in the whole
range, from 2008 to 2014. GPL(α, β, σ) distribution presents the largest
values of BIC statistics, therefore GPL(α, β, σ) distribution is the model
chosen using that model selection criterion. Table 6 shows the correspond-
ing parameter estimates and their standard errors from the GPL(α, β, σ)
distribution.

We checked graphically the adequacy of the GPL(α, β, σ) distribution to
the datasets in the whole range using rank-size plots. Figure 5 shows the
plots obtained from 2008 to 2014.

Finally, we tested the goodness-of-fit of GPL(α, β, σ) distribution, by a
Kolmogorov-Smirnov (KS) test method based on bootstrap resampling. Ta-
ble 7 shows the values of the empirical KS statistics and the p-values ob-
tained. It can be seen that we obtained p-values ≥ 0.1 in three of the seven
years considered.

In summary, GPL(α, β, σ) distribution can be useful for modeling Spanish
municipalities debt: it presents the best BIC statistics of the nine selected
models; graphically it gives a reasonable description of the datasets; and it
cannot be rejected with 0.1 level of significance in three of the seven years
considered.
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Table 4

Cumulative distribution functions and probability density functions of the models fitted
to the dataset in the whole range. Φ(z) denotes the standard normal CDF.

Distribution F (x) f(x)

Pareto 1 −
(

x

σ

)

−α ασα

xα+1
x ≥ σ

Lomax 1 −
(

1 +
x

σ

)

−α ασα

(x + σ)α+1
x ≥ 0

Lognormal Φ

(

log x − µ

σ

)

1

xσ
√
2π

exp

[

−
(log x − µ)2

2σ2

]

x > 0

Fisk
1

1 + (x/α)−β

(β/α)(x/α)β−1

(1 + (x/α)β)2
x > 0

Pareto II 1 −
(

1 +
x − µ

σ

)

−α ασα

(x − µ + σ)α+1
x ≥ µ

Lognormal 3p Φ

(

log(x − γ) − µ

σ

)

1

σ(x − γ)
√

2π
exp

[

−
(log(x − γ) − µ)2

2σ2

]

x > γ

Burr type XII 1 −
[

1 +

(

x

b

)a]−q aqxa−1

ba[1 + (x/b)a]q+1
, x ≥ 0

Dagum

[

1 +

(

x

b

)

−a
]

−p
apxap−1

bap[1 + (x/b)a]p+1
, x ≥ 0

GPL(α, β, σ) 1 − exp

{

−α
[log(x/σ)]β+1

[log(x/σ) + 1]β

}

α

x

[

log(x/σ) + 1 + β

log(x/σ) + 1

] [

log(x/σ)

log(x/σ) + 1

]β

exp

{

−α
[log(x/σ)]β+1

[log(x/σ) + 1]β

}

Table 5

BIC statistics for nine candidate models, fitted by maximum likelihood to municipal debt
data in Spain. Larger values indicate better fitted models (models appear ranked by BIC).

Year 2008 2009 2010 2011 2012 2013 2014

GPL(α, β, σ) -39656 -41041 -40892 -40528 -42316 -41925 -38840
Lognormal 3p -39723 -41092 -40954 -40579 -42368 -41974 -38859
Dagum -39708 -41093 -40955 -40578 -42380 -41985 -38884
Lognormal -39733 -41101 -40966 -40587 -42378 -41984 -38877
Pareto II -39731 -41119 -40986 -40607 -42417 -42015 -38893
Lomax -39748 -41135 -41000 -40620 -42427 -42026 -38914
Burr type XII -39746 -41139 -41003 -40624 -42432 -42030 -38917
Fisk -39792 -41172 -41036 -40652 -42448 -42046 -38927
Pareto -42870 -44251 -44200 -43820 -45819 -45338 -41486

Table 6

Parameter estimates from the GPL(α, β, σ) model, to Spanish municipal debt datasets, in
the whole range, by maximum likelihood (standard errors in parenthesis).

Year 2008 2009 2010 2011 2012 2013 2014

α̂ 2.3477 2.6126 2.3085 2.6703 2.5098 2.5722 3.0427
(0.1910) (0.2336) (0.1979) (0.2419) (0.2387) (0.2445) (0.3325)

β̂ 24.3346 27.4832 24.5065 27.1347 26.1137 26.9485 30.5616
(1.3320) (1.5758) (1.4319) (1.5735) (1.6499) (1.6755) (2.0480)

σ̂ 0.2367 0.1536 0.2536 0.1882 0.2625 0.2199 0.1335
(0.0392) (0.0291) (0.0454) (0.0355) (0.0530) (0.0447) (0.0316)
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Figure 5: Rank-size plots of the complementary of the cdf multiplied by n + 1 (solid
lines) of the GPL(α, β, σ) distribution and the observed data, on log-log scale. Data:
Debt of the Spanish indebted municipalities, from 2008 to 2014, whose debt was at least
one thousand euros, dated on the 31st of December of each year, in thousand of euros,
published by the Spanish Ministry of the Finance and Public Administrations.
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Table 7

Empirical KS statistics and bootstrap p-values for GPL(α, β, σ) model (p ≥ 0.1 favor GPL
model)

Year 2008 2009 2010 2011 2012 2013 2014

KS 0.0180 0.0181 0.0139 0.0144 0.0144 0.0098 0.0093
p-value 0.0000 0.0000 0.1000 0.0048 0.0056 0.1977 0.3258

5 Conclusions

In this study, we focussed on modeling the whole range of empirical data,
whose upper tail follows a power-law behaviour. To do that, we modeled the
exponent of the classical Pareto distribution using a non-linear function.

We found a new family of Generalized Power Law distributions, with
three parameters, which includes Pareto (power law, Pareto type I) and PPS
distributions as special cases. We showed that it is a genuine family of
distributions. We provided some particular functional forms of that family.
And, as an extension, we presented two more new families of distributions
based on Pareto type II and Pareto type IV distributions respectively.

We found a new distribution, the GPL(α, β, σ) distribution, which be-
longs to the new family of Generalized Power Law distributions described
previously. We showed that GPL(α, β, σ) and Power Law models are right
tail equivalent (GPL(α, β, σ) model exhibit a power law behavior in the tail)
and that GPL(α, β, σ) model belongs to the Maximum Domain of Attraction
of the Fréchet distribution, which means that GPL(α, β, σ) is a heavy-tailed
distribution and it can be useful for statistical modeling of real phenom-
ena with extremely large observations. We provided the genesis, the basic
properties (including the quantile function for computer simulation), and the
corresponding estimation and testing methods for that distribution.

Finally, we provided empirical evidence of the efficacy of the GPL(α, β, σ)
distribution (and for extension, of the new family of Generalized Power Law
distribution) with real datasets in the whole range. In particular, we showed
that GPL(α, β, σ) model can be useful for modeling municipal debt data. For
that, we considered information of Spanish indebted municipalities, whose
debt was at least one thousand euros, in the period 2008-2014, published
by the Spanish Ministry of the Finance and Public Administrations. We
showed that the Spanish municipal debt follows a power law in the tail but
not in the whole range. And finally, we showed analytically and graphically
the competence of the GPL(α, β, σ) distribution with municipal debt data
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in the whole range, in comparison with other known distributions as the
Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the
Dagum distributions.
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[5] Rosas-Casals M, Solé R. Analysis of major failures in Europe’s power
grid. International Journal of Electrical Power & Energy Systems 2011;
33(3): 805-808.

[6] Mayo DG, Cox DR. Frequentist statistics as a theory of inductive infer-
ence. Lecture Notes-Monograph Series 2006; 77-97.

21



[7] Kelton WD, Averill ML. Simulation modeling and analysis. Boston: Mc-
Graw Hill, 2000.

[8] Prieto F, Sarabia JM, Sáez AJ. Modelling major failures in power grids
in the whole range. International Journal of Electrical Power & Energy
Systems 2014; 54: 10-16.

[9] Cuadra L, Salcedo-Sanz S, Del Ser J, Jiménez-Fernández S, Geem ZW. A
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