
ar
X

iv
:1

51
2.

02
80

6v
1 

 [
nl

in
.P

S]
  9

 D
ec

 2
01

5

Chaos-assisted formation of immiscible matter-wave

solitons and self-stabilization in the binary discrete

nonlinear Schrödinger equation

D.V. Makarov, M.Yu. Uleysky

Laboratory of Nonlinear Dynamical Systems, V.I. Il’ichev Pacific Oceanological Institute
of the Far-Eastern Branch of the Russian Academy of Sciences,

43 Baltiiskaya st., 690041 Vladivostok, Russia, URL: http://dynalab.poi.dvo.ru

Abstract

Binary discrete nonlinear Schrödinger equation is used to describe dy-
namics of two-species Bose-Einstein condensate loaded into an optical lattice.
Linear inter-species coupling leads to Rabi transitions between the species.
In the regime of strong nonlinearity, a wavepacket corresponding to con-
densate separates into localized and ballistic fractions. Localized fraction is
predominantly formed by immiscible solitons consisted of only one species.
Initial states without spatial separation of occupied sites expose formation
of immiscible solitons after a strongly chaotic transient. We calculate the
finite-time Lyapunov exponent as a rate of wavepacket divergence in the
Hilbert space. Using the Lyapunov analysis supplemented by Monte-Carlo
sampling, it is shown that appearance of immiscible solitons after the chaotic
transient corresponds to self-stabilization of the wavepacket. It is found that
onset of chaos is accompanied by fast variations of kinetic and interaction
energies. Crossover to self-stabilization is accompanied by reduction of con-
densate density due to emittance of ballistically propagating waves. It turns
out that spatial separation of species should be a necessary condition for
wavepacket stability in the presence of linear inter-species coupling.
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1. Introduction

Discrete nonlinear Schrödinger equation (DNLSE) being coupled system
of nonlinear ordinary differential equations occurs in variety of physical prob-
lems [1]. For example, DNLSE describes light propagation in periodic waveg-
uide arrays. If the array consists of two distinct chains coupled to each other,
then a light wavefield is governed by the binary DNLSE [2]. Recently such
configuration was exploited for optical simulation of neutrino oscillations,
and formation of neutrino solitons was predicted [3]. In quantum optics,
DNLSE is utilized for studying Bose-Einstein condensate (BEC) loaded into
an optical lattice. Binary DNLSE occurs if the condensate is a mixture of
two different atomic species. The species may correspond to different atoms,
for example, 133Cs and 87Rb [4]. Another possibility is the mixture of atoms
of the same sort but belonging to different hyperfine states [5]. In the latter
case the species can be transformed to each other by means of external elec-
tromagnetic field giving rise to resonant transitions between the hyperfine
states.

One of the main properties of the DNLSE is the onset of discrete solitons
and/or breathers when the nonlinearity is strong enough [6–8]. Under certain
conditions, their formation can be studied within the variational approach
that relies upon a priori assumptions about the wavepacket form in course
of its evolution [9]. However, as it was found in a recent work [10], solitons
in the binary DNLSE can arise spontaneously after a transient regime of
highly irregular dynamics, when the variational approach doesn’t apply. A
distinctive feature of such solitons is that they consist of only one species
and well separated from each other. In the case of BEC mixtures loaded into
optical lattices, onset of one-species (i.e., immiscible) solitons corresponds
to the miscible-immiscible quantum phase transition [11–13] being a form of
spontaneous symmetry breaking [14, 15].

In the present work, we examine the link between the spontaneous for-
mation of matter-wave solitons and Lyapunov stability. Our attention is
concentrated on the regime of strong nonlinearity that corresponds to more
extensive interaction between atoms and anticipates more pronounced man-
ifestation of chaos.

The paper is organized as follows. In the next section we describe the
model under consideration. Section 3 represents some generic features of con-
densate chaotic dynamics and soliton formation. The Monte-Carlo method
is utilized for studying various aspects of wavepacket dynamics in Section
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4. Section 5 is devoted to discussion of the main results and outlines some
prospects for further research.

2. Basic equations

Binary DNLSE is given by the set of coupled ODE

i~
dan
dt

= −J

2
(an−1 + an+1) + g11|an|2an + g12|bn|2an −

~Ω

2
bn,

i~
dbn
dt

= −J

2
(bn−1 + bn+1) + g22|bn|2bn + g21|an|2bn −

~Ω

2
an.

(1)

Our interest is mainly motivated by the problem of BEC dynamics in optical
lattices. In this way, Eqs. (1) describe motion of two-species BEC mixture,
where the species correspond to different hyperfine states. Quantities an and
bn are complex-valued amplitudes of BEC wave function at the lattice site
n. J is a hopping rate quantifying tunneling between neighbouring sites. Ω
is a Rabi frequency being the rate of inter-species transitions between the
hyperfine states under the action of the external rf radiation. Nonlinear-
ity coefficients gij are determined by s-wave scattering lengths and quantify
strength of interaction between atoms. As in Ref. [10], we assume that the
interaction between atoms belonging to different hyperfine states is weak and
can be neglected, g12 = g21 = 0. Indeed, both intra-species and inter-species
scattering lengths can be readily tuned in experiments by means of the Fes-
hbach resonance [16, 17], that is, one has some freedom in choosing their
values. Also, it should be noted that intra-species dynamics rather depends
on the difference of nonlinearity parameters

∆g = g11 + g22 − g12 − g21, (2)

than on their absolute calues [12, 18], therefore one can regard the case of
g12 = g21 = 0 (g11,22 6= 0) as the limiting regime when intra-species interaction
dominates. As both species correspond to same sort of atoms, one can set
g11 = g22 ≡ g. Thus, we arrive to a simplified form of (1)

i~
dan
dt

= −J

2
(an−1 + an+1) + g|an|2an −

~Ω

2
bn,

i~
dbn
dt

= −J

2
(bn−1 + bn+1) + g|bn|2bn −

~Ω

2
an,

(3)
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Equations (3) can be also considered as the semiclassical limit of the corre-
sponding two-species Bose-Hubbard model [13]. Hereafter we shall use the
normalization condition

N
∑

n=−N

ρn = 1, ρn = |an|2 + |bn|2, (4)

where ρn is population of the site n, 2N + 1 is total number of sites. Ampli-
tudes an and bn can be represented as

an =
√

Ane
iαn , bn =

√

Bne
iβn , An, Bn, αn, βn ∈ ℜ. (5)

Substituting (5) into (1), we can rewrite (1) in the Hamiltonian form

dAn

dt
= − ∂H

∂αn

,
dαn

dt
=

∂H

∂An

,

dBn

dt
= − ∂H

∂βn

,
dβn

dt
=

∂H

∂Bn

.

(6)

The corresponding Hamiltonian is given by the sum

H = Hkin +HRabi +Hint, (7)

where

Hkin = −J

N−1
∑

n=−N

[
√

AnAn+1 cos(αn − αn+1) +
√

BnBn+1 cos(βn − βn+1)] (8)

is the kinetic energy,

HRabi = −Ω
N
∑

n=−N

√

AnBn cos(αn − βn) (9)

is the energy of inter-species coupling, or Rabi energy,

Hint =
g

2

N
∑

n=−N

(A2
n +B2

n) (10)

is the energy of interaction between atoms belonging to the same species.
Formally, the Hamiltonian described by (7)–(10) looks as Hamiltonian of a
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binary chain of classical particles with nearest-neighbour coupling that de-
pends on An and Bn playing the role of “particle velocities”. Continuing this
analogy, the term Hint enters into the Hamiltonian as the “particle kinetic
energy”, and g is the inverse “mass”. One can easily see that in the limit
J,Ω → 0 the equations (6) become integrable. This case corresponds to
formation of one-site standing solitons, also known as compactons [19–21].
Presence of weak inter-cite couplings should not drastically destroy the inte-
grability. One may expect that weak couplings should lead to the onset of
exponential soliton tales. Thus, we can anticipate that formation of stable
solitonic solutions should require interaction energy to be large compared to
the kinetic and Rabi energies. This suggest that such solitons should be well
spatially separated (in order to reduce the kinetic energy) and consist of only
one species (to reduce the Rabi energy). Results of [10] indicate that solitons
of this kind can arise spontaneously, provided wavepacket spreading is weak.

It is informative to consider the case of J = 0 corresponding to a very
deep lattice where neighbouring sites are decoupled. In this case Eqs. (6)
can be transformed to the following form:

dzn
dt

= −Ω
√

1− z2n sinχn,
dχn

dt
= gρnzn +

Ωzn√
1− z2

cosχn, (11)

where

zn =
An − Bn

ρn
, χn = αn − βn. (12)

Equations (11) originate from the Hamiltonian

H̃n(zn, χn) =
gρnz

2
n

2
− Ω

√

1− z2n cosχn. (13)

Qualitative behavior described by the Hamiltonian (13) crucially depends on
the parameter

Λn =
gρn
Ω

. (14)

If Λn < 1, any trajectory of (11) is rotation in phase space around one of the
center fixed points located at zn = 0, χn = kπ, k = 0, 1 [22]. It corresponds
to oscillations of the population imbalance zn with zero mean. If Λn > 1,
the fixed point located at zn = 0, χn = π undergoes the pitchfork bifurca-
tion and transforms into three fixed points, one saddle and two centers. The
newborn center fixed points are located at zn = ±

√

1− Λ−2
n , χn = π. Each
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of them is surrounded by a domain of population imbalance oscillations with
non-zero mean, that is, one species dominates over another. This regime can
be referred to as the internal self-trapping. Further growth of the interac-
tion strength g moves the center fixed points towards the limiting values of
population imbalance, zn = ±1, and phase space area corresponding to the
internal self-trapping increases.

3. Wavepacket dynamics for various initial conditions: main fea-

tures
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Figure 1: Participation ratio vs time for various forms of initial conditions.

In the present work we are aimed in studying formation of immiscible (i.e.,
one-species) solitons. Therefore we consider the regime of relatively strong
nonlinearity Eint/J ≫ 1, where Eint = Hint(t = 0). We use the following
initial condition:

an(t = 0) = A(p) exp

[

− n2

4σ2

]

cosπpn, bn = 0, (15)

where −N ≤ n ≤ N , the factor A is determined by the normalization con-
dition (4). Parameter σ characterizing wavepacket width is taken of 10.
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According to results of [9, 10], spatial dynamics of condensate depends on
Eint and the parameter p describing spatial modulation. We consider three
values of p: p = 0 corresponding to the in-phase state, p = 1 corresponding
to the state with checkboard sequence of phases at lattice sites, and p = 0.5
corresponding to the checkboard sequence, where all occupied sites are sep-
arated from each other by unoccupied ones.

Throughout this paper we use the following values of parameters: J =
2, Ω = 1, Eint = 5. It corresponds to the regime of strong nonlinearity
anticipating extensive creation of localized states due to self-trapping. As
values of the tunneling rate J and Rabi frequency Ω are of the same order,
one should expect strong interplay between spatial and internal dynamics. In
numerical simulation, we used lattices with N ranging from 4000 to 10000. A
particular value for each calculation is chosen in order to avoid the influence of
boundaries, therefore, it depends on a rate of spatial wavepacket expansion.

To quantify self-trapping, it is reasonable to consider participation ratio

Γ =
1

∑

n

ρ2n
(16)

being approximate number of occupied lattice sites. Figure 1 showing the
time dependence of participation ratio confirms the significance of spatial
modulation. Notably, self-trapping observed in the case of checkboard se-
quences p = 0.5 and p = 1 is much stronger than in the case of the in-phase
state p = 0.

As it was shown in [10], spatial self-trapping is accompanied by inter-
nal self-trapping, i.e., Rabi inter-species oscillations are suppressed and each
soliton is predominantly formed by one species. We can call such solitons
as immiscible solitons. As long as condensate fractions corresponding to the
first and second species generally differ, total population imbalance

Z =
∑

n

ρnzn =
∑

n

|an|2 −
∑

n

|bn|2. (17)

can significantly deviate from zero. Time dependence of the total population
imbalance is shown in Fig. 2. It is highly irregular indicating incoherence of
Rabi oscillations running at different lattice sites. The first species notably
dominates in the regime of the strongest self-trapping, corresponding to p =
0.5. In contrast, the curves corresponding to p = 0 and p = 1 imply the
presence of immiscible solitons corresponding to both species in comparable
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Figure 2: Total population imbalance vs time for various forms of initial conditions.

amounts. These suppositions are well confirmed by Fig. 3 illustrating wave
states at t = 500π. Each of the panels (a)–(c) represents series of localized
immiscible states. In the case of p = 0.5, all such states correspond to
the first species, while the whole pattern looks like slightly distorted initial
condition. In contrast, both species are present in the cases of p = 0 and
p = 1, and there is no apparent similarity between the wavepacket patterns
and the corresponding initial conditions. Absence of the similarity suggests
that the patterns depicted in Fig. 3(a) and (c) should result from complicated
evolution.

Metamorphoses happening to wavepackets are revealed in time depen-
dences of population imbalance zn and population ρn on individual lattice
sites where solitons are pinned. Let’s consider the case of p = 0 and the
states localized at n = 0 and n = 5. The corresponding results are presented
in Figure 4. On the initial stage, population imbalance experiences several
bursts of stochastic oscillations until becomes localized near the limiting val-
ues: of -1 (for n = 0) or 1 (for n = 5). Comparing the time dependences
of zn and ρn, one can see that stabilization of zn coincides with stabilization
of ρn. It implies that the stabilization happens when matter flux through
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Figure 3: Squared modulo of wavefunctions corresponding to the first (solid) and second
(dotted) species at t = 500π. (a) p = 0, (b) p = 0.5, (c) p = 1.
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Figure 4: Population imbalance (panels (a) and (b)) and population (panels (c) and (d))
at the lattice sites with n = 0 ((a) and (c)) and n = 5 ((b) and (d)).

a site ceases. To achieve it, this site should have much larger population
than on neighbouring sites, as this provides the spatial self-trapping [23].
It means that solitons are nucleated on specific density fluctuations. There
is close analogy to emergence of solitons on impurities under conditions of
spatiotemporal chaos [24].

According to Fig. 3, the state at n = 0 consists of both species. Presence
of the second species reveals itself in sporadic variations of z0 and ρ0 which are
absent in the case of n = 5. So, it turns out that admixture of another species
acts as a destabilizing factor for dynamics, that is, well-isolated immiscible
states should be the most stable configuration.

To describe the resulting solitonic patterns, we need a properly defined
order parameter. Total population imbalance looks as a good candidate as it
becomes non-zero as solitons appear, except for the case when solitons of dif-
ferent species give equal contributions and therefore compensate each other.
In fact, the latter phenomenon can be readily considered as a rare event and
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Figure 5: The order parameter being the population imbalance averaged over time interval
[900π : 1000π] as function of parameters Eint and p characterizing the initial condition.

therefore neglected. To eliminate contribution of non-solitonic states, we
can average population imbalance over sufficiently long time interval. This
interval must correspond to large enough times when all transient regimes
are completed, and a wave field achieves some equillibrium state. Thus, we
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arrive to the following definition:

Ξ =
1

∆

t′
∫

t′−∆

Z(t) dt, (18)

where t′ = 1000π, ∆ = 100π. Figure 5 demonstrates phase diagram of
condensate in coordinates p and Eint. Fine-grained structure of the diagram
indicates high sensitivity of the order parameter to small changes in initial
conditions, that is typical for chaos. Nevertheless, one can see vertical stripes
with the prevailence of white, in particular, at p = ±0.5. These regions
correspond to initial conditions which are more favorable for the solitons of
the first species. Uniform region below the fine-grained pattern corresponds
to dynamics without self-trapping, when population imbalance oscillates with
zero mean.

4. Monte-Carlo sampling

4.1. Perturbation of initial conditions
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Figure 6: Ensemble-averaged participation ratio (a) and its standard deviation (b) vs time.

Extreme sensitivity of wavepacket dynamics to small changes of initial
conditions burdens analysis of physical condensate properties. Therefore,
it is reasonable to use some statistical averaging in order to smooth that
sensitivity out. Following this aim, we impose random perturbation on an
initial state

a(t = 0) = a(0)(t = 0) + ν,

b(t = 0) = b(0)(t = 0) + ξ,
(19)
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where a(0)(t = 0) and b(0)(t = 0) are given by (15). Then we carry out
the Monte-Carlo sampling over ν and ξ realizations. Components of vectors
ν and ξ are Gaussian random variables whose moments obey the following
formulae:

〈ν∗

kξk〉 = 0, 〈ν∗

kνl〉 = 〈ξ∗kξl〉 = δkl
ε

σ
√
2π

exp

[

− k2

2σ2

]

, (20)

where δkl is the Kronecker symbol, and σ takes on the same value as for
original initial conditions. Taking into account the normalization condition
(4), we set ε = 0.01 providing weakness of the perturbation (19).
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Figure 7: Ensemble-averaged wavepacket width defined by formula (21) as function of
time.

4.2. Spatial vs internal dynamics

Now let’s consider ensemble-averaged picture of spatial and internal dy-
namics. Ensemble-averaged participation ratio 〈Γ〉 being a good indicator
of the spatial self-trapping evolves in a very similar way as for non-distorted
initial conditions (15). For all values of p, 〈Γ〉 achieves a plateou and becomes
almost constant, implying onset of self-trapping (see Fig. 6(a)). In the case
of the in-phase state p = 0, the plateou corresponds to significantly larger
values of 〈Γ〉 reflecting weaker self-trapping. Comparing Figs. 1 and 6(a),
one can conclude that ensemble averaging smoothes out the small-scale fluc-
tuations of participation ratio that are present in Fig. 1. Time dependence
of σΓ, being standard deviation of Γ, deserves an intent look. In the case of
p = 0.5 it is almost constant, and the ratio σΓ/ 〈Γ〉 ≃ 0.02 is very low re-
vealing stable tendency to self-trapping. In contrast, σΓ for p = 0 and p = 1
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Figure 8: Ensemble-averaged total population imbalance (a) and its standard deviation
(b) vs time.

varies non-monotonically with time. Its local maximum precedes stopping of
wavepacket expansion and onset of the self-trapping. After the self-trapping
is happened, the standard deviation of Γ becomes nearly constant, and ratio
σΓ/ 〈Γ〉 is approximately three times larger than in the case of p = 0.5. It
indicates significantly higher diversity of solitonic configurations emerged.

Spatial expansion of a wavepacket can be described by the quantity

σx =
1√
M

√

∑

k

∆2
m, ∆m =

∑

n

n2ρ(m)
n −

(

∑

n

nρ(m)
n

)2

, (21)

where index m numbers realizations of perturbations ν and ξ, M is total
number of realizations. Figure 7 shows that wavepackets are spreading bal-
listically despite of the spatial self-trapping and onset of solitons. It means
coexistence of ballistic and localized parts of the condensate. Comparing
the data corresponding to different p, we see that the most fast spreading is
observed for the in-phase state.

Time dependence of the ensemble-averaged total population imbalance
〈Z〉 has remarkable differences with that for non-distorted initial conditions.
After rapid decreasing in the beginning, all the curves achieve a plateou whose
position depends on initial state (see Fig. 8(a)). In the case of p = 0.5 the
plateou corresponds to 〈Z〉 = 0.74 reflecting dominance of the first species.
On the other hand, both species have the same statistical weights in the
case of the in-phase state p = 0. Dynamics of the state p = 1 corresponds
to an intermediate regime, when dominance of the first species is not so
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pronounced as in the case of p = 0.5. Also, the case of p = 1 demonstrates
the largest values of standard deviation σZ indicating the highest sensitivity
of Rabi oscillations to small variations of initial conditions.

4.3. Lyapunov analysis

As it was shown in the preceding section, dynamics of binary BEC in
an optical lattice in the regime of strong nonlinearity can exhibit highly
irregular behavior. Extreme sensitivity to small distortions of a wavepacket
infers dynamical chaos. As Eqs. (3) are nonlinear ODE, onset of chaos is
not surprising [25–27]. As it was shown in [28], onset of dynamical chaos in
BEC dynamics is closely related to the process of condensate depletion due
to partial thermalization.

Chaos strength can be quantified by means of the maximal Lyapunov
exponent. To determine it, we can use a concept being the discretized version
of the definition used in [29]. In that work one considers distance between
two wave states in the Hilbert space

D(t) =
1

2
〈Ψ′ −Ψ|Ψ′ −Ψ〉 , (22)

where Ψ and Ψ′ are solutions of the nonlinear Schrödinger equation with
infinitesimal difference in initial conditions. Then the Lyapunov exponent
can be determined as

λ = lim
t→∞

lim
D(0)→0

1

2t
ln

D(t)

D(0)
. (23)

In analogy with [29], we can define the Lyapunov exponent for the binary
DNLSE as

λ = lim
t→∞

lim
d(0)→0

1

2t
ln

d(t)

d(0)
, (24)

where

d(t) =
1

2

∑

n

(δa∗nδan + δb∗nδbn), (25)

δan = ãn − an, δbn = b̃n − bn, (26)

and the tilde denotes a solution with slightly perturbed initial conditions.
Despite of the importance of λ as a chaos descriptor, it corresponds to the

infinite-time limit and therefore doesn’t give physically relevant information
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about intermittency in course of evolution [30]. Therefore, it is reasonable
to consider finite-time Lyapunov exponent (FTLE)

λ∆t(t̄) =
1

2∆t
lim

d(t0)→0
ln

d(t0 +∆t)

d(t0)
, t̄ = t0 +

∆t

2
. (27)
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Figure 9: Mean finite-time Lyapunov exponent with ∆t = 10π (a) and its rms value (b)
vs time.

Figure 9(a) demonstrates time dependence of the mean FTLE. The curves
corresponding to p = 0 and p = 1 reveal a crossover from chaotic to regu-
lar dynamics with increasing time. Standard deviation of the FTLE varies
non-monotonically with time, as is shown in Fig. 9(b). Its maximum approxi-
mately corresponds to the time moment when nearly half of realizations have
come into the regular regime. Notably, the crossover happens almost simul-
taneously for p = 0 and p = 1. As opposed to this, there is no apparent
crossover in the case of p = 0.5, and the mean FTLE, as well as its standard
deviation, varies slowly with time. Values of the mean FTLE correspond
to relatively weak chaos as compared to the initial stages in the cases of
p = 0 and p = 1. Such behavior implies that the wavepacket with p = 0.5 is
close to some long-living state and therefore doesn’t experience any drastic
changes of dynamics. On the other hand, this case doesn’t exhibit the self-
stabilization as in the cases of p = 0 and p = 1. It means the presence of
weak but persistent instability, that is, the initial state with p = 0.5 should
be rather regarded as metastable one.
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Figure 10: Ensemble-averaged interaction (a-b), kinetic (c-d) and Rabi (e-f) energies vs
time for various initial conditions. Figures in the right column represent enlarged view of
the beginning time intervals.
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4.4. Energy analysis

Energy conversion between components of the Hamiltonian (7) allows
one to recover some specific features of wavepacket dynamics during the
formation of immiscible solitons. Temporal variations of the interaction,
kinetic and Rabi energies are presented in Fig. 10. One can see that exchange
between the interaction and kinetic energies dominates, while variations of
the Rabi energy are much lower in magnitude.

Firstly, let’s consider in detail the interaction energy (10). Owing to its
definition, the interaction energy can serve a measure of wavepacket concen-
tration and soliton formation. Quite surprisingly, the highest values of the
interaction energy are observed in the case of p = 1, not in the case of p = 0.5
where soliton formation is the most pronounced. Another noticeable feature
is extremely fast growth and decreasing of the interaction energy at the very
beginning for p = 1 and p = 0, respectively. Comparison of Figs. 10(a) and
(b) links the drastic variation of the interaction energy with the opposite
variation (decreasing or increasing) of the kinetic energy. Intuitively, one
can suggest that abrupt energy conversion should be a signature of strong
instability and chaos ignition. So, it turns out that initial conditions with
p = 0 and p = 1 are energetically unstable, in contrast to the case of p = 0.5.

Another remarkable feature of the kinetic energy variations, presented in
Fig. 10(b), is that the curves corresponding to different p converge. It is
reasonable to suggest that the main contribution into the kinetic energy is
given from the ballistic fraction of condensate. This ballistic fraction cor-
responds to small-amplitude wavepackets emitted from the region occupied
by solitons, i.e., the wavepacket origin. However, one should keep in mind
that volume of the ballistic fraction strongly depends on p. For instance, it
is much smaller in the case of p = 0.5 than for other initial conditions. This
phenomenon can be explained by the difference in total energy determined
by the sum (7). Despite the absolute values of the kinetic energy are close
to each other, their fractions in the total energy are different. So, relative
contribution of the kinetic term into the total energy is the largest for p = 0
and smallest for p = 0.5.

Rabi energy (9) can be regarded as a measure of inter-species miscibility.
Its time dependence is illustrated in Fig. 10(c). It is noticeable that the fast
ignition of chaos for p = 0 and p = 1 in the beginning is accompanied by
abrupt fast variations of the Rabi energy. Firstly, the Rabi energy fastly
grows due to generation of the second species, and then there happens rapid
spatial demixing of species. In the case of p = 0 the species become almost
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completely demixed, that is, the ensemble-averaged Rabi energy is nearly
zero. The demixing stage lasts several Rabi cycles. After that the Rabi
energy starts increasing again, indicating creation of miscible states in the
ballistic fraction. However, smallness of the Rabi energy variations infers
smallness of population of miscible states. The main contribution into the
miscible fraction is given from emitted ballistic wavepackets. Indeed, they
have significantly lower density than localized states and, therefore, don’t
experience the internal self-trapping.

It is informative to study how the kinetic and interaction energies are
distributed over species. It can be done by means of the quantities

ha,b
kin =

〈

Ha,b
kin

〉

〈ρa,b〉
, ha,b

int =

〈

Ha,b
int

〉

〈ρa,b〉
, (28)

where

Ha
kin = −J

N−1
∑

n=−N

√

AnAn+1 cos(αn − αn+1),

Hb
kin = −J

N−1
∑

n=−N

√

BnBn+1 cos(βn − βn+1),

(29)

Ha
int =

g

2

N
∑

n=−N

A2
n, Hb

int =
g

2

N
∑

n=−N

B2
n, (30)

ρa ≡
∑

n

|an|2, ρb ≡
∑

n

|bn|2, (31)

and angular brackets denote ensemble averaging. By definition, ha,b
kin and ha,b

int

can be thought of as one-species densities of the kinetic and interaction en-
ergies, respectively. According to the data shown in Figure 11, only in the
case of the in-phase state p = 0 the energy densities are equally distributed
among the species. In the cases of the checkboard states p = 0.5 and p = 1,
the first species predominantly concentrates the interaction energy, while the
second one has the larger kinetic energy. So, we can conditionally refer to
them as “heavy” and “light” species, correspondingly. The heavy species is
more apt to soliton formation, while the light species is more responsible for
wavepacket spreading. Rabi inter-species coupling tends to remove distinc-
tion between the light and heavy species, at least, on statistical average, as
in the case of p = 0.
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Figure 11: One-species kinetic (a, c, e) and interaction (b, d, f) energy densities as func-
tions of time for initial states with p = 0 (a, b), p = 0.5 (c, d), p = 1 (e, f).

4.5. Spatial separation of species

It should be noted that the initial states (15) for p = 0, 0.5 and 1 are
spatially symmetric. In the absence of random perturbations ν and ξ, this
symmetry is preserved in course of evolution, even in the regime of dynam-
ical chaos. It leads to the absence of center-of-mass motion. Inclusion of
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Figure 12: Ensemble-averaged distance between species centers of mass vs time.

random perturbations (19) violate the spatial symmetry and there appears
a possibility for mutual displacement of species, especially under the misci-
ble/immiscible crossover. Let’s denote distance between species centers of
mass as

∆n = 〈|na − nb|〉 , (32)

where

na =

∑

n n|an|2
∑

n |an|2
, nb =

∑

n n|bn|2
∑

n |bn|2
. (33)

Figure 12 shows that inter-species distance increases, on average, linearly
with time, implying motion with constant velocity. The velocity depends
on the parameter p: it is the largest in the case of p = 0.5, while p = 0
corresponds to the smallest velocity. Comparison of this dependence to the
data presented in Fig. 8 indicates connection of the species separation to
dynamics of Rabi inter-level oscillations. Indeed, it is reasonable to suggest
that inter-species transformation has to reduce mean inter-species distance.
So, the fastest separation is observed in the case of p = 0.5, when Rabi
oscillations are suppressed by the internal self-trapping.

5. Results and discussion

The present work is devoted to study of the binary discrete nonlinear
Schrödinger equation (DNLSE) describing dynamics of two-species Bose-
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Einstein condensate loaded into an optical lattice. Different species are cou-
pled to each other by external rf radiation causing inter-species transitions.
Attention is concentrated on soliton formation and the miscible/immiscible
crossover in the regime of strong nonlinearity, corresponding to high conden-
sate density and/or strong inter-atomic coupling. We consider the case of
comparable rates of tunneling and inter-species transitions, that is, these pro-
cesses are competing with each other. It is found that condensate dynamics
qualitatively depends on configuration of the initial state. The state being a
sequence of occupied and unoccupied sites (p = 0.5) exposes relatively stable
dynamics with strong impact of self-trapping in both spatial and internal de-
grees of freedom. In contrast, initial states without unoccupied holes inside
expose strong dynamical chaos revealing itself in highly irregular behavior of
spatial structure and internal state. Onset of chaos is accompanied by dras-
tic jump-like variations of the kinetic and interaction energies. Such jumps
suggest that the corresponding initial conditions are far from bound states.
So, one can conclude that stable solitonic configuration is possible only under
spatial separation of solitons, like in the case of p = 0.5.

Strength of chaos can be quantified by analysing evolution of distance in
the Hilbert space between two initially close states. It allows one to define
the corresponding Lyapunov exponent, as well as its finite-time counterpart.
Lyapunov analysis shows that, after some beginning time interval, chaos
ceases and dynamics acquires stability. Stabilization is accompanied by divi-
sion of condensate onto localized and delocalized fractions. Localized fraction
represents some kind of a equillibrium state being close to one of bound states.
It consists of immiscible and spatially separated solitons. However, neither
the positions of solitons nor the species they are formed by are predictable.
Analysis by means of Monte-Carlo sampling shows that statistical properties
of this equillibrium state also depend on a form of an initial state. In partic-
ular, the initial state with the checkboard phase configuration (p = 1) leads
to equillibrium states with higher density and, therefore, shows stronger ten-
dency to spatial and internal self-trapping. In contrast, the in-phase initial
state (p = 0) exposes stronger impact of Rabi inter-species transitions that
is reflected in zero ensemble-averaged population imbalance.

Phenomenon of the chaos-assisted soliton formation in Bose-Einstein con-
densates can be thought of as some manifestation of self-organization. Here
one should remind that self-organization basically occurs in dissipative dy-
namical systems. Despite the discrete nonlinear Schrödinger equation has a
Hamiltonian form, this is a dynamical system with many degrees of freedom
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that can exhibit dissipative features. In our particular case the important
role is played by generation of the delocalized fraction. Leaving the region
of strong interaction, this fraction carries away some part of energy and
thereby facilitates the self-organization. In this way there arises a question:
how long the self-organization can be affected by the presence of a confining
potential that is always present in experiments? Another issue deserving
to be addressed is influence of effects which are not taken into account by
the mean-field aprroximation the DNLSE relies upon. In particular, chaos
infers emergence of condensate excitations and generation of non-condensed
fraction [28]. These issues are worth from the viewpoint of experimental
observation of the chaos-assisted soliton formation. They will be studied in
forthcoming works.

5.1. Conclusions

Main results of the work can be formulated as follows:

• stable solitonic configuration consists of spatially separated immiscible
solitons;

• onset of chaos can be accompanied by jumps of kinetic and interaction
energies;

• solitonic pattern undergoes the spontaneous self-stabilization after emit-
tance of ballistically propagating waves;

• the crossover to the self-stabilization and formation of stable immiscible
solitons are reflected in remarkable lowering of the finite-time Lyapunov
exponent, characterizing divergence of wave states in the Hilbert space.
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