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Abstract

Delay differential equations take into account the transmission time of the information. These

delayed signals may turn a predictable system into chaotic, with the usual fractalization of the phase

space. In this work, we study the connection between delay and unpredictability, in particular we

focus on the Wada property in systems with delay. This topological property gives rise to dramatical

changes in the final state for small changes in the history functions.
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I. INTRODUCTION

The objective of this work is twofold: on the one hand, we study the effects of the delay

in nonlinear dynamical systems, focusing on their associated uncertainty; on the other hand,

we study the emergence of the Wada property when delays are involved.

Delay differential equations (DDEs) take into account the time taken by systems to sense

and react to the information they receive, in other words, that the information transmission

cannot be instantaneous, but delayed. For practical purposes, these lags can often be ignored

when their timescales are very small compared to the dynamics of the system. However,

there are situations where large delays cannot be overlooked: genetic oscillators [1], neuron

networks [2], respiratory and hematopoietic diseases [3], electronic circuits [4], optical devices

[5], engineering applications [6], etc. Delay differential equations provide a very useful

tool for the modelling of the previous examples. Moreover, they are able to display such

interesting kind of dynamics as deterministic brownian motion [7], hyperchaos [8] and many

cooperative effects [9–11]. It is also important to mention that DDEs have the property of

time-irreversibility [12], which introduces further difficulties in the analysis but also gives a

more realistic perspective of many processes.

A crucial feature of DDEs is that they need an infinite set of initial conditions to be

integrated. This set is usually called history and provides the state of the system before

the action of the delayed terms. Sometimes history is set randomly, although given the

sensitivity of some systems with delay and the difficulties arising when an infinite set of

initial random points is needed, the choice of random histories is a delicate issue. A better

option is to set the history as the solution of the system without the delayed terms. Another

possibility are history functions described by some parameters and properly chosen for each

physical situation.

A convenient way to handle this infinite number of initial conditions is to define history

functions characterized by a finite number of parameters. This supposes a huge difference

with respect to nonlinear systems modelled with ordinary differential equations (ODEs),

since the space of the history functions and the real phase space are not in correspondence.

Therefore, basins of attraction, which are a very powerful tool to study sensitivity in dissi-

pative systems, have a different nature in DDEs.

In dissipative dynamical systems defined by ODEs, the basins of attraction register in a
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plot the attractors reached by different initial conditions. In DDEs the same idea can be

exploited: we can plot basins of attraction varying the parameters of the history functions.

These basins are subspaces of the infinite dimensional space of history functions, but still

can provide much information about the sensitivity of the system. Only a few authors have

studied basins of attraction in DDEs [13–15]. In this work, we study how the delay can

induce uncertainty in the system, and we pay special attention to the appearance of the

Wada property in these basins of attraction made out of different history functions.

The Wada property is a topological property that can be stated as follows: given more

than two open sets, they all share the same boundary. This situation is very counter-

intuitive, since most boundaries are only between two sets. In some cases there might be

some points or regions that separate more than two open sets, but the case where every

point in the boundary is in the boundary of all the sets is unique.

This topological curiosity was first reported by Kunizo Yoneyama [16], who attributed its

discovery to his teacher Takeo Wada. Later on, the research work done by James Yorke and

coworkers contributed to relate the Wada property with nonlinear dynamics [17–20]. They

found that the basins of attraction of simple physical systems such as the forced pendulum

can possess theWada property [19]. In these seminal works, they gave a topological argument

showing that the origin of this property was an unstable manifold crossing all the basins

[18]. After that, the Wada property has been found in a variety of models associated to

physical phenomena [21–23].

The interest in the Wada property lies on the fact that their boundaries are the most

entangled one can imagine, since they separate all the basins at the same time. Therefore,

small perturbations near the boundaries can lead to any of the different attractors of the

system. Recently, Zhang and Luo [24] have studied an intermediate situation, where some

regions have the Wada property but others do not, so they call this situation partial Wada

basins.

The Wada property also appears in systems with more than two degrees of freedom [25–

27]. In these cases the basins have more than two dimensions and the subspaces generally

show the disconnected Wada property: the different basins share the same boundary but

they are disconnected. These disconnected Wada basins can be analyzed by means of the

techniques developed in [28].

The aim of this work is to investigate the connection between delay and unpredictability,
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looking also for the Wada property in systems with delay. We organize this search as follows.

In Sections II and III we introduce two delayed systems that present different degrees of the

Wada property. Finally, in Section IV we briefly summarize and discuss our main results.

II. FORCED DELAYED ACTION OSCILLATOR

We start studying an apparently simple system sometimes called the delayed action oscil-

lator (DAO). It is a single variable system with a double-well potential and a linear delayed

feedback with constant time delay τ , that we will denote xτ . It can be stated as follows,

ẋ+ x((1 + α)x2 − 1)− αxτ = 0. (1)

where α, τ ∈ R. Boutle et al. [29] proposed this model in the context of the ENSO (El Niño

Southern Oscillation) phenomenon, where the variable x represents the temperature anomaly

of the ocean’s surface. In [30] the authors analyze the stability and bifurcations of this system

by a center manifold reduction. They demonstrate that as the delay increases beyond a

critical value τc, the steady state solution x = 0 can undergo a Hopf bifurcation giving rise

to a limit cycle. Without the delayed term, this system would be a one-dimensional ODE and

could not oscillate, but the linear delayed feedback makes the system infinite-dimensional

allowing oscillatory dynamics. In the case that α > −1 and τ > τc the limit cycle coexists

with two stable fixed points, so the system can be multistable. To visualize the situation in

a plot, we choose the following family of history functions defined by two parameters A and

B,

x(t) = A +Bt, ∀ t ∈ [−τ, t0] . (2)

Unless specified, this linear equation will be the family of history functions chosen by default

along the paper. Now, we can compute a basin of attraction varying A and B. Figure 1

(a) represents the basin for α = −0.95 and τ = 1.065, below the critical value τc. It is

interesting to notice the analogy between the DAO and the well-known Duffing oscillator

ẍ+ γẋ+ x(x2 − 1) = 0. (3)

The structure of its basin of attraction is very similar to the DAO model as shown in Fig.

1 (b). However it is important to notice that the two basins have different nature: we have
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(a) (b)

Figure 1. Comparison between the delayed action and Duffing oscillators. (a) Basin of

attraction of the delayed action oscillator ẋ + x((1 + α)x2 − 1) − αxτ = 0. with α = −0.95 and

τ = 1.065. (b) Basin of attraction of the Duffing oscillator ẍ+ γẋ+ x(x2 − 1) = 0. with γ = 0.15.

Both figures show a similar topology, but Fig.1 (b) represents only a slice of the infinite dimensional

space of history functions, given by the family of history functions of Eq. 2.

the real phase space for the Duffing oscillator and a slice of the infinite space of history

functions in the case of the DAO.

At this point it is important to make a connection with Ref. [21]. In that work, Aguirre

and Sanjuán studied the Duffing oscillator driven by a periodic forcing F sinωt on the right

hand side of Eq. (3). They showed that if the parameters are carefully chosen (γ = 0.15, ω =

1, F ∈ (0.24, 0.26)) the system can display the Wada property. Making a naive analogy, it

is plausible that we will encounter the same effect by including the periodic forcing in the

DAO such as

ẋ+ x((1 + α)x2 − 1)− αxτ = F sinωt. (4)

For α = −0.925, τ = 1.065, F = 0.525 and ω = 1, this system presents three attractors (see

Fig. 2(a)). Given the periodic forcing, we can make a stroboscopic map taking t = 2πn, n ∈

Z. In this map, two of these attractors are period three orbits, suggesting the possibility of

chaotic dynamics in the system [31]. In fact, a chaotic attractor exists for other parameters.

For the chosen set of parameters, we can tell that it is the delay that makes possible the
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appearance of chaotic dynamics in the phase space. Otherwise for τ = 0, the system would

have a dimension equal to two, forbidding any chaotic motion.

A few authors have studied the relation between delay and chaos [32, 33], but the delay

was always considered in a nonlinear term. We show here that a linear delayed feedback

can also induce chaos in a continuous system. Some systems displaying chaos have been

modified with a linear delayed feedback, preserving the chaotic motion [13]. But in this

model, the linear delayed feedback is providing the extra dimensions that the system needs

to display chaos, in the same way that the delay allows sustained oscillations in a system of

one variable.

The system of Eq. 4 presents transient chaos and possesses three attractors (depicted in

Fig. 2(a)). If we plot the basin of attraction (Fig. 2(b)) we can see that the picture is highly

fractalized and looks like Wada. As discussed before, the Nusse-Yorke method to verify if

the basin is actually Wada is not applicable here since we do not have a correspondence

between the phase space of the history functions and the actual phase space. However, we

can apply our test [28] in order to decide whether it is Wada or not.

The algorithm sets a grid and searches for the points lying on the boundary of two or

three atractors. The test for Wada is conclusive if all the points in the boundary belong

to the boundary of three atractors. Applying our method the 3-boundary has box-counting

dimension equal to 1.602 (see Fig. 2(c)) and the 2-boundary 0.761 (see Fig. 2(d)). The

indicator W3 = 0.990 also reveals that the system is not fully Wada, but only partially

Wada. In fact, if we zoom in we can see that the red and green basins do not mix with the

blue one, so there is a boundary between red and green that they do not share with the blue

basin.

It is clear from the plot of the basin in Fig. 2(b) that the system is highly unpredictable,

but it does not show the Wada property. We have scanned a wide range of parameters and

we have not been able to find the Wada property for the forced DAO of Eq. 4. Perhaps there

are small parameter ranges where the Wada property arises, but since the requirements that

a system must fulfil to exhibit the Wada property are unclear, we cannot assure nor discard

that the forced delayed action oscillator can display the Wada property. Nonetheless, the

delay can induce not only chaos, but also the Wada property, as we will see in the next

section.
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(a) (b)

(c) (d)

Figure 2. Transient chaos induced by linear delay. (a) Attractors of the forced DAO defined

by ẋ+x((1+α)x2−1)−αxτ = F sinωt for α = −0.925, τ = 1.065, F = 0.525, and ω = 1. There is a

period-1 orbit (in the stroboscopic map) and two symmetric period-3 orbits. Trajectories intersect

because this is a projection in (x, ẋ), but the system lives in infinite dimensions in principle. (b)

The basins of attraction are highly mixed, increasing the unpredictability of the system. However,

as panels (c) and (d) show the system is not completely Wada: some points separate only two

basins, so the system is only partially Wada.

III. FORCED DAO WITH NONLINEAR DELAYED FEEDBACK

After studying the forced DAO a question arises: what are the differences between the

forced DAO and the forced Duffing oscillator? In principle, both of them have the same
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nonlinear potential, a periodic forcing and enough dimensions to show chaos, and possibly

Wada. However, there is an important feature that makes them different.

In order to contrast the two systems, let us write on the one hand the forced Duffing

oscillator equation as the following first order autonomous system,

ẋ0 = ω

ẋ1 = −γx1 + x2 + x3

2
+ F sin x0

ẋ2 = x1,

(5)

On the other hand, following a usual technique for delay differential equations (see e.g. [7]),

we can rewrite the forced DAO of Eq. (4) in form of an ODE with infinite dimensions:

ẋ0 = ω

ẋ1 = αxN + x1 − (1 + α)x3

1
+ F sin x0

ẋi =
N

τ
(xi−1 − xi), for i ≥ 2.

(6)

Comparing expressions (5) and (6) we see that they are very similar, but there is one

important difference. In the case of the forced Duffing oscillator (Eq. 5), the evolution of

x1 depends on the nonlinear term of the variable x2. However, in the forced DAO (Eq. 6)

the evolution of x1 depends linearly on xN , and the nonlinearity is in x1 (see table I for an

easy visualization of the two systems side by side).

Forced Duffing Forced DAO expanded

ẋ0 = ω

ẋ1 = −γx1 + x2 + x3
2
+ F sinx0

ẋ2 = x1,

ẋ0 = ω

ẋ1 = αxN + x1 − (1 + α)x31 + F sinx0

ẋi =
N

τ
(xi−1 − xi), for i ≥ 2.

Table I. Comparison between the forced Duffing and the forced DAO. The main difference between

them is that the evolution of x1 depends on the nonlinear term of x2 in the forced Duffing, while

it depends linearly on xN for the forced DAO.

As we mentioned earlier, the conditions for the Wada property are unknown, but in our

exploration of delayed systems we find pertinent to study the system with the delay in the

nonlinear term, looking even more similar to the forced Duffing oscillator. This system can
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be written in the usual manner as

ẋ+ α(x3

τ
− xτ ) + x = F sinωt. (7)

In the expanded version of this equation, we can see that the evolution of x1 depends on the

nonlinear term x3

N
. A careful exploration of the parameter space reveals that for α = 2.5,

τ = 1, F = 1.15, and ω = 1.2 the system has three attractors: one attractor at infinity

(solutions that diverge) and the two period-2 attractors of Fig. 3(a). Plotting the basin of

attraction (Fig. 3(b)), we see that it looks like a disconnected Wada set. The method to

verify the Wada property [28] confirms our intuition after a few steps: every point in the

boundary separates three basins (see Fig. 3(c)) giving a Wada parameter of W3 = 1. The

basins are disconnected because we are only looking at one slice of the infinite dimensional

space of history functions, as it happens in the basins of the 3D scattering of Ref. [26].

For every history function we have tested, no matter how many parameters (dimensions)

it had: the basin always shows the property of Wada. For example, Fig. 3(c) is the plot

of the basins of attraction for the same system with another family of history functions,

a different slice of the infinite dimensional history function space, also showing the Wada

property. These are solid arguments to affirm that the delay induces chaos and gives rise to

the Wada property in the infinite dimensional space of history functions, turning the system

strongly unpredictable and very sensitive to small changes in the history function.

IV. DISCUSSION

In our exploration of the interplay between uncertainty and delay, we have investigated

some simple delayed systems and their basins of attraction in the space of history functions.

Given the apparent similarities between the delayed action and the Duffing oscillators, we

have decided to add a periodic forcing to the delayed action oscillator and to look for the

Wada property as it appeared in the basins of the Duffing oscillator. We have found the first

example, to the best of our knowledge, where a linear delayed term induces transient chaos

in a continuous system. Nonlinear delayed terms were known to induce chaotic dynamics

[3, 32, 33], but in this case the linear delay provides the extra dimensions that the system

needs to show chaos. Although this constitutes an interesting result by itself, our objective

is also to study the properties of the basins of attraction. Despite our careful research, we
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(a) (b)

(c) (d)

Figure 3. Wada property induced by delay in nonlinear feedback. (a) Attractors of the

system ẋ + α(x3τ − xτ ) + x = F sinωt with α = 2.5, τ = 1, F = 1.15, and ω = 1.2. The system

has two period-2 orbits and also diverging trajectories. Trajectories intersect themselves because

this is a projection in (x, ẋ), but in principle, the system lives in infinite dimensions. (b) Basin of

attraction: history functions leading to infinity are colored in blue, and the red and green colors are

for history functions leading to the two period-2 orbits. This is an example of disconnected Wada

basin. (c) All the points in the boundary separate three basins, thus the system possess the Wada

property. (d) Basin of attraction with an oscillating history function x(t) = A sinBt, ∀ t ∈ [−τ, t0].

The Wada property is independent of the initial history function chosen (W3 = 1). Different initial

history functions are different subspaces of the same infinite dimensional space, they all have the

Wada property.
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were unable to find the Wada property in the forced delayed action oscillator. Perhaps it

happens in a small region of the parameter space, or perhaps it does not happen. Although

the phase space is highly fractalized and the system is very close to show the full Wada

property, we must label it as partially Wada.

Finally, we introduced the delay in the cubic term. In this system we were able to find

not only transient chaos, but also the full Wada property. The basins of attraction that

we plot are subspaces of the infinite dimensional history function space, and all of them

have the same properties. This means that this is probably the first report of the full Wada

property in infinite dimensions. Infinite Wada basins can be obtained varying the family of

history functions, and we can also modify the number of parameters obtaining Wada basins

of arbitrary dimension. Without delay, this system would only show oscillatory dynamics,

but here the delay induces both chaos and the Wada property. We expect that this study

contributes to the investigation of delayed systems, especially concerning its sensitivity.
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