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Abstract. The localization characters of the first-order rogue wave (RW) solution u of the
Kundu-Eckhaus equation is studied in this paper. We discover a full process of the evolution
for the contour line with height c2 + d along the orthogonal direction of the (t, x)-plane for
a first-order RW |u|2: A point at height 9c2 generates a convex curve for 3c2 ≤ d < 8c2,
whereas it becomes a concave curve for 0 < d < 3c2, next it reduces to a hyperbola on
asymptotic plane (i.e. equivalently d = 0), and the two branches of the hyperbola become two
separate convex curves when −c2 < d < 0, and finally they reduce to two separate points at
d = −c2. Using the contour line method, the length, width, and area of the RW at height
c2 + d(0 < d < 8c2) , i.e. above the asymptotic plane, are defined. We study the evolutions
of three above-mentioned localization characters on d through analytical and visual methods.
The phase difference between the Kundu-Eckhaus and the nonlinear Schrodinger equation is
also given by an explicit formula.
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1. Introduction

The nonlinear Schrödinger(NLS) equation, one of the most famous equation in physics, is as
follows [1, 2],

i ut + uxx + 2 |u|2 u = 0, (1)

which has been studied extensively from the point of view of mathematics and physics [3, 4].
Here, u(x, t) is the envelope of an electric field, t denotes the normalized spatial variable and
x is the normalized time variable. Nevertheless, in order to get high bit rates in optical fiber
communication system, one always has to increase the intensity of the incident light field to
produce ultrashort (femtosecond or even attosecond) optical pulses. In this case, a simple
NLS equation is inadequate to accurately describe the propagation of light in fiber, and high-
order nonlinear effects, such as third-order dispersion, self-steepening, and self-frequency shift,
must be taken into consideration [5, 6]. To model above highly nonlinear optical system, we
have to add higher-order nonlinear terms and its derivatives into the NLS equation. It is a big
challenge to do this corrections of the NLS equation without loss of the integrability. Regarding
the inclusion of above ideas, the Kundu-Eckhaus(KE) equation [7,8], which was introduced as
a cubic-quintic extension of the NLS equation and also can be reduced from several models of
optics [9–13] and fluid [14], is one of the well-known examples. The KE equation is given in
the form of [7]

i ut + uxx + 2 |u|2 u+ 4 β2 |u|4 u− 4i β
(
|u|2
)
x
u = 0, β ∈ R, (2)
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which contains higher nonlinearity and the Raman effect in nonlinear optics. β is a real constant,
β2 is the quinic nonlinear coefficient, and the last term is responsible for the self-frequency shift.
The integrability aspects of KE equation has been extensively studied by using the explicit form
of the Lax pair, Painleve property [15], Hamiltonian structure [16], soliton solutions obtained
through the Darboux transformation (DT) [17] and by the bilinear method [18] and by a
direct method [19], higher-order extension [20], infinitely many conservation laws [21], lower-
order rogue waves (RWs) given by the DT method [22], etc. In particular, the DT of the
KE equation is not completely established [17,22] because there exists an overall factor AA(or
αN) involved with complicated integrations, which produces the difficulty in the construction
of multi-fold DT. Very recently, we overcame this problem thoroughly by finding an explicit

analytical form of the overall factor
n−1∏
i=0

H [i] for the n-fold DT Tn (see Theorem 2.3 of Ref. [23]).

In particular, several higher-order rogue waves of the KE equation have been given explicitly
in references [22–24].

Rogue wave is one kind of common nonlinear local waves which is also called as freak wave,
monster wave, killer wave, extreme wave and abnormal wave. It is used to describe spontaneous
huge ocean waves, which can lead to water walls taller than 20-30 m so that it is even a threaten
to a big ship [25–27]. The study of rogue wave has been boosted extremely by the laboratory
observations in nonlinear fibers [28, 29] and in water tanks [30], then rogue wave has also
extended fleetly to many fields such as plasmas, super fluids, capillary flow, Bose-Einstein
condensates, the atmosphere [31–35], etc. In order to better understand and apply the rogue
wave concept in any physical system, it is necessary to analyse the features of the rogue wave
profiles. Especially, the squared modulus of the solution |u|2 always represents a measurable
quantity, optical power (or intensity). Recently, a effective tool, contour line method, is applied
to study the localization characters of the profile for rogue waves by computing the width,
length and area [23, 36–38]. It is known that the contour line on the asymptotic plane is a
hyperbola, while the contour line above the asymptotic plane is a closed curve and then the
width, length and area of the rogue wave can be worked out [23]. But in [23, 36–38], we just
analysed the localization characters at a given height c2 + 1 along the orthogonal direction of
the (t, x)-plane, where c2 is the height of asymptotic background for rogue wave |u|2. How
does these localized characters are evolving along the orthogonal direction of the (t, x)-plane
? It’s known that the counter line on the height c2 + 1 along the orthogonal direction of the
(t, x)-plane is a closed concave curve, for example, see Figure 7(b) of Ref. [23]. But whether
the counter line at height c2 + d(0 ≤ d ≤ 8c2 along the orthogonal direction of the (t, x)-plane,
we shall explain this constraint later) is always a concave curve, and if it’s not, how to find a
critical height dc by changing from a concave contour line to a convex one? Here d denotes the
height of counter line from the asymptotic background. These questions will be answered in
this paper.

The rest of the paper is organized as follows. In section 2, according to the explicit expression
of the first-order rogue wave solution of the KE equation, we provide an algebraic equation to
determine the counter line at height c2 + d (8c2 ≥ d ≥ 0) along the orthogonal direction of the
(t, x)-plane, and then find the critical height dc. The convex profile of the counter lines with
height c2− d(c2 ≥ d > 0) along the orthogonal direction of the (t, x)-plane is also discussed. In
section 3, we work out the width, length and area of the contour line lower than dc, and then
analyse the influence of the parameters d. In section 4, we consider the localization characters
of the counter line higher than dc. In section 5, we give conclusions and discussions.
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2. The critical height dc

Through the Darboux transformation, we have generated the first-order rouge wave(RW) of
the KE equation [23] in the form

u[1]rw =
Lr1
Lr2

exp

(
i(ρ+

Lr3
Lr2

)

)
, (3)

where

Lr1 = −4 c3x2 +
(
−32 β c5 + 16 ac3

)
tx+

(
−64 β2c7 + 64 aβ c5 − 16 a2c3 − 16 c5

)
t2 + 16 itc3 + 3 c,

Lr2 =
(
64 β2c6 − 64 aβ c4 + 16 a2c2 + 16 c4

)
t2 +

(
32 β c4 − 16 ac2

)
xt+ 4 c2x2 + 1,

Lr3 = 16 β c2x+
(
64 β2c4 − 32 aβ c2

)
t, ρ = ax+ (−a2 + 4β2c4 + 2c2)t,

and a, c, β are real constant. It is trivial to find that |u[1]rw|2 goes to c2 when |x| → ∞ and

|t| → ∞, which implies that the height of the asymptotic background is c2. |u[1]rw|2 is a doubly-
localized rational function with a large amplitude 9c2 at (0,0) on (t, x)-plane, which reflects the
two typical characters of the RW, namely, localization and large amplitude. Figure 1 is plotted

for |u[1]rw|2 in order to show visibly the above two characteristic features.

(a) (b)

Figure 1. The profile of the first-order RW solutions |u[1]rw|2 with a = 0.5, c =
1, β = 0.25. The panel (b) is the density plot of the panel (a). In panel (b), l1
(black, dash) and l2 (blue, dot) are two asymptotes, and l3 (yellow, solid) is the
non-orthogonal axis of the contour line in equation (4).

It is shown from Figure 1 that the counter line above the asymptotic background is reducing
from a concave curve to a point when the height c2 + d along the orthogonal direction of the
(t, x)-plane of counter line is raising from c2 to 9c2. Here d denotes the height of contour line

from the asymptotic background. This observation of |u[1]rw|2 shows that d is a key parameter
to control the profile of the contour line, and strongly responsible for the existence of a critical
height dc at which we observe interesting transition from a concave contour line to convex

one. However, there are already three parameters a, c and β in the RW u
[1]
rw, and then it is a
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challenging problem to illustrate analytically the role of d in control of the profile. At present
the contour line method is really a useful tool to analyse the localization characters at a given
height c2 + 1 (i.e. d = 1) of the first-order RW solution [23,36–38]. In the following context we

shall use contour line of |u[1]rw|2 with given values of parameters (a, c, β) to study the evolution

of profile with a varying d. By this method, a contour line of |u[1]rw|2 at height c2 + d (d > 0)
along the orthogonal direction of the (t, x)-plane is expressed by

− 16c4dx4 + (−256βc6d+ 128ac4d)tx3 +R1x
2 +R2x+R3t

4 +R4t
2 + 8c2 − d = 0, (4)

where

R1 =
(
−1536 β2c8d+ 1536 aβ c6d− 384 a2c4d− 128 c6d

)
t2 − 32 c4 − 8 c2d,

R2 =− 4096 β3c10d+ 6144 aβ2c8d− 3072 a2β c6d− 1024 β c8d+ 512 a3c4d+ 512 ac6d,

R3 =− 4096 β4c12d+ 8192 aβ3c10d− 6144 a2β2c8d− 2048 β2c10d

+ 2048 a3β c6d+ 2048 aβ c8d− 256 a4c4d− 512 a2c6d− 256 c8d,

R4 =− 512 β2c8 − 128 β2c6d+ 512 aβ c6 + 128 aβ c4d− 128 a2c4 + 128 c6 − 32 a2c2d− 32 c4d.

Set d = 0 in Eq.(4), the contour line [23] is a hyperbola on the asymptotic plane which has two
asymptotes

l1 : x = 2(a− 2βc2 − c)t, l2 : x = 2(a− 2βc2 + c)t,

and two non-orthogonal axes

major axis : t = 0, imaginary axis(l3) : x = (2a− 4βc2)t.

These three lines are plotted in Figure 1(b). As the maximum amplitude of |u[1]rw|2 is 9c2, so
the height of contour line above the background must be in the interval (c2, 9c2] or equivalently
0 < d ≤ 8c2.

Note that Eq.(4) is an implicit form of the contour line. Actually, it can be expressed
explicitly by two branches

l4 : x = −4βc2t+ 2at+ F2

2dc
, (5)

l5 : x = −4βc2t+ 2at− F2

2dc
, (6)

in which F2 =
√
−(16c4d2t2 + 4c2d+ d2) + 4cd

√
16c4dt2 + c2 + d (t ∈ [−

√
d(8c2−d)
4dc2

,

√
d(8c2−d)
4dc2

]).

Set F2 =
√
−F2A + F2B and y = t2, then F 2

2B − F 2
2A = − (16 c4y + 1) (16 c4dy − 8 c2 + d) ≥ 0 if

t ∈ [−
√
d(8c2−d)
4dc2

,

√
d(8c2−d)
4dc2

]), then F2B−F2A > 0. Thus F2 is a real function of t. The derivatives
with respect to t of two branches are

l4 : −4βc2 + 2a+
F1

F2

− x′(t) = 0, and l5 : −4βc2 + 2a− F1

F2

− x′(t) = 0, (7)

with F1 = −8c3dt+ 16dc4t√
16c4dt2+c2+d

, and x′(t) means dx
dt

.

We are now in a position to find dc. It can be realized by finding how many points on l4 (or
l5) whose derivative in Eq.(7) is equal to the slope of l3. The slope of the line l3 is k = 2a−4βc2.
So set x′(t) = k, Eq.(7) leads to two equivalent equations of t

− 8c3dt(
√

16c4dt2 + c2 + d− 2c) = 0 (by l4), 8c
3dt(
√

16c4dt2 + c2 + d− 2c) = 0 (by l5). (8)

By solving Eq.(8) we know that t has three values 0,

√
d(3c2−d)
4dc2

, and −
√
d(3c2−d)
4dc2

, if 0 < d < 3c2;
or it just has one value 0 if d ≥ 3c2. The former produces a concave contour line at height
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c2 +d along the orthogonal direction of the (t, x)-plane, but the latter gives a convex one. Thus
the critical value of height is dc = 3c2. In Figure 2, dc = 3, thus contour lines associated with
d = 0.1 and 0.2 (outer) are concave, but d = 3 and 6 (inner) gives two convex contour lines.

Figure 2. The density plot and contour lines of the first-order RW solution

|u[1]rw|2 with a = 1/2, c = 1, β = 1/4. Different values of d from outside to inside:
d = 0 (longdash,thin), d = 0.1 (dash,thick), d = 0.2 (dashdot), d = 3 (dot),

d = 6 (solid), d = 8 (a point). Note that |u[1]rw|2 reaches maximum value 9 at
(0,0), which is corresponding to the point given by contour line at d = 8. The
parameter d = 0 produces two branches of a hyperbola on the asymptotic plane.

For the contour line of |u[1]rw|2 below the asymptotic plane, all detailed calculations of this
case are given in appendix. Its height is c2 − d(c2 ≥ d > 0) along the orthogonal direction of
the (t, x)-plane and then the governing equation is Eq.(4) with −d instead of d. This implicit
equation can be expressed explicitly by four branches, which determines a close contour line in
upper half-plane with two end points (see P

′
1, P

′
2 in Figure 3) and another in lower half-plane

with two end points (see P
′′
1 , P

′′
2 in Figure 3). The four points are expressd by

P
′
2 = (−

√
d(c2−d)
4c2d

,− (a−2βc2)
√
d(c2−d)−c2

√
3d

2c2d
), P

′
1 = (

√
d(c2 − d)
4c2d

,
(a− 2βc2)

√
d(c2 − d) + c2

√
3d

2c2d
),

P
′′
2 = (−

√
d(c2−d)
4c2d

,− (a−2βc2)
√
d(c2−d)+c2

√
3d

2c2d
), P

′′
1 = (

√
d(c2 − d)
4c2d

,
(a− 2βc2)

√
d(c2 − d)− c2

√
3d

2c2d
).
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The P
′
2P
′
1 is parallel to P

′′
2 P

′′
1 , and their slope is the same as l3. By a similar way as discussed

in the last paragraph, it is not difficult to show that two separate counter lines (see Figure 3)
are convex for all values of d(c2 > d > 0), unlike the counter line with height c2+d(8c2 > d > 0)
which has a critical value dc at which change occurs from a concave profile to a convex one.
Figure 4 is plotted for the contour lines with different height d below the asymptotic plane, and
the resulting curves are convex and separate, which gives a visual confirmation of our above

results. Two centers of valleys are (0,
√
3

2c
) and (0, −

√
3

2c
) (see two points in this figure), and

their values are zero.
According to the above study with the help of analytical way, we obtain a full process of

the evolution for the counter line with height c2 + d along the orthogonal direction of the

(t, x)-plane for a first-order RW |u[1]rw|2: A point at height 9c2 generates a convex curve for
3c2 ≤ d < 8c2, whereas it becomes a concave curve for 0 < d < 3c2, next it reduces to a
hyperbola on asymptotic plane (i.e. equivalently d = 0), and the two branches of the hyperbola
become two separate convex curves when −c2 < d < 0, and finally they reduce to two separate
points at d = −c2. Note again on (t, x)-plane that the maximum peak is located at (0, 0), and

two minimum points are located at (0,
√
3

2c
) and (0, −

√
3

2c
),

(a)

Figure 3. End points of contour lines for |u[1]rw|2 below the asymptotic plane
with height c2 − d. The governing equation of these contour lines is Eq.(4) with
−d instead of d. Parameters are given by a = 1/2, c = 1, d = 1/5, β = 1/4. Four

end points are P ′1 = (1
2
,
√
15
2

), P ′2 = (−1
2
,
√
15
2

), P ′′1 = (1
2
,−
√
15
2

), P ′′2 = (−1
2
,−
√
15
2

)
on the (t, x)-plane.

3. The contour line below the critical value

In this section, we consider the localization characters of the first-order RW when 0 <
d < 3c2. According to explicit formulas Eqs.(5, 6) of two branches for contour line (see

Figure 5), two end points on the (t, x)-plane are P1 =

(√
d(8c2−d)
4dc2

,
(2a−4βc2)

√
d(8c2−d)

4dc2

)
, P2 =(

−
√
d(8c2−d)
4dc2

,− (2a−4βc2)
√
d(8c2−d)

4dc2

)
, for all values of a, c and β. And the equations of BC and
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Figure 4. The contour line of the first-order RW solution |u[1]rw|2 with height
c2 − d. The governing equation of the contour line is Eq.(4) with −d instead of
d. Parameters: a = 1/2, c = 1, β = 1/4. Different values of d from outside to
inside: d = 0.1, d = 0.2, d = 0.5, d = 1. Two points are given by d = 1, which

are located at (0,
√
3
2

) and (0, −
√
3
2

) on (t, x)-plane.

AD (see Figure 5) are given below,

BC : t = −
√
d(8c2 − d)

4dc2
, AD : t =

√
d(8c2 − d)

4dc2
. (9)

The length of the first-order RW solution |u[1]rw|2 at height d is defined by the distance of P1

and P2 [36],

dLKE =
1

2

√
(4(a− 2βc2)2 + 1)(8c2 − d)

c4d
. (10)

For contour line in Eq.(4) (or equivalently in Eqs.(5, 6)) with the condition d ≤ dc, there are

three values of t at 0,

√
d(3c2−d)
4dc2

,−
√
d(3c2−d)
4dc2

, which imply six extreme points (see Figure 5) at

P3 =

(
0,

√
−4c2d− d2 + 4d

√
c4 + c2d

2dc

)
,
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Figure 5. The tangent lines of the contour for the first-order RW solution |u[1]rw|2
with a = 1

2
, c = 1, d = 1, β = 1

4
.

P4 =

(
0,−

√
−4c2d− d2 + 4d

√
c4 + c2d

2dc

)
,

P5 =

(√
d (3 c2 − d)

4c2d
,
(a− 2βc2)

√
d(3c2 − d) + c2

√
d

2c2d

)
,

P6 =

(
−
√
d (3 c2 − d)

4c2d
,
−(a− 2βc2)

√
d(3c2 − d) + c2

√
d

2c2d

)
,

P7 =

(√
d (3 c2 − d)

4c2d
,
(a− 2βc2)

√
d(3c2 − d)− c2

√
d

2c2d

)
,

P8 =

(
−
√
d (3 c2 − d)

4c2d
,
−(a− 2βc2)

√
d(3c2 − d)− c2

√
d

2c2d

)
.

By a simple calculation, it shows −4c2d−d2 +4d
√
c4 + c2d > 0 if d ∈ (0, 8c2), so all coordinates

of Pi(i = 3, · · · , 8) are well defined. Note here d < dc = 3c2. The equations of AB and CD are
as follows:

AB : x− (2a− 4βc2)t− 1

2
√
d

= 0, (11)

CD : x− (2a− 4βc2)t+
1

2
√
d

= 0. (12)

The width of the first-order RW solution |u[1]rw|2 at height d there upon is defined by the distance
of AB and CD, which is in the form of

dWKE =
1√

d(4(a− 2βc2)2 + 1)
. (13)

Further the area of the first-order RW solution |u[1]rw|2 at height d is defined by the area of the
outer tangent parallelogram of the contour line, i.e.

SABCD = dLKEdWKE =

√
8c2 − d
2c2d

. (14)
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Comparing Eq.(10) with Eq.(13), there exists a condition β = a
2c2

which implies a minimum

dLKEmin = 1
2

√
8c2−d
c4d

of the length and a maximum dWKEmax = 1√
d

of the width. It is interesting

to note that the condition for extreme value is independent of d. If d = 4c2(2 − c2) and c ∈
(
√
5
2
,
√

2), dLKEmin = dWKEmax . In Figure 6(a), there is no crossing point because c /∈ (
√
5
2
,
√

2),
but Figure 6(b) has one crossing point at 2.096. For β 6= a

2c2
, we do not analyse the condition

(a) (b) (c)

Figure 6. The minimum of length dLKEmin (red,dot) and the maximum of width
dWKEmax(blue,solid) of the contour line above the critical height dc. In panel (a),
c = 1, and there is no crossing point. In panels (b, c), c = 1.3, the latter is the
local picture of the former, and the crossing point is given at d = 2.096.

of dLKE = dWKE because of its complexity, and then Figure 7 is plotted to show the evolution
of three localization characters on d.

(a) (b)

Figure 7. The length dLKE (red,dot) and width dWKE(blue,solid) and the area
S of the contour line below the critical height dc with parameters a = 1/2, c =
1, β = 0.30. There is no crossing point in panel (a).

4. The contour line above the critical value

In this section, we consider the localization characters of the first RW when 3c2 ≤ d < 8c2

along the orthogonal direction of the (t, x)-plane. Within this region, the contour line also has
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two end points Q1 =

(√
d(8c2−d)
4dc2

,
(2a−4βc2)

√
d(8c2−d)

4dc2

)
, Q2 =

(
−
√
d(8c2−d)
4dc2

,− (2a−4βc2)
√
d(8c2−d)

4dc2

)
,

on the (t, x) plane of all values of a , c and β. And the equations of B
′
C
′

and A′D′ is given
below,

B
′
C
′
: t = −

√
d(8c2 − d)

4dc2
, A

′
D
′
: t =

√
d(8c2 − d)

4dc2
. (15)

Figure 8. The tangent lines of the contour of the first-order RW solution |u[1]rw|2
with a = 0.5, c = 1, d = 6, β = 0.25

The length of the first-order RW solution |u[1]rw|2 is the distance of Q1 and Q2 (see Figure8 ),
i.e.

d
′

LKE =
1

2

√
(4(a− 2βc2)2 + 1)(8c2 − d)

c4d
. (16)

The length in Eq.(16) is the same as the counter line below the critical value, but the other
two localization characters (i.e. width and area) are different for two cases. If d ≥ 3c2 ,
the Eq.(8) has only one solution, i.e. t = 0. So points P5 and P6 are approaching to point

P3 = Q3 =

(
0,

√
−4c2d−d2+4d

√
c4+c2d

2dc

)
when d is passing by dc from a lower height. Similarly,

points P7 and P8 are approaching to point P4 = Q4 =

(
0,−
√
−4c2d−d2+4d

√
c4+c2d

2dc

)
. We can

work out the equations of A
′
B
′

and C
′
D
′

(see Figure8) as

A
′
B
′
: x− (2a− 4βc2)t+

√
−4c2d− d2 + 4d

√
c4 + c2d

2dc
= 0, (17)

C
′
D
′
: x− (2a− 4βc2)t−

√
−4c2d− d2 + 4d

√
c4 + c2d

2dc
= 0. (18)

The width of the rogue wave |u[1]rw|2 at height d is defined by the distance of above two lines,
which is

d
′

WKE =

√
4c
√
c2 + d− 4c2 − d

c2d(4(a− 2βc2)2 + 1)
. (19)
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The area of the rogue wave |u[1]rw|2 at height d is defined by the area of the outer tangent
parallelogram (see Figure 8) of its contour line at same height, which is given by

S
′

ABCD = d
′

LKEd
′

WKE =

√
(4c
√
c2 + d− 4c2 − d)(8c2 − d)

2c3d
. (20)

Eqs. (16,19) show that the length and the width reach the extreme at the same time when

β = a
2c2

as well. Specifically, the maximum d
′
WKEmax

=
√

4c
√
c2+d−4c2−d
c2d

and d
′
LKEmin

= 1
2

√
8c2−d
c4d

.

A simple calculation leads to d
′
WKEmax

= d
′
LKEmin

if d = 8c2(4c2+1)
(4c2−1)2 and c ∈ (

√
3
2
,
√
5
2

]. Figure 9

shows the evolution of d
′
LKEmin

and d
′
WKEmax

on d. There is no crossing point in Figure 9(c)

because c /∈ (
√
3
2
,
√
5
2

].

(a) (b) (c)

Figure 9. The minimum of length d
′
LKEmin

(red,dot) and the maximum of width

d
′
WKEmax

(blue,solid) of the contour line above the critical height dc. In panels (a,
b), c = 1, the latter is the local picture of the former, and the crossing point is
given at d = 4.444. In panel (c), at c = 1.3, there is no crossing point.

For β 6= a
2c2

, we do not analyse this condition d
′
LKE = d

′
WKE because of its complexity, and

then Figure 10 is plotted to merely show the evolution of three localization characters on d. In
order to show the existence of d

′
LKE 6= d

′
WKE, Figure 11 is plotted for this case.

From our above investigations, it is clear that by suitably manipulating the value of “d”, one
can choose suitable area, length, width and amplitude of the rogue wave type optical pulses.
To the best our knowledge, so far only variable coefficients of the nonlinear evolution equations
have been used to manipulate the optical rogue waves. By suitably correlating the value of d in
terms of the experimental parameter, our results may be useful for the experimental realization
of the control of the rogue wave. Moreover, the area S and extreme values of length and width
are independent of β, which means that higher-order terms in the KE equation do not have
contribution of these three localization characters.

5. Conclusions

In this paper, we use the contour line method to study the localization characters of the

first-order RW solution |u[1]rw|2 of the KE equation. A full evolution process for the contour

line with height c2 + d along the orthogonal direction of the (t, x)-plane of the RW |u[1]rw|2 can

11



(a) (b) (c)

Figure 10. The length dLKE (red,dot) and width dWKE(blue,solid) and the area
S of the contour line above the critical height dc with parameters a = 1/2, c =
1, β = 0.30. There is a crossing point at d = 5.163 in panel (a), panel(b) is the
local picture of panel(a).

(a)

Figure 11. The length dLKE (red,dot) and width dWKE(blue,solid) of the con-
tour line above the critical height dc with parameters a = 1/2, c = 1, β = 0.40.
There is no crossing point.

be summarized as follows: A point at height 9c2 generates a convex curve for 3c2 ≤ d < 8c2,
whereas it becomes a concave curve for 0 < d < 3c2, next it reduces to a hyperbola on
asymptotic plane (i.e. equivalently d = 0), and the two branches of the hyperbola become two
separate convex curves when −c2 < d < 0, and finally they reduce to two separate points at
d = −c2.

Analytical formulas of length, width and area of the RW |u[1]rw|2 with height d(8c2 > d > 0) are
discussed according to two cases: 3c2 > d > 0 (below the critical value dc) and 8c2 > d ≥ 3c2

(above the critical value dc). All of them are monotonically decreasing functions of d. In the
above-mentioned three characters, only length for two cases has a same formula, and length
and width are equal for some special values of d and c. Under condition β = a

2c2
, the length

reaches its minimum, but width gives a maximum. The main differences of two cases are listed
by:

12



• Contour line is concave for the former, but convex for the latter. The critical value of
height for the turning between convex and concave profile is dc = 3c2.
• Different formulas for width.
• Different formulas for area.
• Different intervals of c to get equal extreme values of length and width: c ∈ (

√
5
2
,
√

2)

for former, but c ∈ (
√
3
2
,
√
5
2

] for the latter.

Our in-depth analysis on the contour line will be useful for experimentalist to control the
patterns of the rogue wave ultra-short optical light pulses.

Since the KE is equivalent to the NLS by a nonlinear transformation q = u exp(2iβ
∫
|u|2dx)

[7] regarding a solution u of the former and a solution q of the latter, in order to show the
true characteristics of the KE equation, it is also interesting and necessary to study the phase

of the first-order rogue wave u
[1]
rw of the KE. This has been done partially by studying the

real part of the first-order RW Reu
[1]
rw in Ref. [23], which has shown that Reu

[1]
rw has a central

pattern around point (0, 0) and alternately appeared parallels (see Figure 3 in Ref. [23]). This

observation implies clearly that Reu
[1]
rw is nonlocal. Thus, it is more essential to study the

localized property of a phase difference ∆θ = 2β
∫
|u|2dx [23] between above two solutions.

Substituting u = u
[1]
rw into ∆θ, it becomes

∆θ = 2βc2x+
32c2βt(2βc2 − a) + 16c2βx

16c2t(x+ c2t)(2βc2 − a)2 + 4c2x2 + 16c4t2 + 1
,

which is plotted in Figure 12( see also in Figure 4 of Ref. [23]). There exist a remarkable peak
and hollow in the profile of ∆θ. If t is large sufficiently, ∆θ = 2βc2x which gives an asymptotic
plane. So, in order to illustrate clearly the localized property of the ∆θ, it is better to study

the contour lines of ∆̃θ = ∆θ−2βc2x by removing the oblique asymptotic background, namely

∆̃θ = 32c2βt(2βc2−a)+16c2βx
16c2t(x+c2t)(2βc2−a)2+4c2x2+16c4t2+1

.

∆̃θ is plotted in Figures 13(a,b), which shows ∆̃θ is doubly localized in both x and t. A

simple calculation gives that ∆̃θ|max = 4βc at point (t = 0, x = 1
2c

) and ∆̃θ|min = −4βc

at point (t = 0, x = − 1
2c

), and the height of the asymptotic plane for ∆̃θ is zero. Setting
d ∈ [−4βc, 4βc], an algebraic equation of the contour line at height d is given by

256 c6d
(
4 β2c4 − 4 aβ c2 + a2 + c2

)
t4 + 256c6(a− βc2)(dx− 2β)t3 + 16 c2(4 β2c4d

+4 c4dx2 − 16 β c4x− 4 aβ c2d+ a2d+ 2 c2d)t2 + 16c2(a− βc2)(dx− 2β)t+ d = 0. (21)

In particular, the contour line is a straight line on asymptotic plane with height zero, namely

x = 2(−2βc2 + a)t. By a similar analysis of the contour line for u
[1]
rw , we find a full evolution

of the contour line of phase difference ∆̃θ as follows: A point at height 4βc generates a convex
curve for 0 < d < 4βc, next it reduces to a straight line on asymptotic plane (i.e. equivalently
d = 0), and then this straight line becomes a convex curve when −4βc < d < 0, and finally it
reduced to a point at d = −4βc, which is confirmed by Figure 13(c). Clearly, the evolution of

contour line of ∆̃θ is different from the contour line of the u
[1]
rw.
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Figure 12. The phase difference ∆θ between rogue wave solutions of the KE
and NLS with parameters a = 1, c = 1 and β = 0.25.

(a) (b) (c)

Figure 13. The phase difference ∆̃θ with parameters a = 1, c = 1 and β =
0.25. Panel (b) is the density plot of (a). Panel (c) is plotted for the contour lines
at different heights of (a). In panel (c), the straight line (solid black) is plotted
for d = 0. In upper plane of (c) devided by the straight line, different values of
d from outside to inside: d=0.5(red dot),0.3(blue dash). In lower plane of (c),
different values of d from outside to inside: d=-0.3 (purple long dash), -0.5 (green
dash dot). The point in upper plane is the maximum attained at d = 4βc = 1,
but the point in lower plane is the minimum attained at d = −4βc = −1.
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Appendix

In this appendix, a few additional explanations about the contour line below the asymptotic
background will be given. For this case, the height of the contour line is c2 − d (0 < d < c2)
along the orthogonal direction of the (t, x)-plane, which is a closed curve defined by Eq.(4) with
−d instead of d, i.e.

16c4dx4 + (256βc6d− 128ac4d)tx3 + S1x
2 + S2x+ S3t

4 + S4t
2 + 8c2 + d = 0, (22)

where

S1 =
(
1536 β2c8d− 1536 aβ c6d+ 384 a2c4d+ 128 c6d

)
t2 − 32 c4 + 8 c2d,

S2 =4096 β3c10d− 6144 aβ2c8d+ 3072 a2β c6d+ 1024 β c8d− 512 a3c4d− 512 ac6d,

S3 =4096 β4c12d− 8192 aβ3c10d+ 6144 a2β2c8d+ 2048 β2c10d

− 2048 a3β c6d− 2048 aβ c8d+ 256 a4c4d+ 512 a2c6d+ 256 c8d,

S4 =− 512 β2c8 + 128 β2c6d+ 512 aβ c6 − 128 aβ c4d− 128 a2c4 − 128 c6 − 32 a2c2d+ 32 c4d.

Actually, Eq. (22) can be expressed explicitly by the following four branches

l01 : x = −4βc2t+ 2at+ G1

2dc
, l02 : x = −4βc2t+ 2at− G1

2dc
, (23)

l03 : x = −4βc2t+ 2at+ G2

2dc
, l04 : x = −4βc2t+ 2at− G2

2dc
, (24)

in which

G1 =

√
−16c4d2t2 + 4c2d− d2 + 4cd

√
−16c4dt2 + c2 − d,

G2 =

√
−16c4d2t2 + 4c2d− d2 − 4cd

√
−16c4dt2 + c2 − d.

and t ∈ [−
√
d(c2−d)
4dc2

,

√
d(c2−d)
4dc2

]. SetGA = −16c4d2t2+4c2d−d2, GB = 4cd
√
−16c4dt2 + c2 − d,G1 =

√
GA +GB, G2 =

√
GA −GB and y = t2, thenGA > 0 andGB > 0 when t ∈ (−

√
d(c2−d)
4dc2

,

√
d(c2−d)
4dc2

),
and G2

A − G2
B = d3 (16 c4y + 1) (16 c4dy + 8 c2 + d) ≥ 0. Thus GA − GB > 0 when t ∈

(−
√
d(c2−d)
4dc2

,

√
d(c2−d)
4dc2

), which implies G1 and G2 are real functions of t. According to the four
branches, four end points are represented explicitly by

P
′

1 = (

√
d(c2 − d)

4c2d
,
(a− 2βc2)

√
d(c2 − d) + c2

√
3d

2c2d
),

P
′

2 = (−
√
d(c2 − d)

4c2d
,−

(a− 2βc2)
√
d(c2 − d)− c2

√
3d

2c2d
),

P
′′

1 = (

√
d(c2 − d)

4c2d
,
(a− 2βc2)

√
d(c2 − d)− c2

√
3d

2c2d
),

P
′′

2 = (−
√
d(c2 − d)

4c2d
,−

(a− 2βc2)
√
d(c2 − d) + c2

√
3d

2c2d
).
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Now we will prove that the contour line below the asymptotic background is always convex.
The derivatives with respect to t of the four branches are

− 4βc2 + 2a+
G3

G1

− x′(t) = 0, −4βc2 + 2a+
G3

G1

− x′(t) = 0, (25)

− 4βc2 + 2a+
G4

G2

− x′(t) = 0, −4βc2 + 2a+
G4

G2

− x′(t) = 0, (26)

where G3 = −8c3dt − 16c4dt√
−16c4dt2+c2−d ,G4 = −8c3dt + 16c4dt√

−16c4dt2+c2−d . In order to find a convex

point on the contour line, we set x′(t) = k in Eqs. (25,26), and then get four equivalent
equations of t as follows

−8c3dt(2c+
√
−16c4dt2 + c2 − d) = 0, 8c3dt(2c+

√
−16c4dt2 + c2 − d) = 0, (27)

8c3dt(2c−
√
−16c4dt2 + c2 − d) = 0, −8c3dt(2c−

√
−16c4dt2 + c2 − d) = 0. (28)

Solving above Eqs. (27,28), we find only one real solution t = 0, which means that contour line
below the asymptotic background is always convex for 0 < d < c2.
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