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Nonsmooth modal analysis of a N -degree-of-freedom system undergoing
a purely elastic impact law

Mathias Legrand�, Stéphane Junca��, and Sokly Heng�

Abstract The dynamics of a N -degree-of-freedom autonomous oscillator undergoing an energy-preserving impact law on
one of its masses is investigated in the light of nonlinear modal analysis. The impacted rigid foundation provides a
natural Poincaré section of the investigated system from which is formulated a smooth First Return Map well-defined
away from the grazing trajectory. In order to focus on the impact-induced nonlinearity, the oscillator is assumed
linear. Continuous one-parameter families of T -periodic orbits featuring one impact per period and lying on
two-dimensional invariant manifolds in the state-space are shown to exist. The geometry of these piecewise-smooth
manifolds is such that a linear “flat” portion (on which contact is not activated) is continuously attached to a purely
nonlinear portion (on which contact is activated once per period) exhibiting a velocity discontinuity through a
grazing orbit. These features explain the newly introduced terminology “Nonsmooth modal analysis”. The stability
of the periodic orbits lying on the invariant manifolds is also explored by calculating the eigenvalues of the linearized
First Return Map. Internal resonances and multiple impacts per period are not addressed in this work. However, the
pre-stressed case is succinctly described and extensions to multiple oscillators as well as self-contact are discussed.
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1. Introduction In the framework of linear vibration theory of conservative autonomous systems,
natural modes of vibration, uniquely defined as a countable sequence of pairs of natural frequencies
and corresponding normalized modeshapes, exhibit interrelated properties appealing to the engineer
and mathematician: (1) they span the state-space through the principle of superposition, (2) they are
invariant (that is linearly independent), orthogonal, and uncouple the equations of motion thus enabling
the construction of reduced-order models, (3) they efficiently predict potential vibratory resonances of
periodically forced systems [17].

Nonlinear modes of vibration (NLM) are conceived as conceptual extensions of linear modes when a
nonlinear term arises in the governing equations. Their existence in the vicinity of fixed points is ensured
by the center-stable manifold theorem [26]. For autonomous conservative non-resonant systems, they
are defined as one-parameter continuous families of periodic orbits realized on two-dimensional curved
manifolds in the state-space reducing to the common “flat” eigenspaces in the linear framework. Similarly
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to the invariance property of linear modes, such manifolds are also invariant under the flow: trajectories
stemming from an initial condition in the manifold will remain in the manifold as time unfolds [26, 14].
On such manifolds, the modal dynamics can be regarded as a single degree-of-freedom second-order
nonlinear oscillator from which all position and velocity coordinates can be functionally parametrized. For
certain classes of systems, equivalence between nonlinear modal analysis and normal form theory is also
established [29]. Evidently, the principle of superposition does no longer apply for nonlinear systems but
NLM are useful for the analysis of mode bifurcations and forced resonances as well as for the construction
of reduced-order models [31]. Such nonlinear oscillations are also known to exhibit energy-dependent
natural frequencies and shapes [20], feature that is conveniently illustrated in frequency–energy plots
(FEP) where they form the backbone of the nonlinear forced response curves [30].

The present work explores the free dynamics of N -degree-of-freedom (dof) vibro-impact oscillators
within the nonlinear modal analysis framework. Such systems commonly consist of N linearly coupled
one-degree-of-freedom oscillators one of which undergoes a motion limiting constraint induced by the
presence of a rigid foundation against which it impacts. The impenetrability condition is incorporated
in the formulation through (1) an energy-preserving impact law acting on the impacting mass velocity
and characterized by the restitution coefficient e D 1 which introduces impulsive contact forces into
the dynamics [5] and (2) a one-sided admissibility condition to be satisfied by the solution which has
to be realized on the “appropriate” side of the rigid foundation. Between successive impacts, the
motion is governed by a system of linear second-order ordinary differential equation in time with
constant coefficients but the two previous conditions introduce nonlinearity into the dynamics. The above
assumptions (one impact per period with e D 1) might seem limiting but are motivated by the following
considerations yielding mathematical simplicity:

1. Structural damping as well as well as a restitution coefficient 0 � e < 1 would destroy the targeted
periodic orbits. Nonlinear modes of vibration involving damped oscillations are known to exist for
smooth nonlinear systems but are more challenging to track [16].

2. As it is known in linear and smooth nonlinear modal analysis, modes of vibration of conservative
autonomous systems accurately approximate the vibratory resonances of their periodically forced
and slightly damped counterparts. This feature of interest to the designer is assumed to persist in the
nonsmooth framework of this work.

3. As explained and demonstrated in the remainder, the domain of existence of the one-impact-per-period
trajectories is far from being negligible.

It should be noted that the literature on (mainly low-dimensional) vibro-impact oscillators is vast
(among many other references, see [9, 7, 1] for an overview). Nevertheless, it seems much more limited
when it comes to the modal analysis of such systems. Three distinct formulations are then available:
piecewise linear formulation [11, 12, 6], regularized unilateral formulation [19, 15], and purely nonsmooth
formulation [23, 22]. Nonsmooth terms used to be replaced by simplified smooth approximations whose
mathematical properties are better understood. This approach is acceptable in many situations but it is no
longer justified to neglect such nonsmooth effects. In the, by now traditional, research area on nonsmooth
systems, focus has been directed towards differential inclusions, convex analysis, or complementarity
formulations that deal with standard questions like existence and uniqueness of solutions in general
without special attention paid to continuous families of periodic solutions.

The paper is organized as follows: as explained in section 2, the proposed procedure involves the
construction of a First Return Map where the switching hyperplane defined by the boundary of the rigid
foundation impacted by the oscillator serves as a Poincaré section in the state-space. Calculating the
targeted families of periodic orbits reduces to determining the fixed points of this map. The corresponding
main results are given in section 3. In section 4, (quasi-) closed-form solutions are provided but the first
return time has to be approximated numerically. Admissible trajectories defining nonlinear modes of
vibration are discussed in section 5. Stability together with an introductory bifurcation analysis are then
undertaken by computing the eigenvalues of the linearized First Return Map numerically evaluated at
a fixed-point in section 6. The pre-stressed case (that is with a negative algebraic clearance) involving
new vibratory features is considered in section 7. Self-contact and multi-oscillators are quickly tackled
through a simple change of variables in section 8.

2



2. Assumptions and formulations

2.1. Governing equations of motion A generic, initially unstressed, autonomous and conservative
N -degree-of-freedom oscillator, similar in essence to the one illustrated in Fig. 2.1, is investigated. The N

k1 k2 kN �1 kN
g

m1 m2 mN �1 mNinitial
configuration

current
configuration

u1.t/ u2.t/ uN .t/uN �1.t/

Figure 2.1: Investigated N -degree-of-freedom vibratory system subject to a unilateral contact constraint on
uN .t/

massesmi and stiffnesses ki , i D 1; : : : ; N are associated to the N degrees-of-freedom, or displacements,
ui .t/ where t stands for time. The last degree-of-freedom uN .t/ is subject to an impenetrability condition
due to the presence of a rigid foundation located at a distance g from its equilibrium1. The corresponding
equations governing the dynamics of the system shall be expressed in the compact matrix form

M RuCKuC fc D 0 (2.1)

where M 2 RN;N and K 2 RN;N are the mass and stiffness matrices of the system, respectively.
Displacements are stored in vector u D Œu1; : : : ; uN�1; uN �> 2 RN and vector fc D Œ0; : : : ; 0; f c

N �
> 2

RN stands for the contact force emerging from the unilateral condition. At this point, the initial conditions
in displacement u and velocity Pu are not discussed.

Unilateral contact constraints are commonly expressed as complementarity conditions such that the
contact force vector fc in Eq. (2.1) becomes

M RuCKu � �B> D 0
Bu � g � 0 I � � 0 I �.Bu � g/ D 0 (2.2)

where matrix B 2 R1;N maps the displacement vector u to the N th displacement uN , that is B D e>N D
.0 0 : : : 0 1/. It is well-known that formulation (2.2) is ill-posed [8, 5, 4] and the complementarity
conditions should be supplemented with an impact law governing the dynamics during impact. In this
work, a simple energy-conserving Newton’s impact law in the form

uN .t/ D g ) PuCN .t/ D �Pu�N .t/ (2.3)

is implemented with the following notations

PuCN .t/
defD lim

0<�!0 PuN .t C �/ and Pu�N .t/
defD lim

0<�!0 PuN .t � �/ (2.4)

in mind. It is understood that PuN , the velocity of the N th degree-of-freedom, is a function of bounded
variations. Usually, the restitution coefficient e belongs to the interval Œ0 I 1� with the impact rule
PuCN .t/ D �e Pu�N .t/. Since we are targeting periodic motions without impact dissipation, e D 1 in (2.3) by
assumption.

Following [1, 2, 3], the formulation of the problem of interest now takes the form: Find the displace-
ment u.t/ and the contact force �.t/ satisfying

M RuCKu D �B>; (2.5a)

� is a non-positive measure; (2.5b)

uN .t/ � g � 0; 8t; (2.5c)

suppr� � ft IuN .t/ D gg; (2.5d)

uN .t/ D g ) PuCN .t/ D �Pu�N .t/: (2.5e)

The measure � depends on the solution u. It arises as a nonlinear impulsive restoring force in (2.5a).

1 g is the algebraic distance between the equilibrium position of mass N and the rigid wall. It is negative with pre-stress.
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2.2. Periodic solutions with a single impact per period This work targets one-parameter con-
tinuous families of periodic solutions. If such families exist, it is expected that they will be organized
on two-dimensional invariant manifolds which usually characterize modes of vibration for nonlinear
mechanical systems [14, 11, 23].

A major assumption is made: trajectories experience a single impact per period where the period T is
to be found. Since the system of interest is autonomous, the phase is free and formulation (2.5) can be
advantageously simplified by considering, without loss of generality, that the impact occurs at t D T .

Remark 1. As already said, it might look highly limiting to assume one impact per period on a single
degree-of-freedom. However, in continuum mechanics, it should be noted that the contact interface is
only a small portion of the boundary of the system. Also, as we will see in the remainder, the one-impact-
per-period solutions are organized on many “non-local” invariant manifolds in the phase-space. As a
consequence, a broad range of potential applications in rigid-body dynamics is expected. For instance,
applications in robotics shall be foreseen: machining robots are known to be flexible and might, under
specific operating conditions, start to interact with the processed mechanical system, through vibro-impact
mechanisms. Also, an assembly task performed with a robot might involve intermittent contact and it
becomes crucial to simulate the task accurately for vibratory prediction purposes [24].

Accordingly, the problem shall be reformulated and simplified as follows (see [6] for a similar
formulation for piecewise linear systems):

Definition 2.1 [Extended formulation] Find T and u.t/ such that:

M RuCKu D 0; 8t 2 �0 IT Œ (2.6a)

u.T / D u.0/ (2.6b)

uN .0/ D g (2.6c)
Pu�.T / D S PuC.0/ (2.6d)

where S is the matrix of symmetry with respect to the hyperplane PuN D 0, or jump matrix:

S D

266664
1 0 � � � 0

0
: : :

: : :
:::

:::
: : : 1 0

0 � � � 0 �1

377775 (2.7)

System (2.6) says the following:
� Away from an impact, the system is free and its dynamics governed by Eq. (2.6a).
� The displacement is a continuous and periodic function of time.
� The period T is an unknown of the problem.
� At the beginning t D 0 of the period, the impacting mass is located on the rigid wall.
� As reflected by the matrix S, the velocities of masses 1 to N � 1 are continuous functions of time

while the velocity of mass N is discontinuous at t D T where it satisfies PuCN .T / D �Pu�N .T /. They
are all periodic functions of time.

In (2.6), the measure � does not seem to arise explicitly. In fact, it emerges as the zero measure in (2.6a)
when uN .t/ � g < 0 and as a Dirac measure at t D T such that uN .T / D g in (2.6d) which defines
its magnitude. Also, the less restrictive formulation (2.6) exhibits more T -periodic solutions than (2.5)
because the unilateral condition uN .t/ � g < 0 might be violated on interval �0 IT Œ: their admissibility
will have to be systematically scrutinized. Still, this extended formulation can be completely solved
through closed-form expressions as detailed later.

Definition 2.2 [Admissible solution] A solution to the extended formulation (Definition 2.1) is said to be
admissible if

8t; uN .t/ � g: (2.8)
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2.3. Eligible linear eigenspace structure The construction of the nonlinear periodic solutions
is tightly related to the eigenspace structure of the underlying linear mechanical system for which the
unilateral contact constraint is discarded. In Eq. (2.1), matrices M and K are assumed to be positive definite
thus excluding rigid-body motions. Accordingly, there exists a matrix P of M-orthogonal eigenmodes
which diagonalizes both the mass and stiffness matrices, that is

P>MP D IN
P>KP D �2 D diag.!2i /jiD1;:::;N

(2.9)

where IN is the identity matrix in RN;N and !2i , i D 1; : : : ; N are the N eigenfrequencies of the
underlying linear system. In the remainder, it is assumed that eigenfrequencies are all distinct, ie

0 < !1 < : : : < !N and 0 < TN < : : : < T1 (2.10)

where !iTi D 2� , i D 1; : : : ; N . In order to efficiently expose the coming developments, a definition
based on the modal matrix P is needed:

Definition 2.3 [Interaction coefficient] For all j D 1; : : : ; N , the quantity:

aj D PNjP�1jN (2.11)

is called the interaction coefficient between the displacement of mass N along the j th linear mode and
the unilateral contact constraint.

It should be noted that the interaction coefficients satisfy

NX
jD1

aj D e>NPP�1eN D 1: (2.12)

Assumption 2.1 None of the N interaction coefficients shall vanish, that is aj ¤ 0, j D 1; : : : ; N .

Mechanically, this simply means that the last mass always experiences a displacement along a linear
modal motion. Further interpretations will be provided in the remainder of the paper.

Definition 2.4 [Linear grazing orbit] A linear grazing orbit associated to the j th linear mode is a periodic
trajectory u such that

max
t2R uN .t/ D g: (2.13)

Assumption 2.1 implies that PNj ¤ 0, j D 1; : : : ; N which also reflects the existence and uniqueness of
the j th linear grazing orbit

uj .t/ D g

PNj
cos.!j t /P�j (2.14)

where P�j is column j of matrix P. In other words, the last row e>NP D PN � of the eigenvectors matrix
has no vanishing terms. Hence, a linear grazing orbit is automatically admissible since uN .t/ � g for all
time t . Since P�1 D P>M, Assumption 2.1 also entails

P�1jN D e>j P�1eN D e>j P>M eN D .M eN />P ej ¤ 0; j D 1; : : : ; N (2.15)

where e>j D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 RN is a row vector with a 1 located at its j th coordinate. In
particular, if the mass matrix is the constant diagonal matrix M D mIN with m > 0 then MeN D meN ,
P�1jN D mPNj , and aj ¤ 0 reduces to PNj ¤ 0. For a diagonal mass matrix, the sign of the interaction
coefficients is known through Assumption 2.1

M D mIN ) aj D mP 2Nj > 0; j D 1; : : : ; N: (2.16)
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Remark 2. In this work, all numerical examples and corresponding illustrations are provided for the
generic oscillator depicted in Fig. 2.1 that is

M D

266664
m 0 0 0 0

0 m 0 0 0

0 0 m 0 0

0 0 0 m 0

0 0 0 0 m

377775 and K D

266664
2k �k 0 0 0

�k 2k �k 0 0

0 �k 2k �k 0

0 0 �k 2k �k
0 0 0 �k k

377775 : (2.17)

with N D 5, mj D m D 1=N , and kj D k D N , i D j; : : : ; N . As such, it falls into the framework
explained above. Yet, the proposed construction of nonsmooth modes of vibration is still valid for a much
broader class of discrete oscillators.

2.4. First Return Map The admissible state-space of the investigated system takes the form

D D Dı [HC [H� [H 0 (2.18)

where

Dı D f.u; Pu/ 2 R2N such that uN < gg; (2.19a)

HC D f.u; PuC/ 2 R2N such that uN D g and PuCN < 0g; (2.19b)

H� D f.u; Pu�/ 2 R2N such that uN D g and Pu�N > 0g; (2.19c)

H 0 D f.u; Pu/ 2 R2N such that uN D g and PuN D 0g: (2.19d)

It is illustrated in Fig. 2.2.

uN

PuN

H�

HC

H 0

Dı

g

Figure 2.2: Cross-section of the admissible state-space. The state-space is partitioned into two regions
separated by the hypersurface H D HC [H 0 [H�. The hatched area is the zone of non-admissible
displacements, and its complementary Dı in the state-space is populated by admissible orbits of which they
are three types: one admissible periodic orbit with one impact per period [blue], one admissible periodic

orbit with no impact (linear system) [red], and one grazing periodic orbit [green]

Seeking solutions of the extended formulation 2.1 can be equivalently seen as finding fixed-points
of a First Return Map, the so-called Poincaré map. Among all eligible Poincaré cross-sections, the half
hyperplane HC plays a crucial role in the impact dynamics and is selected. Loosely speaking, it is
expected that the Poincaré map is well defined from HC to HC. Indeed, we prove later that near an
admissible periodic solution with initial data in HC, the First Return Map is locally well-defined and
smooth. Since our focus is on periodic solutions with a unique impact per period, trajectories .u; Pu/
defined as follows

HC ! Dı ! H� ! HC (2.20)

are considered. More challenging yet not addressed situations shall emerge2 with potential grazing impacts
on H 0 between two impacts on HC as illustrated in Fig. 5.2.

2 Trajectories with more than one impact per period are investigated in [28] for a two-degree-of-freedom system.
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In order to enjoy an almost closed-form expression of the Poincaré map, Eq. (2.6a) is projected onto
the linear modal space through the transformation u D Pq to become

IN RqC�2q D 0 (2.21)

by invoking Eq. (2.9). Assume the existence of the first return time T from HC to H� which is a
nonlinear function of the initial state .u.0/; PuC.0// of the system. It is then straightforward to map the
state of system at t D 0C to its state at t D T � by solving the linear differential system (2.21) [6, 22] as
follows:

q�.T / D cos.T�/qC.0/C��1 sin.T�/ PqC.0/ (2.22a)

Pq�.T / D �� sin.T�/qC.0/C cos.T�/ PqC.0/ (2.22b)

where cos.T�/ � diag.cos.!iT /iD1;:::;N / and sin.T�/ � diag.sin.!iT /iD1;:::;N / are used as nota-
tions. In modal coordinates, the continuity of the displacement as well as the jump in velocity occurring
at t D T read

qC.T / D q�.T / (2.23a)

PqC.T / D SS Pq�.T / (2.23b)

where the expression of the jump matrix in modal coordinates is

SS D P�1SP: (2.24)

When T is known and by inserting Eq. (2.22) into Eq. (2.23), a 2N � 2N Return Map matrix R.T /
mapping the system from t D 0C to t D TC can be built in modal coordinates. It includes the free flight
in Dı as well as one impact on H�.

Definition 2.5 [First Return Map] The modal state of the system at time t is denoted by the quantity
Q.t/ D .q.t/; PqC.t// D .P�1u.t/;P�1 PuC.t//. If .u.0/; PuC.0// 2 HC, T D T .Q.0// > 0 is the first
return time to H� where Q.0/ is the initial modal state of the system. Then, the modal state at time TC is
given by the First Return Map

F.Q.0// D Q.T / D R.T .Q.0///Q.0/ (2.25)

with

R.T / D
�

cos.T�/ ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/

�
: (2.26)

To better “visualize” the expression of the First Return Map, Eq. (2.25) is expanded as�
q.T /
PqC.T /

�
D
�

cos.T�/ ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/

��
q.0/
PqC.0/

�
: (2.27)

From the periodicity conditions (2.6b) and (2.6d), the extended formulation (Definition 2.1) is transformed
into a nonlinear fixed point problem: find Q.0/ such that F.Q.0// D Q.0/ also arising in the form of
Eq. (2.25) as

Q.0/ D R.T .Q.0///Q.0/ , .R.T .Q.0/// � I2N /Q.0/ D 02N : (2.28)

Determining the fixed-points of the First Return Map thus reduces to solving a generalized eigenvalue
problem in .T;Q.0//. Since Q.0/ 2 HC, which is a half hyperplane of dimension 2N � 1, there are
2N D 1C 2N � 1 unknowns for 2N equations. Although the scalar T is an implicit function of the
2N � 1 dimensional variable Q.0/, the key point to solve nonlinear system (2.28) is to fix T such that
system (2.28) is then linear in Q.0/. The constraint Q.0/ 2 HC yields a unique solution (the proof is
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given later). In other words, we obtain a one-to-one relation between the period and the periodic solution
with one impact per period3.

We might think that the First Return Map is a linear map, but this is a wrong statement. First, the first
return time T fromHC toH� is an unknown of the nonlinear transcendental algebraic equation uN .T / D
g. Second, since SS is a non diagonal matrix, all the linear modes are fully coupled through (2.23b), which
is a well known feature of nonlinearity.

Let us emphasize the expression of the impact nonlinearity in terms of the matrix SS and the interaction
coefficients aj . It is clear that S is a diagonal matrix but SS is not. In the unrealistic case where SS D IN
(which is strictly impossible), the reflection on H� is removed and the problem would be simply linear.
In other words, the nonlinearity shall be quantified by the difference SS � IN which is directly linked to
the interaction coefficients aj from definition 2.3. The identity S D IN � 2eN e>N yields

SS D IN � 2P�1eN e>NP D IN � 2P�1�NP>N �: (2.29)

The matrix eN e>N is the rank one matrix of the orthogonal projection onto eN . The interaction coefficients
are the diagonal terms of the rank one matrix P�1�NP>N � uniquely defined by the last row of the eigenvector
matrix and the last column of its inverse

aj D
�
P�1eN e>NP

�
jj
D �P�1�NP>N �

�
jj
: (2.30)

The condition aj ¤ 0 from assumption 2.1 simply means that the diagonal of the projector on eN
expressed in the modal basis P�1�NP>N � does not vanish. Accordingly, all the coefficients of this matrix
are nonzero since it is a rank one matrix. More precisely, the condition aj D 0 has a mechanical
interpretation:
� if P�1jN D 0, the entire row j of

�
P�1�NP>N �

�
vanishes. Thus, equation j of (2.23b) becomes qCj .T / D

q�j .T / which means that the linear mode j is not coupled to any of the other modes k ¤ j on H�.
� if PNj D 0, none of the modes k ¤ j are affected by mode j on H� since the N th mass does not

move along linear mode j .

3. Main results This paper is mainly concerned with the construction of nonlinear modes of
vibration of a conservative and autonomous N -degree-of-freedom impact oscillator. Such modes are
defined as continuous families of periodic solutions with one impact per period. These periodic solutions
are found to be organized on two-dimensional invariant manifolds in the state-space. The proposed
formulation gives access to (almost) closed-form solutions, admissibility criteria, as well as spectral
stability (and bifurcation) of these nonlinear modes.

Remark 3. In this contribution, derivations are mostly expressed in terms of the period T but the plots are
displayed in terms of ! D 2�=T in line with conventional Frequency-Energy Plots. As stated in [14],
“[a] nonlinear modal motion is represented by a point in Frequency-Energy Plots, which is drawn at
a frequency corresponding to the minimal period of the periodic motion and at an energy equal to the
conserved total energy during the motion. A branch is a family of modal motions possessing the same
qualitative features.”

A majority of the proposed results are related to the key function

wN .T / D
NX
jD1

aj�j .T /; �j .T / D sin.!jT /
!j .1 � cos.!jT //

D 1

!j tan.!jT=2/
(3.1)

illustrated in Fig. 3.1. The existence and uniqueness of solutions to the extended formulation (Defini-
tion 2.1) is proven as soon as 0 < jwN .T /j < C1.

Remark 4. The function wN is a barycenter of the functions �j through (2.12).

Remark 5. The poles of wN , for which jwN .T /j D 1, are all the linear periods and their subharmonics,
that is T 2 [NjD1 TjN (see Fig. 3.1).

3 The solution to Eq. (2.28) is depicted in the form of a Frequency-Energy plot in Fig. 3.2: it is the union of the thin grey and thick
black lines. As long as the non-admissible solutions are not discarded, the system is shown to exhibit a continuous spectrum.
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Figure 3.1: Function wN versus period T for the system of interest. The linear periods and corresponding
subharmonics kTi , i D 1; : : : ; 5, k 2 N�C [coloured vertical lines] are the poles of this function. All T

such that wN .T / D 0 are the zeros of the function

Remark 6. The function wN admits at most a countable set of zeros.

Assumption 3.1 [No internal resonance assumption] The linear periods of the system of interest satisfyTN
jD1 TjN D ;.

Through assumption 3.1, difficulties induced by internal resonances are discarded. We then have the
following results:

Theorem 3.1 [Extended formulation: existence and uniqueness of solutions] Assume a positive T that is
neither a pole nor a zero of wN , then for all such T :
� The extended formulation (Definition 2.1) admits one and only one solution t 7! u.t IT /4.
� The set of initial data

V0 D f.u.0 IT /; PuC.0 IT //; 0 < T; 0 < jwN .T /j < C1g (3.2)

for the extended formulation is an analytic curve which generates a set of periodic solutions forming
a piecewise analytic manifold of dimension 2 defined as

V D ˚.u.t IT /; PuC.t IT //; 0 � t � T; 0 < T; 0 < jwN .T /j <1	 (3.3)

in the state-space R2N .
� If both assumptions 2.1 and 3.1 are satisfied, then the Lipschitz extension u. � IT / when T ! Tj is

the linear grazing solution denoted u. � ITj / here.

Note that the analytic curve is not connected when wN .T / D 0. When assumption 3.1 holds and
wN .T / D ˙1, then there is an analytic connection with the initial data associated to a linear grazing
orbit.

Solutions to the extended formulation are not necessarily admissible solutions since many of them
violate the non-penetration condition (2.8): they are called “phantom solutions”. A one-sided condition
naturally arises near the linear period Tj [23].

Theorem 3.2 [One-sided condition for admissible periodic solutions] Assumptions 2.1 and 3.1 hold. Then,
for all T > 0 such that T � Tj and aj .T � Tj / < 0:
� The unique T -periodic solution u. � IT / of Theorem 3.1 is admissible.

4 When there is no ambiguity, i.e. for a fixed T , the quantity u.t IT / will be simply denoted u.t/.
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� The invariant manifold of admissible periodic solutions with one impact per period near the linear
grazing orbit is a piecewise smooth manifold in the admissible state-space Dı.

Moreover:
� For aj .T � Tj / > 0 and T � Tj , the solution of the extended formulation is not admissible.
� If for all j , aj > 0 then the admissible frequencies are bounded.

The extended formulation (Definition 2.1) also exhibits solutions near linear subharmonics. The
question of their admissibility is more challenging since in the most general case, a numerical verification
is required. Still, a simple criterion for subharmonics of order one-half exists.

Theorem 3.3 [Admissible solutions near linear subharmonics of order one-half] Assumptions 2.1 and 3.1
hold. Then, for T � 2Tj such that aj .T � 2Tj / < 0 and u.T=2IT / � g, the solution t 7! u.t IT / is
admissible.

For subharmonics of lower order (1=3; 1=4; : : :), the admissibility is discussed in Section 5.2.
Theorems 3.1, 3.2 and 3.3 are illustrated in Fig. 3.2 for the system of interest. It should be noted

that this system features only strictly positive interaction coefficients aj , j D 1; : : : ; 5, stemming from
Eq. (2.16): from a mechanical standpoint, only stiffening is observed when contact is initiated. The
solution branches of the extended formulation are separated by the zeros and poles of wN . “Ghost”
branches which correspond to inadmissible solutions have to be ignored. Note that their boundaries are
always a grazing admissible solution or a solution with infinite energy (zero of wN ).
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Figure 3.2: Frequency-Energy Plot: non-admissible spectrum [thin gray line] and admissible spectrum
[thick black line]. Linear eigenfrequencies !i , i D 1; : : : ; 5 [thick vertical colored lines] as well as the
corresponding subharmonics !i=k, i D 1; : : : ; 5, k D 1; : : : ; 10 [thin vertical colored lines] are displayed.
The frequency interval ! 2 Œ0 I!1� features admissible branches that are not shown for the sake of clarity

The key-tool for the stability analysis is the First Return Map whose fixed-points can be expressed
in a closed form as soon as the first return time T is (numerically) known. Moreover, in the vicin-
ity of an impacting periodic orbit, the First Return Map is locally well defined and a fully explicit
differential of this map is also available. Stability can then be evaluated numerically by comput-
ing its eigenvalues. The corresponding results are expressed in modal coordinates for conciseness
where Q.t IT / D .q.t IT /; PqC.t IT // denotes a T -periodic solution. We also choose the notations
e>N D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 R2N (e>N is a row vector with a 1 located at the N th coordinate) and
P D Bdiag.P;P/. For grazing impact, it is already known that the First Return Map is not differentiable
and the grazing solutions are not expected to be stable [21].

Corollary 3.1 [First Return Map near an impacting periodic orbit] Let T0 …
SN
jD1 TjN be a nonlinear

period and Q0 D Q.0 IT0/ 2 HC be the initial condition generating an orbit of period T0 D T .Q0/.

10



Then, for all Q ' Q0 2 HC, the first return time T .Q/ and the First Return Map F.Q/ are well defined
and smooth. Moreover, the gradient of the first return time and the matrix of the linearized First Return
Map at Q0 are respectively given by

rT .Q0/ D wN .T0/

g
e>NPR.T0/; (3.4)

DF.Q0/ D R.T0/C PR.T0/ŒQ0rT .Q0/�: (3.5)

Furthermore, 1 is an eigenvalue of DF.Q0/.

Numerical examples seem to show that 1 is a simple eigenvalue as opposed to usual (smooth) Hamiltonian
systems for which 1 is a double eigenvalue [18]. Another derivation of DF in the space variables is
proposed in Appendix A.

4. Explicit solutions to the extended formulation In this section, existence and unique-
ness of solutions for the extended formulation (Definition 2.1) are proven. Closed-form initial data gener-
ating periodic solutions with one impact per period is derived for all nonlinear periods T …SN

jD1 TjN
and the associated invariant manifolds are investigated. Admissibility is discussed later.

The following quantities are well defined:

ˆ.T / D ��1.I � cos.T�//�1 sin.T�/ (4.1a)

w.T / D .Pˆ.T /P�1/eN (4.1b)

wN .T / D e>Nw.T / (4.1c)

Notice that wN is exactly the function defined in (3.1). A first important result is established:

Proposition 4.1 [Zero velocities, analytic manifolds, and symmetry]
1. For all T …SN

jD1 TjN, there exists a unique solution t 7! u.t IT / to the extended formulation with
period T given by its initial data

u.0 IT / D PuCN .0 IT /w.T /
PuC.0 IT / D PuCN .0 IT /eN

(4.2)

where PuCN .0 IT / D g=wN .T /.
2. The initial data set of solutions is an analytic manifold as soon as 0 < jwN .T /j < C1 and the set

of periodic solutions is a piecewise analytic invariant manifold in the state-space.
3. The solution is symmetric with respect to T=2 that is u.T=2 C t IT / D u.T=2 � t IT /, 8t and
Pu.T=2 IT / D 0.

Before proving Proposition 4.1, we explicitly express the eigenspace associated to the eigenvalue 1
of R.T / from Eq. (2.26).

Lemma 4.1 [Fixed-points of the Linear Return Map R] If T … SN
jD1 TjN then system (2.28) defines a

one-dimensional vector space parametrized by c 2 R:�
u.0/
PuC.0/

�
D
�

P 0
0 P

��
q.0/
PqC.0/

�
D c

�
w.T /

eN

�
(4.3)

Note that all velocities except velocity N are zero when the N th mass hits the wall, as already known for
a two degree-of-freedom system [22]. The solution in Eq. (4.3) can be seen as the “shape” w.T / of the
mode (as commonly found for linear modes that are standing waves) to which is added an initial velocity
on the N th degree-of-freedom.

Proof. The kernel ker.R.T /� I2N / can be explicitly expressed through a block-manipulation of R.T / detailed
below: �

cos.T�/ � IN ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/ � IN

�
�
�

IN � cos.T�/ ���1 sin.T�/

�� sin.T�/ cos.T�/ � SS

�
�
�

IN � cos.T�/ ���1 sin.T�/

0 .IN � cos.T�//.cos.T�/ � SS/ � sin2.T�/

�
(4.4)
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where � stands for “equivalent homogeneous systems”. The lower-right block can be simplified as follows:

.IN� cos.T�//.cos.T�/ � SS/ � sin2.T�/

D �.IN � cos.T�//SS C cos.T�/ � cos2.T�/ � sin2.T�/

D �.IN � cos.T�//SS C .cos.T�/ � IN /
D �.IN � cos.T�//.SS C IN /

D �.IN � cos.T�//P�1.SC IN /P:

(4.5)

By assumption, the matrix IN � cos.T�/ is invertible and system (4.4) is equivalent to�
IN � cos.T�/ ���1 sin.T�/

0 .SC IN /P

�
: (4.6)

Since Pu D P Pq, the right lower block in (4.6) yields .SC IN / Pu D 0, that is Pu D ceN with c 2 R. Similarly, the
upper block yields q D cˆ.T /P�1eN .

We now prove Proposition 4.1 and Theorem 3.1.

Proof. The identity c D PuCN .0/ is a direct consequence of the last equality of (4.3) which means that the
outcoming velocity at the boundary parametrizes every periodic solution. If wN .T / ¤ 0, condition (2.6c)
implies

PuCN .0/ D
g

wN .T /
: (4.7)

Due to the velocity jump, only piecewise regularity of V can be expected. Nevertheless, the projection of V on
the displacement

Vu D fu.t IT /; 0 � t � T; 0 < T; 0 < jwN .T /j <1g (4.8)

is at least continuous since the free flight response is governed by a linear differential system and is accordingly
very smooth. The regularity of the manifold V can be completely identified through the restriction of V to the
Poincaré section

V0 D
˚
.u.0 IT /; PuC.0 IT //; 0 < T; 0 < jwN .T /j <1

	
: (4.9)

Singularities of V0 shall arise when T approaches the poles
SN
jD1 TjN of wN . Consider the case T ! Tj .

The only singular term in w.T / stems from the matrix .IN � cos.T�//�1 through assumption 3.1. More
precisely, only the diagonal term

�j .T / D sin.!jT /
!j .1 � cos.!jT //

� 2

!2j .T � Tj /
(4.10)

becomes singular when T approaches Tj since all linear periods are distinct. From assumption 2.1, wN .T / is
precisely expanded as

wN .T / D
NX
kD1

ak�k.T / � aj�j .T / when T ! Tj (4.11)

and the condition uN .0 IT / D g D PuCN .0 IT /wN .T / yields

PuCN .0 IT / �
g

aj�j .T /
� g

2

!2j

aj
.T � Tj /: (4.12)

Thus PuCN .0 IT /! 0 when T ! Tj : the manifold V0 is smooth at T D Tj and recovers the initial data of the
corresponding linear grazing orbit. Let ek be the vector in RN such that all coordinates are 0 except the kth
one equal to 1. The computation is straightforward:

� if Pkj ¤ 0:

wk.T / D e>k w.T / D
NX
pD1

PkpP
�1
pN�p.T / � PkjP�1jN �j .T / when T ! Tj (4.13)

and thus

uk.0 IT / D PuCN .0 IT /wk.T / D g wk.T /=wN .T /! g Pkj =PNj ; k D 1; : : : ; N (4.14)

and PuC.0 IT /! 0 which forms the initial data of the linear grazing mode.
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� if Pkj D 0, then wk.T / D O.1/ so uk.0 IT /! 0 and the previous statement still holds true. Moreover, the
function T 7! .T � Tj /�j .T / is analytic at T D Tj and then V0 is an analytic manifold.
The same investigation is valid for the subharmonics T ' kTj , k 2 Z�.

Finally we prove the symmetry of the solutions. The proof only uses the uniqueness initial data theorem for
linear differential system (without contact). To this end, let us define z.t/ WD u.T=2C t /, �T=2 < t < T=2: it
is a solution of the linear differential system and can be extended to all time t 2 R. This vectorial function is
very smooth and also well defined at t D ˙T=2 with z.T=2/ D z.�T=2/ D u.0/ and Pz.T=2/ D �Pz.�T=2/ D
�PuC.0/. As a consequence, z.t/ and z.�t / satisfy the same linear differential system with the same initial
data, that is z.t/ D z.�t /, 8t 2 R. As a direct consequence, Pz.0/ D 0 that is u.t/ D u.�t /, 8jt j � T=2 and
Pu.T=2/ D 0, which concludes the proof.

5. Nonsmooth modes of vibration with one impact per period The previous
section defines the set of all solutions to the extended formulation (Definition 2.1). They are not
all physically acceptable and the admissible solutions only form the so-called “Nonsmooth modes
of vibration”.

Among all the admissible branches shown in Fig. 3.2, special attention is paid to four of them
illustrated in Fig. 5.1 since they embed the main properties of all branches: they are defined in the vicinity
of the fundamental and sub-harmonics of the linear modes and their domain of definition is either bounded
by a nonlinear grazing orbit (branches 1, 2, and 3) or not bounded (branch 4). These nonlinear grazing

1
0

�1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

Frequency of vibration ! [lin (broken) scale]

N
or

m
al

iz
ed

E
ne

rg
y

!
1

!
3
=
3

!
2

!
4
=
2

A

B

E

F

C

D

G

H

ze
ro

of
w

N
.T

/

1

3
2

4

Figure 5.1: Zoomed-in Frequency-Energy plot: investigated branches of the admissible spectrum [see
Fig. 3.2]. Colored vertical straight segments are the linear portions of the nonlinear modes of vibration
[contact not activated] while the colored curved segments are the nonlinear portions [one impact per period]
of the nonlinear modes of vibration: the corresponding supporting manifolds are depicted in figures 5.4,
5.8, 5.5, and 5.9 with increasing frequencies. Points A, C , E, and G correspond to the linear grazing orbits
in these figures, while points B , D, and F correspond to the nonlinear grazing orbits. One zero of wN .T /

is highlighted

orbits are plotted in Fig. 5.2, together with their linear counterparts. It should be understood that these are
solutions where the system (probably, as not further explored in this work) bifurcates from one impact per
period orbits to multiple impacts per period orbits. The proposed approach is not capable of investigating
these new types of response and a sophisticated formulation tackling more than one impact per period is
needed [28].

All illustrated invariant manifolds are projected onto the coordinates .uN�1; uN ; PuN / of the state-
space as generically shown in Fig. 5.3. The terminology “Hyperplane view” and “Configuration view”
used later is self-explanatory. The jump in velocity induced by the impact law is highlighted by a thick
black line representing the one-dimensional manifold V0.
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(d) Branch 4: points G and H (not a grazing orbit)

Figure 5.2: Linear [solid line] and nonlinear [dashed line] grazing displacements mentioned in Fig. 5.1.
Nonlinear grazing orbits feature additional grazing impact instants thus limiting the domain of admissibility

of one impact per period orbits. Note that the time axis is rescaled for each orbit for viewing purposes

5.1. In the vicinity of the linear natural frequencies The solution of the eigenvalue problem (2.28)
given in Proposition 4.1 has various consequences on the existence and admissibility of a periodic solution
satisfying uN .0/ D g and PuCN .0/ < 0.

Proposition 5.1 [Admissibility] Assumptions 2.3, 3.1, and T …SN
jD1 TjN hold. Then a periodic solution

u. � IT / will be an admissible solution if:
1. Necessary admissibility conditions: PuCN .0/ < 0 and wN .T / < 0.
2. Sufficient admissibility condition: aj .T � Tj / < 0 and T ' Tj .

Remark 7. The existence of a branch of admissible periodic solutions near a linear grazing mode pertains
to grazing bifurcation mechanisms near periodic orbits [21, 7].

This proposition is a reformulation of Theorem 3.2 which is proven below.

Proof. The first necessary condition PuCN .0 IT / � 0 should be satisfied otherwise mass N penetrates the rigid
wall. Since PuCN .0 IT / ¤ 0 for the nonlinear period T , the condition PuCN .0 IT / � 0 becomes PuCN .0 IT / < 0.
The second necessary condition stems from the fact that u.0 IT / D cw.T / with c D PuCN .0 IT / and 0 < g D
uN .0 IT / D c wN .T /.

Equivalent (4.12) for T ' Tj implies the one-sided condition aj .T � Tj / < 0. Assume a positive
interaction coefficient aj . The admissibility of a T -periodic solution uN .t IT / with only one impact per period
means

uN .t IT / < g; 8t 2 �0 IT Œ: (5.1)

A continuity argument on u.t IT / along t and T belonging to the compact set K� D f.t; T /; 0 � t �
T; Tj � � � T � Tj g parametrized by 0 < � � 1 shows that u.t IT / � u.t ITj / which is the linear grazing
solution satisfying uN .t ITj / < g except for t D 0 and t D T : as a consequence, uN .t IT / < g except
for t � 0 and t � T . Let us investigate inequality (5.1) around t � 0 only since the other configuration
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Figure 5.3: Generic admissible manifold for illustration purposes. It shows (1) the linear portion [red] for
which contact is not activated during one period and (2) the nonlinear portion [blue] supporting periodic
orbits with one impact per period. The linear grazing orbit joins the two portions defining the manifold.
The continuum of periodic orbits “hits” the hyperplane uN D g along the one-dimensional manifold

V0 [ SV0 [thick black line]

is handled in an identical fashion. The solutions uN .0 IT / D g for T < Tj have negative velocity on the
wall PuCN .0 IT / < 0 without any uniform estimate since PuN .0 IT /! 0 when T ! Tj . We cannot conclude
directly on the existence of a time zone �0 I t0Œ independent of T such that uN .t IT / < g for all .t; T / 2 K� ,
0 < t < t0. Fortunately, there exist t0 > 0 and � > 0 such that

sup
Œ0 It0��ŒTj�� ITj �

RuN .t IT / < 0 (5.2)

which is a sufficient condition to ensure admissibility because PuN .t IT / decreases on Œ0 I t0� and PuN .0 IT / � 0
so PuN .t IT / < 0 on �0 I t0� � ŒTj � � ITj �, and then uN .t IT / < g on �0 I t0� � ŒTj � � ITj �. Let us calculate
the second derivatives by starting with

P�1P D I ,
NX
pD1

P�1kp Ppj D ıkj : (5.3)

The expansions are now performed in a neighborhood of Tj through (4.10), (4.11), and (4.14) when T ! Tj .
For 0 < t < T , the explicit solution is

u.t/ D P cos.t�/P�1u.0/C P��1 sin.t�/P�1 PuC.0/ (5.4)

which leads to the expressions for
� the displacement:

uN .t IT / D g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k cos.!`t /wk.T /C

NX
kD1

ak
sin.!kt /
!k

�
(5.5)

uN .0 IT / D g; (5.6)
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.4: Nonsmooth mode for T � T1 corresponding to branch 1 in Fig. 5.1

� the velocity:

PuN .t IT / D g

wN .T /

�
�

NX
`D1

NX
kD1

PN`P
�1
`k !` sin.!`t /wk.T /C

NX
kD1

ak cos.!kt /
�

(5.7)

PuCN .0 IT / D
g

wN .T /

� NX
kD1

ak

�
D g

wN .T /
; (5.8)

� the acceleration:

RuN .t IT / D � g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k !

2
` cos.!`t /wk.T /C

NX
kD1

ak!k sin.!kt /
�

(5.9)

RuCN .0 IT / D �
g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k !

2
`wk.T /

�
D �g

NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

wk.T /

wN .T /
;

which becomes, by passing to the limit when T ! Tj

lim
T!Tj

RuCN .0 IT / D �g
NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

P
kj

PNj
D �g

NX
`D1

!2`
P
N`

PNj

� NX
kD1

P�1`k Pkj

�
(5.10)

D �g
NX
`D1

!2`
P
N`

PNj
ı j̀ D �g !2j < 0: (5.11)

To summarize, we can state that uN .0 IT / D g, PuCN .0 IT / � 0 and RuCN .0 IT / < 0 for T � Tj and
aj .T � Tj / < 0. Thus uN .t IT / < g for 0 < t < �, aj .T � Tj / < 0, jT � Tj j < � and � > 0, which is
sufficient to prove the admissibility of the solution.
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.5: Nonsmooth mode for T � T2 corresponding to branch 2 in Fig. 5.1

Two manifolds emerging in the neighborhood of the linear natural frequencies !1 and !2 are displayed
in figures 5.4 and 5.5, respectively. They both exhibit a nonlinear grazing orbit limiting their domain of
definition. Accordingly, these two manifolds have boundaries. A third one, unbounded, defined around
!3 is shown in Fig. 5.6. It should be compared to its counterpart arising about !3=3: they both share the
same linear portion but then bifurcate differently at the linear grazing orbit. A similar behavior is expected
for all admissible subharmonics of all (linear) modes. As such, this is a typical example of a mechanical
system for which the number of nonlinear modes of vibration exceeds the number of degrees-of-freedom.

5.2. In the vicinity of the linear subharmonics In this section, we prove Theorem 3.3 and discuss
the more challenging case of linear subharmonics.

Proof. The solution u.t I 2Tj / is simply the j th linear grazing solution with two loops and two (grazing)
contacts per period. By continuity, it is clear that the solution u.t IT / ' u.t I 2Tj / when T � 2Tj (see
Fig. 5.7). To test admissibility, attention is paid to the scalar function t 7! uN .t IT /: from the closed-form
expression (5.4), it clearly lies near uN .t I 2Tj / D g cos.!j t=2/ in all C k topologies (outside the impact). The
solution u.t I 2Tj / and all its derivatives with respect to time t have simple roots only, and this holds true for
T � 2Tj as well. Accordingly, u.t IT / has only two local maxima on Œ0 IT Œ where the condition u.t IT / � g
has to be tested. If the one-sided condition aj .T � 2Tj / < 0 is satisfied for all T � 2Tj , the first maximum
is located at t D 0: this is a straightforward consequence of the previous proof. Due to the symmetry of the
solution, the second maximum is at t D T=2. We also have RuN .T=2 IT / � RuN .Tj I 2Tj / D RuN .0 ITj / < 0
and the inequality uN .T=2 IT / � g guarantees admissibility.

As detailed in Proposition 4.1, interesting features of the modal dynamics can also be observed by
examining responses for various initial energy levels in the phase portraits. Fig. 5.10 depicts phase plane
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.6: Nonsmooth mode for T � T3. It is not bounded by a nonlinear grazing orbit. The corresponding
branch is not shown in Fig. 5.1. It should be compared to the manifold emerging in the vicinity of T � 3T3
reported in Fig. 5.8. Both share the same linear part but bifurcate differently at the linear grazing orbit

diagrams for masses 4 and 5: the loops correspond to periodic responses whose amplitudes depend on the
initial energy level. They are symmetric along the velocity axis because of the conservative nature of the
system and the symmetry of the impulsive impact force in velocity. It also shows how mass 4 is affected
in its motion by the nonlinear restitution force.

Remark 8. An important feature that distinguishes the investigated vibro-impact oscillator from poly-
nomial nonlinear oscillators is the existence of physically observable backbone curves near the linear
subharmonics of vibration. In Fig. 5.1, the vibratory motions corresponding to the two linear segments
located at !3=3 and !4=2 are not readily observable as they turn to be identical to the ones corresponding
to the two linear segments located at !3 and !4 (that is linear modes 3 and 4), respectively. Nevertheless,
the nonlinear branches emanating from the natural frequencies !i and from their subharmonics !i=j ,
.i; j / 2 N�C, correspond to distinct co-existing manifolds sharing the same linear portion, as illustrated
in Figs. 5.6 and 5.8. This is in contrast with some polynomial nonlinear systems where manifolds are
defined in the neighborhood of linear modes of vibration only. In other words, a countable set of manifolds
(potentially infinitely many and each of them defining a nonlinear mode of vibration) emerge from the
linear fundamental grazing orbits, and the Poincaré map is thus singular.

Admissibility for T ' kTj , k > 2 For lower-order subharmonics (1=3; 1=4; : : :), numerical approxima-
tions are required to test admissibility conditions:
1. Check aj .T � kTj / < 0.
2. With a numerical solver, find t` � ` T=k such that PuN .t` IT / D 0 for all integers ` such that
1 � ` � k=2.

3. Check the conditions uN .t` IT / � g for 1 � ` � k=2.
As shown in Fig. 5.7, the displacement uN . � IT / on Œ0 IT � has a graph very similar to uN . � I kTj / on
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Œ0 I kTj � with the same number of extrema nearly at the same locations. By symmetry, only half a period
should be scrutinized. Moreover, if k is even, tk=2 D T=2 as in Theorem 3.3.
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Figure 5.7: Admissible nonsmooth periodic solutions in the vicinity of the third linear mode of period T3,
and in the vicinity of two of its subharmonics 2T3 and 3T3. For readability, the time scale is normalized

with respect to each T

5.3. High Frequencies In [23, p. 1008], it is shown that very high frequency (that is T ! 0 here)
admissible solutions exist. This is not true in our investigation. The last statement of Theorem 3.2 is a
consequence of Proposition 5.2.

Proposition 5.2 [Nonexistence of high-frequency nonlinear modes] If ˛ WD PN
jD1 aj!�2j > 0 then the

frequencies of the admissible nonlinear modes are bounded.

As previously highlighted, our illustrative example (2.17) is such that the interaction coefficients are
all positive and the admissible frequencies are bounded. In order to observe high-frequency admissible
nonlinear modes, the condition ˛ < 0 is required which is a bit challenging to fulfill since

P
j aj D 1

from (2.12).

Proof. Within the current mathematical framework, it is possible to derive an asymptotic behaviour when
T ! 0. The limit limT!0 u.0 IT / can be explicitly exploited and the only non vanishing velocity PuCN .0 IT / D
g=wN .T / D O.T / converges to 0. Recall that uk.0 IT / D g wk.T /=wN .T /. The asymptotic behavior of
wk.T / for T � 0 is

wk.T / D
nX

pD1
PkpP

�1
pN�p.T / D

2

T

NX
pD1

PkpP
�1
pN!

�2
p CO.1/ when T ! 0: (5.12)

In particular, for k D N , we simply have wN .T / � 2˛=T when T ! 0. Consequently, the limiting initial
data are

lim
T!0

uk.0IT / D
g

˛

NX
pD1

PkpP
�1
pN!

�2
p ; k D 1; : : : ; N

lim
T!0

Puk.0IT / D 0; k D 1; : : : ; N:
(5.13)

In particular, uN .0 I 0/ D g and a grazing contact trajectory is retrieved. The admissibility criterion on the
velocity requires PuN .0 IT / < 0 but for T & 0, PuCN .0 IT / D g=wN .T / � Tg=.2˛/ > 0. Thus the solution
of the extended formulation (Definition 2.1) becomes inadmissible. This is sufficient to conclude the proof.
Nevertheless, the second derivative in time is also computed as it is later used in the pre-stressed case. Through
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.8: Nonsmooth mode for T � 3T3 corresponding to branch 3 in Fig. 5.1

Eqs. (5.10) and (5.3), we can derive an approximation of the second right derivative for small T :

RuCN .0 IT / D �g
NX
`D1

NX
kD1

PN`P
�1
`k !

2
`

wk.T /

wN .T /
� �g

˛

NX
`D1

NX
kD1

NX
pD1

!2
`

!2p
PN`P

�1
`k PkpP

�1
pN

� �g
˛

NX
`D1

NX
pD1

!2
`

!2p
PN`P

�1
pN ı`p D �

g

˛

NX
`D1

PN`P
�1
`N � �

g

˛
< 0: (5.14)

Accordingly, the trajectory leaves the rigid foundation on the “wrong” non-admissible side uN > g with
decreasing velocity.

6. Spectral stability analysis Nonlinear systems shall exhibit a wide range of exotic behaviors,
including instabilities, bifurcations, and chaos. Of high interest is the systematic stability analysis of the
previously found periodic orbits as their frequency—or energy—increases. Stability of a periodic solution
manifests itself in the way neighboring trajectories behave. It is known for autonomous conservative linear
systems that the periodic orbits are neutrally stable. In general, this property is destroyed for nonlinear
systems and as a result, some of the previously found orbits shall be unstable. In order to clarify the
situation, a dedicated analysis should be undertaken: it commonly prescribes a perturbation of a calculated
periodic trajectory in order to explore its dynamical behavior with time. This can be conveniently achieved
by either calculating the eigenvalues of the linearized Poincaré map or, equivalently, by exploiting the
characteristic multipliers determined from the monodromy matrix [25].

In this work, since the First Return Map is found to be locally well defined and smooth for non-grazing
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(a) Three-dimensional viewpoint

(b) Configuration space .uN ; uN�1/ view (c) Hyperplane .uN�1; PuN / view

Figure 5.9: Nonsmooth mode for T � 2T4 corresponding to branch 4 in Fig. 5.1

solutions5, Lyapunov’s theorems can be used and the stability analysis reduces to the classical spectral
stability analysis of the Poincaré map fixed points [10]. The sufficient condition for (spectral) stability is
that all the eigenvalues of the linearized Poincaré map lie inside the unit circle in the complex plane; the
necessary condition is that they lie either inside or on the circle. In other words, instability is achieved as
soon as the modulus of one eigenvalue of the linearized First Return Map exceeds unity.

Additional features of the response are also readily accessible from this analysis: depending on where
the eigenvalue or pair of complex conjugate eigenvalues crosses the unit circle defined in the complex
plane, different types of bifurcation occur. Evidently, the more challenging bifurcation mechanisms
induced by grazing orbits, that are specific to nonlinear systems involving switching manifolds in the
state-space, are not addressed with this approach.

6.1. Linearized First Return Map In order to prove Corollary 3.1, let us first notice that the First
Return Map F is fully defined by the first return time T when it exists. Also, we need the following
ingredient: the mechanical energy E. Pu;u/ D Pu>M PuC u>Ku is conserved after an impact when the last
mass is concentrated.

Proposition 6.1 [Conserved energy] The impact law conserves the mechanical energy if and only if the
mass matrix of the investigated system satisfies MNk D 0 DMkN for all k D 1; : : : ; N � 1.

Proof. In space coordinates, the energy is clearly conserved during the free flight. The impact rule only affects
velocities since it reads PuC D S Pu�. The energy is conserved only if the kinetic energy is preserved during an
impact, thus SMS DM, i.e. �MNk DMNk and �MkN DMkN for all k D 1; : : : ; N � 1.

Corollary 3.1 is now proven. Its relevance lies in the explicit formula to compute Floquet’s exponents.
The existence and the computation of the linearized First Return Map are well known [7] since there

5 The stability analysis of the grazing orbits involves quite complicated arguments [4, 13] that are not discussed in this paper.
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Figure 5.10: Phase portrait of the periodic motion on the invariant manifolds: mass N [color] and mass
N � 1 [gray]. Linear grazing orbit [thick black]. Branches are defined in Fig. 5.1

is no grazing contact. To be self-contained, the proof and computation are proposed using our closed-
form solutions. Derivations more in line with the Mechanical Engineering community are provided in
Appendix A.

Proof. To avoid the impact-induced jump in the orbit, the closed-form solution

q.t/ D L.t/Q D cos.t�/q.0/C��1 sin.t�/ PqC.0/ (6.1)

is considered on interval �0 IT Œ as a function of initial data Q and time t where the N � 2N matrix L.t/ stores
the first N rows of R.t/. The linear relation (6.1) is valid only on Œ0 IT �. Away from impact, q.t/ can be
differentiated with respect to time such that Pq.t/ D PL.t/Q while at the impact, Pq�.T / D PL.T /Q.

The proof involves several distinct steps:
1. Existence and smoothness of T in the neighborhood of Q0 — The scalar function T .Q/ is implicitly defined

by uN .T .Q// D g in physical coordinates which becomes, in modal coordinates

f .T;Q/ WD e>NPL.T /Q (6.2)

Note also that f .T;Q/ D e>NPR.T /Q. In order to use the implicit function theorem at .T0;Q0/, it is sufficient
to prove that @T f .T0;Q0/ ¤ 0. This partial derivative has a simple interpretation: @T f .T0;Q0/ D Pu�N .T0 IT0/
since uN .t IT0/ D f .t;Q0/ for all t 2 �0 IT0Œ. Accordingly, the non-grazing condition PuCN ..0 IT0// ¤ 0, the
periodicity, and the reflection law Pu�N .T0 IT0/ D �PuCN .T0 IT0/ D �PuCN .0 IT0/ show that

@T f .T0;Q0/ D e>NP PL.T0/Q D �PuCN .0 IT0/ ¤ 0: (6.3)

2. Explicit formula for DF — Differentiating equality (6.2) with respect to Q at Q D Q0 leads to

rT D � 1

@T f
rQf D � 1

e>NP PL.T .Q0//Q0

e>NPL.T .Q0// D 1

PuCN .0 IT0/
e>NPL.T0/

D wN .T0/

g
e>NPL.T0/ D wN .T0/

g
e>NPR.T0/: (6.4)

Finally, it is sufficient to differentiate F through the standard chain rule formula.
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3. 1 is an eigenvalue — There are two ways to see that 1 is an eigenvalue of DF. First, we have a smooth family of
initial data Q.0 IT / for a non-grazing nonsmooth mode, so F.Q.0 IT // D Q.0 IT / and differentiating with
respect to the time yields

DF.Q.0 IT //@TQ.0 IT / D @TQ.0 IT /: (6.5)

The explicit formula for Q.0 IT / shows that @TQ.0 IT / ¤ 0 at least for almost all T . In this case @TQ.0 IT /
is a left eigenvector of DF associated with the eigenvalue 16.
Second, if the mass matrix satisfies the assumptions of Proposition 6.1, differentiating the conservation of
energy E.F.Q// D E.Q/ yields rE.F.Q//DF.F.Q// D rE.Q/. Note that the energy is not degenerate,
that is rE.Q/ ¤ 0 except for Q D 0 which is not an initial condition for periodic solutions. Furthermore,
if F.Q/ D Q then rE.Q/ is a left eigenvector of DF.Q/ with eigenvalue 1. We cannot deduce that 1 is an
eigenvalue with multiplicity 2 as it is for smooth Hamiltonian systems.

The First Return Map is conventionally defined on the Poincaré section only, that is the half hyperplane
HC in this work. In the derivations above, the First Return Map and its differential in the neighborhood of
an admissible nonlinear trajectory are expressed in the entire state-space, which adds one dimension, and
thus one eigenvalue to the Jacobian. An obvious question then arises: “What is the magnitude and meaning
of the additional eigenvalue?” Consider the orbit of the nonlinear mode which leaves HC at time t D 0C:
F.Q.t IT0// D Q.0 IT0/ D Q0 such that DF.Q0/ satisfies DF.Q0/ v D 0 where v D PQ.0 IT0/ ¤ 0 does
not belong to H . Consequently, in this formulation, where the unnecessary new dimension makes it easier
to handle, 0 is always an extraneous eigenvalue of the matrix DF.Q0/, that should be formally removed in
the analysis.

6.2. Numerical example: first nonlinear mode Computational work can be directly conducted in
physical coordinates where the N th row of DF vanishes since e>N DF D 0 which is a direct consequence
of F.H/ � H . The varied control parameter is the frequency of the autonomous periodic response. The
corresponding stability/instability pattern is shown in Fig. 6.1. As depicted in Fig. 6.2, instability arises
through the three well-known bifurcation scenarios usually identified for autonomous and conservative
systems: a pair of complex conjugate eigenvalues leaves the unit circle, defined in the complex plane,
either (i) at .1; 0/, or (ii) at .�1; 0/, or (iii) anywhere else. For each of the above scenarios, eigenvalues
initially travel on the unit circle and escape it, for critical values of the control parameter, yielding
unstable behavior. Some of the additional features of the bifurcated solutions (fold, flip or Neimark-Sacker
bifurcations, for instance) can be graphically displayed by numerically integrating the equations of motion
initiated on the nonlinear mode. The Poincaré map is then employed to explore and visualize the dynamics
in the unstable region. This is not further discussed in this work.

7. Pre-stressed configurations The initially open clearance g is now modified as follows:
� A strictly pre-stressed configuration where the oscillator is statically distorted at rest (pre-stressed

in Figure 7.1), that is g < 0. All solutions are solely nonlinear with impacts. As shown later, the
nonlinear spectrum is continuous but not connected to the linear spectrum, as it is for g > 0.
� A closed-gap configuration where the system grazes the rigid foundation at rest (closed gap in

Figure 7.1) that is g D 0. The spectrum is discrete but distinct from the linear spectrum.
Structures of these invariant manifolds are presented.

7.1. Strict pre-stress The previous explicit closed forms for g > 0 are still valid for g < 0. Let us
briefly recall and parametrize them with respect to g. The unique solution u.t IT ; g/ to Definition 2.1
with g ¤ 0, period T > 0, and one impact per period such that 0 < jwN .T /j <1 has the initial data�

u.0 IT ; g/
PuC.0 IT ; g/

�
D g

wN .T /

�
w.T /
eN

�
: (7.1)

The poles of wN .�/ are exactly the periods (fundamental and multiple) of the linear differential sys-
tem (2.6a). Periods T such that wN .T / D 0 correspond to infinite energy and are forbidden for g ¤ 0

6 The derivative @TQ.0 IT / can eventually be 0 for an isolated time only. Thus, for almost all time, this vector is non-zero and 1
is an eigenvalue. Since the eigenvalue depends continuously on the matrix coefficients that are smooth with respect to T , 1 is an
eigenvalue for all time.
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Figure 6.1: Spectral stability analysis of the first nonlinear mode in the vicinity of !1 [Branch 1 in Fig. 5.1].
Instability is achieved as soon as the modulus of one eigenvalue of the linearized First Return Map DF is
larger than unity. In every subfigure, zones of instability are highlighted in light red rectangles. The color
scheme based on the magnitude of the real parts allows for the convenient identification of the various

branches. Eigenvalue 1 is removed for readability purposes
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Figure 6.2: Spectral stability analysis of the first nonlinear mode in the vicinity of !1 [Branch 1 in Fig. 5.1].
Eigenvalues of the linearized First Return Map DF in the complex plane

but allowed for g D 0. The closed-form solutions are simply (see (5.4) and (5.5)):

u.t IT ; g/ D g

wN .T /
P
�
cos.t�/ˆ.T /C��1 sin.t�/

�
P�1eN (7.2)

whose last component is, with P�1
`k
D .P�1/`k:

uN .t IT ; g/ D
g

wN .T /

� NX
`D1

NX
kD1

PN`P
�1
`k cos.!`t /wk.T /C

NX
kD1

ak
sin.!kt /
!k

�
: (7.3)

A new static equilibrium denoted p D .p1; : : : ; pN / and induced by pre-stress is reached: by
definition, pN D g and the only unknown isep D .p1; : : : ; pN�1/ solution to the following .N � 1/ �

24



g
open gap

closed gap
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pre-stressed

Figure 7.1: The three configurations of interest at rest

.N � 1/ system with 1 � i; j � N � 1:eKep Deb; eKij D Kij ; ebi D �KiNg: (7.4)

From Proposition 7.1 below, the pre-stressed static equilibrium p provides an upper bound on the
frequencies of vibration.

The closed forms (7.1) and (7.2) are still valid when g < 0. Then, the question of admissibility
remains, namely to satisfy constraint (2.5c). Numerical examples are provided in Figures 7.2(a) and 7.2(b)
where two portions of the admissible manifold are shown.

(a) !nl3 < ! � !nl1 (branch 1 in Fig. 7.3) (b) !nl4 < ! � !nl2 (branch 2 in Fig. 7.3)

Figure 7.2: Invariant manifold for g < 0: the solid blue curve is an orbit on the manifold. The dashed line
is a nonlinear grazing orbit (of frequency ! D !nl1 for branch 1 or ! D !nl2 for branch 2) forming the
boundary of the otherwise unbounded manifold (when ! ! !nl3 for branch 1 or ! ! !nl4 for branch 2)

As opposed to g > 0, there are no theoretical statements on the existence of the manifold in the
strictly pre-stressed case. The theoretical admissibility criteria obtained for g > 0 through perturbation
near the linear grazing modes, as in [21], are no more available. More importantly, non-existence is
proven: the solutions u. � IT ; g/ in the vicinity of the linear grazing orbits are never admissible as proven
in Proposition 7.1.

Proposition 7.1 [Non-admissible solutions for strict pre-stress] We assume that there is no internal reso-
nance and all the interaction coefficients are non zero. The periods T of admissible solutions satisfying
0 < jwN .T /j <1 are organized as follow:
1. If g ¤ 0 and u. � IT ;Cg/ is admissible, then u. � IT ;�g/ is not admissible.
2. If g < 0 and T > 0 is sufficiently close to [jTjN� then u. � IT ; g/ is not admissible.
3. If ˛ DPN

kD1 ak!�2k > 0 and T is small enough then u. � IT ; g/ is inadmissible.

Above, the first result has a nice interpretation in the FEP. Since the energy does not depend on the sign of
g, the system features the same FEP forCg and �g as shown by solution (7.2). However, the admissible
parts of the curve are distinct forCg and for �g. Also, many portions of this curve are neither admissible
for Cg nor for �g, see Figure 7.3. The second result means there is no admissible solution near the
harmonics and subharmonics of the linear differential system (2.6a), while the third result says there is no
nonlinear modes of high frequency.

Now we turn to prove Proposition 7.1.
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Figure 7.3: FEP — Admissible solutions for g < 0 [blue spectrum]; admissible solutions for g > 0

[red spectrum]; non-admissible solutions [thin dashed gray spectrum]. The vertical black lines are the
fundamental harmonics and subharmonics of the linear differential system. The vertical green lines show
the roots of function wN .�/, that is the discrete spectrum for g D 0. Branches 1 and 2 correspond to the
two manifolds depicted in Figures 7.2(a) and 7.2(b). Branches 3 and 4 correspond to the two manifolds

displayed in Figures 7.4(a) and 7.4(b). Note that branch 2 becomes inadmissible at high frequencies

Proof. The closed-form solutions to Definition 2.1 are exploited with g < 0.
1. The proof is valid for g < 0 and g > 0. Note that u.t IT ;�g/ D �u.t IT ;Cg/. Stating that u.t IT ;Cg/

is admissible also means uN .t IT ;Cg/ � g for all time. Accordingly, from (7.3), uN .t IT ;�g/ D
�uN .t IT ;Cg/ � �g is not admissible. To emphasize, notice that uN .t IT ; g/ < g for t ' 0, t ¤ 0

and uN .t IT ;�g/ is not admissible since uN .t IT ;�g/ > �g for t ' 0, t ¤ 0.
2. The set of initial data for the extended formulation is an analytic set which, for T D Tj (a fundamental linear

period), recovers the associated linear grazing mode. The mean of a solution is continuously dependent on T .
A linear solution (without impact) has a 0 mean whereas an admissible solution has a negative mean smaller
or equal to g < 0. Thus, for g < 0, admissible solutions and their periods and their linear counterparts are
necessarily disjointed.

3. The limit for high frequencies is T D 0 and jwN .0/j D 1 but, as proven in Section 5.3 with the two
key assumptions “no internal resonance” and “non-zero interaction coefficients”, the manifold of initial
data V0 D f.u.0 IT ; g/; PuC.0 IT ; g//; 0 < jwN .T /j < 1g is analytic with analytic extension when
jwN .T /j D 1. It is known that the solution to (2.5) is continuously dependent on the initial data [3]. To
prove the inadmissibility, it then suffices to show that u.t I 0 ; g/ > g for some time t since by continuity the
same remains true for u.t IT ; g/ > g and T small enough. Using the proof of Proposition 5.2, it is known
that PuCN .0 IT ; g/ � .Tg/=.2˛/ < 0 and RuCN .0 IT ; g/ � �g=˛ > 0 thus, for T D 0, PuCN .0 I 0 ; g/ D 0 and
RuCN .0 I 0 ; g/ > 0, which is an evidence of inadmissibility since uN .t I 0 ; g/ > g for t & 0.

7.2. Static grazing The grazing case g D 0 is unique and quite different from g ¤ 0. The nonlinear
spectrum becomes discrete, in a way similar to the purely linear system (2.6a). The periods of the
extended formulation are then roots of the function wN .�/ given in Eq. (3.1) (green vertical asymptotes in
Figure 7.3).

Proposition 7.2 [Static grazing: solutions to the extended formulation] When g D 0, the period of the
solutions to the extended formulation are the roots of wN and the spectrum is countable. Moreover, to
every root of wN is associated a one-parameter continuous family of periodic orbits of the same period:

u.0 IT / D vw.T / with uN .0 IT / D wN .T / D 0; (7.5)
Pu.0 IT / D veN : (7.6)

The admissibility condition implies v � 0.

Proof. From Lemma 4.1 the solutions to the extended formulation read u.0 IT / D vw.T / and Pu.0 IT / D veN ,
from which uN .0 IT / D g D 0 D vwN .T / is deduced. The case v ¤ 0 is assumed; otherwise the static
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(a) mode with frequency ! D !nl3 (branch 3 in Fig. 7.3) (b) mode with frequency ! D !nl4 (branch 4 in Fig. 7.3)

Figure 7.4: Invariant manifold for g D 0. Solid lines show orbits on the manifold. They are all of the same
frequency for a given manifold

equilibrium solution is retrieved which is not of interest. Accordingly, g D 0 implies wN .T / D 0. Moreover,
PuCN .0 IT / D v and the admissibility condition is satisfied with a positive incoming velocity v > 0. For v D 0,
the solution is genuinely admissible since it is the equilibrium. So the solution satisfies uN .t IT / � g for
v � 0 and t � 0 (or T by symmetry).

It is important to realize that this (nonlinear) spectrum is not the countably finite spectrum f!1; : : : ; !N g
of the linear system. Instead, it is related to the roots of wN .T /. In general, wN .T / is a non-periodic
analytic function of T and shows, at most, a (possibly infinite) countable set of roots, as illustrated in
Figure 3.1.

Lemma 7.1 [Infinite spectrum] If ak > 0 for all k 2 f1; : : : ; N g then the set of roots of wN is a countably
infinite set.

Proof. For T > 0, wN is singular (jwN .T /j D 1) only when T D `Tk for some ` 2 N and k 2 f1; : : : ; N g.
Previous computations show that for T � `Tk , T ¤ `Tk :

wN .T / � ak�k.T / �
2ak

!2
k

1

T � `Tk
: (7.7)

Therefore, wN changes its sign through a singularity. Still, it is continuous on D D �0 IC1Œ � [NjD1TjN, and
on every connex component I D �iTj I `Tk Œ with vertical asymptotes on its boundary @I D fiTj ; `Tkg. Since
aj and ak have the same positive sign, wCN .iTj / D C1 and w�N .`Tk/ D �1, wN has at least one root in I .
The set of connex components of D is infinite, so the set of roots of wN too.

It can be demonstrated numerically that many of the calculated roots yield non-physical solutions: only a
few exhibit a last mass on the left side of the wall for all times.

8. Multiple oscillators and self-contact The above presentation can be extended to other
configurations that might be of mechanical interest:
� Unilateral contact with the wall is enforced on a degree-of-freedom other than the last one. This is

succinctly discussed in [27] for a two-dof system where periodic solutions with one sticking phase
per period on mass 2 are related to periodic solutions with one impact per period on mass 1.
� Initially separated N1- and N2-dof chains interacting through impact-driven conditions. Let us denote

by indices k1 and k2 the two interacting dofs, from chain 1 and chain 2 respectively as depicted in
Figure 8.1(a) (with k1 D 2 and k2 D 3), then

uk1
.t/ � uk2

.t/ � g; (8.1)

where the positive gap g represents the distance between the equilibrium position of the two masses
subjected to possible contact occurrences. The impact law is classically expressed through the
conservation of linear momentum and conservation of kinetic energy at the impact time such that
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(a) Multiple oscillators

g

uk1
.t/ uk2

.t/
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Figure 8.1: Other potential (simplified) configurations of interest

uk1
.t/ � uk2

.t/ D g implies PuC
k1
.t/ D 2V.t/ � Pu�

k1
.t/ and PuC

k2
.t/ D 2V.t/ � Pu�

k2
.t/ where V.t/ is

the velocity of the center of mass, which yields

.mk1
Cmk2

/V .t/ D mk1
Pu˙k1
.t/Cmk2

Pu˙k2
.t/: (8.2)

Using the orthogonal change of variables u�
k1
D uk1

� uk2
and u�

k2
D uk1

C uk2
, new mass and

stiffness matrices M� and K� with the same (natural) frequencies (as M and K) shall be built. The
problem to be solved thus reduces to the formulation explained previously with the unilateral condition

u�k1
� g: (8.3)

However, the new system after this change of basis does not correspond to a chain since the mass
matrix M� is not diagonal.
� Self-contact in the same chain of masses, where two neighboring dof should satisfy a contact constraint,

see Figure 8.1(b).

9. Conclusion Nonlinear normal modes of conservative multi-degrees-of-freedom systems are
one-parameter continuous families of periodic motions. They have been investigated since the 1950’s
for vibratory systems involving smooth and differentiable nonlinearities. In this work, an extension to a
vibro-impact system exhibiting non-differentiable displacement and discontinuous velocity is proposed.
Based on the construction of a convenient Poincaré map and with the assumption of a single impact per
period, (quasi-) closed-form solutions are obtained and nonlinear modes of vibration are shown to exist.
When the initial gap separating the oscillator from the impacted rigid foundation is positive, they can
be visualized as piecewise analytic two-dimensional manifolds in the state-space, formed by the union
of one “flat” submanifold (contact is not activated and the normal modes are invariant elliptic disks)
and one “curved” submanifold (contact occurs once per period) sharing a common grazing orbit. From
the expressions for the normal modes, the frequency-energy relationships on each mode are captured
and are (obviously) of piecewise type. Interestingly, it is shown that the manifolds emanating from
the linear modes of period Ti and from the subharmonics of the linear modes of period nTi , n 2 NC
and i 2 f1; : : : ; N g are distinct. Altogether, such manifolds “shape” the state-space of the system and
graphically illustrate the dynamical complexities induced by the presence of a perfectly elastic impact law
into the (otherwise linear) governing equations.

A succinct spectral stability analysis is conducted for the first nonlinear mode. It is numerically
demonstrated that an intricate pattern of stable and unstable solutions arises as the frequency of the
periodic solution is increased. The three commonly reported bifurcation mechanisms are found: they
depend on where the eigenvalues of the linearized First Return Map leave the unit circle in the complex
plane. Other more advanced bifurcations involving grazing orbits transitioning from a single impact per
period to multiple impacts per period are conjectured.

The linear “flat” portions of the manifolds for pre-stressed or statically grazing systems cease to exist.
More importantly, the corresponding “essentially” nonlinear manifolds cannot be found as continuations
of linear ones.

Finally, it is briefly explained that systems embedding multiple oscillators or involving self-contact
can also be tackled through a simple change of variables.

Appendix A. Stability analysis through perturbed orbits The stability analysis of a periodic orbit lying
on the previously constructed manifolds as explained in Corollary 3.1 is revisited in a more pragmatic
and intuitive manner. Let’s first define the notation Ut WD .ut ; Put / WD .u.t/; PuC.t//. The initial condition
on the Poincaré section of this periodic orbit is denoted by U0 and its period, by T0. By definition of
the Poincaré section, e>NU0 D uN .0/ D g. We want to know how slightly disturbed initial conditions
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U0C ıU0 defined on the Poincaré section, i.e. satisfying e>N ıU0 D 0, are mapped back onto the Poincaré
section UT D U0C ıUT after a time T D T0C ıT with the condition e>N ıUT D 0. If their amplitude is
magnified, then the periodic orbit is unstable. The Poincaré map (2.27) in physical coordinates reads�

u.T /
PuC.T /

�
D
�

P cos.T�/P�1 P��1 sin.T�/P�1
�SP� sin.T�/P�1 SP cos.T�/P�1

��
u.0/
PuC.0/

�
D
�
�1.T /�2.T /

�3.T /�4.T /

��
u.0/
PuC.0/

�
(A.1)

that is �.T / D PR.T /P�1. An admissible perturbed orbit starting on the Poincaré section at t D 0 in a
neighborhood of the actual periodic orbit and coming back to the Poincaré section at T D T0 C ıT is
thus governed by the system�

u0 C ıuT
Pu0 C ıPuT

�
D
�
�1.T0 C ıT / �2.T0 C ıT /
�3.T0 C ıT / �4.T0 C ıT /

��
u0 C ıu0
Pu0 C ıPu0

�
(A.2)

with the property

e>N ıuT D e>N ıu0 D 0: (A.3)

Neglecting higher order terms, system (A.2) simplifies to�
u0 C ıuT
Pu0 C ıPuT

�
D
�
�1.T0/C P�1.T0/ıT �2.T0/C P�2.T0/ıT
�3.T0/C P�3.T0/ıT �4.T0/C P�4.T0/ıT

��
u0 C ıu0
Pu0 C ıPu0

�
: (A.4)

Since Eq. (A.1) is satisfied by the periodic orbit, Eq. (A.4) becomes�
ıuT
ıPuT

�
D
�
�1.T0/ �2.T0/

�3.T0/ �4.T0/

��
ıu0
ıPu0

�
C ıT

� P�1.T0/ P�2.T0/
P�3.T0/ P�4.T0/

��
u0
Pu0

�
: (A.5)

From Eq. (A.3), we can express ıT in terms of .ıu0; ıPu0/ since�
eN
0

�> �
�1.T0/ �2.T0/

�3.T0/ �4.T0/

��
ıu0
ıPu0

�
C ıT

�
eN
0

�> � P�1.T0/ P�2.T0/
P�3.T0/ P�4.T0/

��
u0
Pu0

�
D 0 (A.6)

which leads to

ıT D �e>N�.T0/ıU0
e>N P�.T0/U0

: (A.7)

System (A.5) thus reads

ıUT D
�
� �

P�.T0/U0e>N�.T0/

e>N P�.T0/U0
�
ıU0 (A.8)

or, in a compact form

ıUT D ı� ıU0 (A.9)

where ı� is a notation. The matrices ı� in Eq. (A.9) and DF in Eq. (3.5) are two expressions of the same
linearized First Return Map, in physical and modal coordinates, respectively (see transformation (4.3)
between the two systems). They both exhibit the additional extraneous eigenvalue 0 which should be
discarded. To this end, let’s consider the rectangular mapping Q>N which removes row N of a vector it
multiplies; QN is a rectangular matrix of size 2N � 2N � 1 storing “1” on its “fake diagonal”. Let’s also
use two new reduced quantities: U0;N D QNU0 is U0 with its N th coordinate removed; same for UT;N
with UT , as well as their corresponding perturbations. System (A.9) simplifies to

ıUT;N D Q>N ı� QN ıU0;N D ı�N ıU0;N : (A.10)

A similar reduction could be proposed for DF in the modal coordinates system. The eigenvalues of
the reduced maps dictate the instability of the targeted periodic orbit. For a given periodic response, a
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sufficient condition for instability is that at least one of these eigenvalues in modulus lies outside the unit
circle in the complex plane.

Appendix B. Eigenvalues of the Return Map Matrix The spectrum of the Return Map Matrix R.T / lies
on the unit circle. Unfortunately, this is not sufficient to conclude on the stability of the nonlinear modes
but it could be useful for further works on this topic. It is determined by finding � such that

det
��

cos.T�/ � �I ��1 sin.T�/

�SS� sin.T�/ SS cos.T�/ � �I

��
D 0: (B.1)

The first row of blocks stores diagonal matrices and the determinant can be calculated blockwise

det
�
.cos.T�/ � �I/.SS cos.T�/ � �I/C SS sin.T�/2

� D 0 (B.2)

or equivalently

det
�
SS � � cos.T�/.SS C I/C �2I

� D 0: (B.3)

We can respectively premultiply and postmultiply by the non-singular matrices P and P�1 such that

det P det
�
SS � � cos.T�/.SS C I/C �2I

�
det P�1 D 0 (B.4)

which is equivalent to det
�
P.SS � � cos.T�/.SS C I/C �2I/P�1

� D 0 which itself simplifies to

det
�
S � � cos.T�/.SC I/C �2I

� D 0: (B.5)

This becomes the determinant of a diagonal system with the following discussion:
1. entries i D 1; : : : ; N � 1: 1 � 2� cos.!iT /C �2 D 0;
2. entry N : �1C �2 D 0.

All eigenvalues are of modulus 1.
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