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Abstract

The Shigesada–Kawasaki–Teramoto system, which consists of two reaction-diffusion
equations with variable cross-diffusion and quadratic nonlinearities, is considered. The
system is the most important case of the biologically motivated model proposed by Shige-
sada et al. (J. Theor. Biol. 79(1979) 83–99). A complete description of Lie symmetries
for this system is derived. It is proved that the Shigesada–Kawasaki–Teramoto system
admits a wide range of different Lie symmetries depending on coefficient values. In partic-
ular, the Lie symmetry operators with highly unusual structure are unveiled and applied
for finding exact solutions of the relevant nonlinear system with cross-diffusion.
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1 Introduction

In 1979 Shigesada et al. [1] proposed a mathematical model to describe the densities of two
biological species, which takes into account the heterogeneity of the environment and nonlinear
dispersive movements of the individuals of these populations. The model was developed on the
basis of Morisita’s phenomelogical theory of environmental density and has the form

ut = [(d1 + d11u+ d12v)u]xx + (Wxu)x + u(a1 − b1u− c1v),

vt = [(d2 + d21u+ d22v)v]xx + (Wxv)x + v(a2 − b2u− c2v),
(1)

where the functions u and v arising in system (1) give the densities of two competing species
in space and time, d1 and d2 denote the diffusion coefficients, d12v and d21u are so-called cross-
diffusion pressures, d11u and d22v are intra-diffusion pressures, a1 and a2 are the intrinsic growth
coefficients, b1 and c2 denote the coefficients of intra-specific competitions, b2 and c1 denote
the coefficients of inter-specific competitions. The function W (x) is so-called environmental
potential, which is assumed to be known. Nevertheless, the authors of [1] assumed that the
environmental potential may be a non-constant function, system (1) with W (x) = const is
usually referred as Shigesada–Kawasaki–Teramoto (SKT) system (model). It was shown by
numerical simulations that system (1) possesses solutions describing coexistence of the species
by the spatial segregation of habitat [1]. This kind of coexistence results from the mutual
interferences of the species and the heterogeneity of the environment and means a steady-state
segregation of densities of two competing species. The existence of the steady-state segregation
clearly depends on the initial distributions of u and v and the parameter values of (1).

It is worth to note that the SKT system with dij = 0 (i = 1, 2, j = 1, 2) and W (x) = const

reduces to the well-known diffusive Lotka–Volterra (DLV) system

ut = d1uxx + u(a1 − b1u− c1v),

vt = d2vxx + v(a2 − b2u− c2v).
(2)

Starting from the pioneer works [2, 3], the conditions of existence, uniqueness and global
stability/instability of solutions for the DLV system and the SKT system were investigated
extensively by many scholars (see [4–10] and the papers cited therein). Although there are not
many papers devoted to finding exact solutions (especially in explicit form) of these nonlinear
systems. To the best of our knowledge, there are only a few papers, in which exact solutions
of the SKT system were found [11–13]. The list of such references for the DLV systems is
wider [14–19] and the results are summarized in the very recent book [20]. Note that a wide
range of exact solutions of the Lotka–Volterra type systems with power diffusivities (without
cross-diffusion) were constructed in in [21, 22] (see also [20] and references cited therein).

In this paper system (1) with W (x) = const, i.e., the SKT system

ut = [(d1 + d11u+ d12v)u]xx + u(a1 − b1u− c1v),

vt = [(d2 + d21u+ d22v)v]xx + v(a2 − b2u− c2v)
(3)
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is under study. Depending on signs of the parameters ak, bk and ck (k = 1, 2) the SKT
system (3) can describe different types of species interactions (competition, mutualism and
prey–predator interaction). Hereafter dij (i = 1, 2, j = 1, 2) are assumed to be real constants
and d212 + d221 6= 0, i.e., we consider only the systems with cross-diffusion. Moreover, we always
assume that both equations involve diffusion, i.e., both equations are the second-order PDEs.

A complete description of Lie symmetries for this system with dij = 0 (i = 1, 2, j = 1, 2), i.
e., DLV system, is derived in [15] and extended on the case of three-component DLV systems
in [17].

It should be noted that the system (3) with d12 = d21 = 0 is a particular case of the general
reaction-diffusion (RD) system with variable diffusivities. Lie symmetry of such system was
completely described in [21, 23].

The paper is organized as follows. In Section 2, a problem of the Lie symmetry classification
of system (3) is completely solved. It is proved that the SKT system admits a wide range of
different Lie symmetries depending on coefficient values. In particular, the Lie symmetry
operators with highly unusual structure are unveiled. These operators are nonlinear with
respect to the dependent variables u and v, hence the do not occur in RD systems without
cross-diffusion. In Section 3, we present some examples of exact solutions and their possible
interpretation. Finally, we summarize the results obtained and present some conclusions in the
last section.

2 Lie symmetry classification of the SKT system (3)

It is easily checked that the system (3) with arbitrary coefficients is invariant under the operators

Px =
∂

∂x
≡ ∂x, Pt =

∂

∂t
≡ ∂t. (4)

Hereafter we call this algebra the trivial Lie algebra (other terminology used for this algebra is
the ‘principal algebra’ and the ‘kernel of maximal invariance algebras’) of the SKT system (3).
Thus, we aim to find all coefficients arising in the nonlinear system (3) that lead to extensions of
its trivial Lie algebra (4). Because the SKT system (3) contains 12 parameters it is a non-trivial
task and the result obtained is highly non-trivial.

Taking into account the known results for the DLV system [15], we consider only the systems
with cross-diffusion (d212 + d221 6= 0), which cannot be reduced to the systems without cross
diffusion (d12 = d21 = 0) by any point (local) transformations.

It is convenient to separate the results obtained into three parts depending on the coefficients
arising in the SKT system (3). Thus, three theorems will be presented for the following cases:

1. System (3) with both standard diffusion and cross-diffusion, and non-vanish reaction
term(s).
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2. System (3) with cross-diffusion diffusion only, i.e., d1 = d2 = d11 = d22 = 0, and non-
vanish reaction term(s).

3. System (3) with both standard diffusion and cross-diffusion, however reaction terms van-
ish, i.e., ak = bk = ck = 0 (k = 1, 2).

Notably that the nonlinear system (3) without reaction terms may describe the crystal
growth processes (see [24, 25] for details).

Our main result can be formulated in form of Theorems 1–3 presenting the complete Lie
symmetry classification of system (3) in each of the cases listed above.

Theorem 1 All possible maximal algebras of invariance (up to equivalent representations gen-
erated by transformations of the form (5)) of the SKT system (3) are presented in Table 1.
Any other system of the form (3) which is invariant with respect to (w.r.t.) the three- and
higher-dimensional maximal algebra of invariance (MAI) is reduced by a substitution of the
form

t∗ = α00e
α0t, x∗ = α01x,

u∗ = α10 + α11u+ α12v + α13e
α1tu,

v∗ = α20 + α21u+ α22v + α23e
α2tv

(5)

to one of those given in Table 1 (constants αij are determined by the form of the system in
question).

The sketch of the proof. We can rewrite the system (3) in equivalent form:

ut = d1uxx + 2d11uuxx + d12vuxx + d12uvxx+

2d11ux
2 + 2d12uxvx + a1u− b1u

2 − c1uv,

vt = d2vxx + 2d22vvxx + d21uvxx + d21vuxx+
2d22vx

2 + 2d21uxvx + a2v − c2v
2 − b2uv.

(6)

The proof of the theorem is based on the classical Lie scheme (see, e.g., [26–28]); however, it is
highly non-trivial and cumbersome because the system (3) contains twelve arbitrary coefficients.
Here we give an outline of how the proof proceeds. According to the Lie approach, the system
(3) is considered as a manifold M= {S1 = 0, S2 = 0}:

S1 ≡ −ut + d1uxx + 2d11uuxx + d12vuxx + d12uvxx+

2d11ux
2 + 2d12uxvx + a1u− b1u

2 − c1uv = 0,
S2 ≡ −vt + d2vxx + 2d22vvxx + d21uvxx + d21vuxx+

2d22vx
2 + 2d21uxvx + a2v − c2v

2 − b2uv = 0

(7)
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in the space of the following variables:

t, x, u, v, ut, vt, ux, vx, uxx, vxx,

where subscripts t and x to the functions u and v denote differentiation with respect to these
variables.

System (3) is invariant under the transformations generated by the infinitesimal operator

X = ξ0(t, x, u, v)∂t + ξ1(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v, (8)

when the following invariance conditions are satisfied:

X
2
S1|M = 0, X

2
S2|M = 0. (9)

The operator X
2
is the second prolongation of the operator X , i.e.,

X
2
= X + ρ1t

∂
∂ut

+ ρ2t
∂
∂vt

+ ρ1x
∂

∂ux

+ ρ2x
∂

∂vx
+ σ1

tx
∂

∂utx

+ σ2
tx

∂
∂vtx

+

σ1
tt

∂
∂utt

+ σ2
tt

∂
∂vtt

+ σ1
xx

∂
∂uxx

+ σ2
xx

∂
∂vxx

,
(10)

where the coefficients ρ and σ with relevant subscripts are calculated by well-known formulae
(see, e.g., [27]).

Substituting (10) into (9) and eliminating the derivatives ut and vt using (7), we can split this
relation into separate parts for the derivatives ux, vx, uxx, vxx, uxvx. Finally, after the relevant
calculations, we obtain the following system of determining equations (DEs):

ξ0x = ξ0u = ξ0v = ξ1u = ξ1v = 0, (11)

d21vη
1
uu + (d2 + d21u+ 2d22v)η

2
uu + 2(d21 − d11)η

2
u = 0, (12)

(d1 + 2d11u+ d12v)η
1
uu + d12uη

2
uu + 2d11(η

1
u + ξ0t − 2ξ1x) + 2d12η

2
u = 0, (13)

(d1 + 2d11u+ d12v)η
1
vv + d12uη

2
vv + 2(d12 − d22)η

1
v = 0, (14)

d21vη
1
vv + (d2 + d21u+ 2d22v)η

2
vv + 2d21η

1
v + 2d22(η

2
v + ξ0t − 2ξ1x) = 0, (15)

(d1 + 2d11u+ d12v)η
1
uv + d12uη

2
uv + (2d11 − d21)η

1
v + d12(η

2
v + ξ0t − 2ξ1x) = 0, (16)

d21vη
1
uv + (d2 + d21u+ 2d22v)η

2
uv + d21(η

1
u + ξ0t − 2ξ1x) + (2d22 − d12)η

2
u = 0, (17)
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d12uη
1
u − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

1
v − d12uη

2
v−

d12η
1 − d12u(ξ

0
t − 2ξ1x) = 0,

(18)

d21vη
1
u − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

2
u − d21vη

2
v+

d21η
2 + d21v(ξ

0
t − 2ξ1x) = 0,

(19)

d21vη
1
v − d12uη

2
u − 2d11η

1 − d12η
2 − (d1 + 2d11u+ d12v)(ξ

0
t − 2ξ1x) = 0, (20)

d21vη
1
v − d12uη

2
u + d21η

1 + 2d22η
2 + (d2 + d21u+ 2d22v)(ξ

0
t − 2ξ1x) = 0, (21)

2d21vη
1
xu + 2(d2 + d21u+ 2d22v)η

2
xu + 2d21η

2
x − d21vξ

1
xx = 0, (22)

2(d1 + 2d11u+ d12v)η
1
xu + 2d12uη

2
xu + 4d11η

1
x + 2d12η

2
x+

ξ1t − (d1 + 2d11u+ d12v)ξ
1
xx = 0,

(23)

2(d1 + 2d11u+ d12v)η
1
xv + 2d12uη

2
xv + 2d12η

1
x − d12uξ

1
xx = 0, (24)

2d21vη
1
xv + 2(d2 + d21u+ 2d22v)η

2
xv + 2d21η

1
x + 4d22η

2
x+

ξ1t − (d2 + d21u+ 2d22v)ξ
1
xx = 0,

(25)

η1t + (a1u− b1u
2 − c1uv)η

1
u + (a2v − b2uv − c2v

2)η1v−
(a1 − 2b1u− c1v)η

1 + c1uη
2 − (d1 + 2d11u+ d12v)η

1
xx − d12uη

2
xx−

(a1u− b1u
2 − c1uv)ξ

0
t = 0,

(26)

η2t + (a2v − c2v
2 − b2uv)η

2
v + (a1u− b1u

2 − c1uv)η
2
u+

b2vη
1 − (a2 − b2u− 2c2v)η

2 − d21vη
1
xx − (d2 + d21u+ 2d22v)η

2
xx−

(a2v − b2uv − c2v
2)ξ0t = 0.

(27)

The system of DEs (11)—(27) is very cumbersome and one needs to establish how the
functions η1 and η2 depend on the variables u and v. It is well-known that this dependence
is linear in the case of RD equations [29] and systems [21, 30, 31]. It turns out that the cross-
diffusion terms in RD systems may lead to a completely different result. In order to prove this,
we need to examine differential consequences of equations (18)—(21) w.r.t. u and v:

d12uη
1
uu − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

1
uv − d12uη

2
uv−

(2d11 − d21)η
1
v − d12η

2
v − d12(ξ

0
t − 2ξ1x) = 0,

(28)

d12uη
1
uv − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

1
vv − d12uη

2
vv+

2(d22 − d12)η
1
v = 0,

(29)
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d21vη
1
uu − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

2
uu − d21vη

2
uv+

2(d21 − d11)η
2
u = 0,

(30)

d21vη
1
uv − (d1 − d2 + (2d11 − d21)u+ (d12 − 2d22)v)η

2
uv − d21vη

2
vv+

d21η
1
u − (d12 − 2d22)η

2
u + d21(ξ

0
t − 2ξ1x) = 0,

(31)

d21vη
1
uv − d12uη

2
uu − 2d11η

1
u − 2d12η

2
u − 2d11(ξ

0
t − 2ξ1x) = 0, (32)

d21vη
1
vv − d12uη

2
uv − (2d11 − d21)η

1
v − d12η

2
v − d12(ξ

0
t − 2ξ1x) = 0, (33)

d21vη
1
uv − d12uη

2
uu + d21η

1
u − (d12 − 2d22)η

2
u + d21(ξ

0
t − 2ξ1x) = 0, (34)

d21vη
1
vv − d12uη

2
uv + 2d21η

1
v + 2d22η

2
v + 2d22(ξ

0
t − 2ξ1x) = 0. (35)

The next crucial step is to remove all the first-order derivatives from (28)—(35) using the
system of DEs (11)—(27). In fact, if one subtracts equation (30) from (12), equation (35) from
(15), equation (31) from (17), equation (34) from (17) and adds (13) to (32), (14) to (29), (16)
to (28), (16) to (33) then the linear algebraic system

(d1 + 2d11u+ d12v)η
1
uu + d21vη

1
uv = 0,

d12uη
1
uu + (d2 + d21u+ 2d22v)η

1
uv = 0,

d12uη
1
uv + (d2 + d21u+ 2d22v)η

1
vv = 0,

(d1 + 2d11u+ d12v)η
1
uv + d21vη

1
vv = 0,

(d1 + 2d11u+ d12v)η
2
uu + d21vη

2
uv = 0,

d12uη
2
uu + (d2 + d21u+ 2d22v)η

2
uv = 0,

d12uη
2
uv + (d2 + d21u+ 2d22v)η

2
vv = 0,

(d1 + 2d11u+ d12v)η
2
uv + d21vη

2
vv = 0

to find the function η1uu, η
1
uv, η

1
vv, η

2
uu, η

2
uv and η2vv is obtained. Because this system is overde-

termined (8 equations for 6 functions), we have found that its solution only is

η1uu = η1uv = η1vv = η2uu = η2uv = η2vv = 0, (36)

provided d21 + d22 + d211 + d222 6= 0.
The case d1 = d2 = d11 = d22 = 0 is special and will be examined separately.
Thus, solving equations (11) and (36), one immediately obtains

ξ0 = ξ0(t), ξ1 = ξ1(t, x),

η1 = r1(t, x)u+ q1(t, x)v + p1(t, x),
η2 = q2(t, x)u+ r2(t, x)v + p2(t, x),

(37)
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where ξ0, ξ1, r1(t, x), q1(t, x), p1(t, x), q2(t, x), r2(t, x) and p2(t, x) are arbitrary smooth func-
tions at the moment. Taking into account (37), equations (12) and (14) from the system of
DEs, are simplified:

[d21 − d11]q
2(t, x) = 0, (38)

[d12 − d22]q
1(t, x) = 0. (39)

Finally, two different cases should be examined
1. d22 6= d12. 2. d22 = d12, d21 = d11.
The third possible case d21 6= d11 is reduced to the first case by the substitution u → v, v → u

and the relevant renaming.
We do not present further calculations because it is rather a standard routine to find the

coefficients of the infinitesimal operator (8) provided they have the form (37). The detailed
analysis of case 1 shows that the systems and MAIs listed in cases 3—7, 10—12 and 15 of
Table 1 are obtained, while the same routine for case 2 produces the systems and MAIs listed
in cases 1, 2, 8–9, 13–14 and 16.

Finally, we note that each SKT systems listed in Table 1 is a representative of some other
systems, which are reduced to one by the point (local) substitutions indicated in the last column
of Table 1. The explicit forms of these substitutions are

1. u∗ = v, v∗ = u.

2. u∗ = e1u, v∗ = e2v.

3. u∗ = u+ d1
2d11

, v∗ = v.

4. u∗ = u, v∗ = v + d1
d12

.

5. u∗ = u+ d1−d2
d11

, v∗ = v.

6. u∗ = u, v∗ = v + d2−d1
d12

.

7. u∗ = u, v∗ = bu+ cv.

8. u∗ = u, v∗ = d11u+ d12v.

9. u∗ = bu+ cv, v∗ = d11u+ d12v.

10. t∗ = 1
a
eat, u∗ = e−atu, v∗ = e−atv.

11. u∗ = ue−a1t, v∗ = v.

12. u∗ = u, v∗ = ve−a2t.

(40)

It can be easily seen that all the substitutions listed above can be united in the form (5) (of
course, constants αij must be correctly-specified by the system in question).

The sketch of the proof is now completed. ✷

Remark 1 In cases 5, 9, 10, 11, 13—16 of Table 1, the term a1u are removable by the substitu-
tion 11 from (40). However, we keep this term because one has a clear biological interpretation

8



Table 1: MAIs of the SKT system (3)

Systems Restrictions Basic operators Substitution

of MAI from (40)

1. ut = [(u+ c
b
v)u]xx + u(a− bu− cv) abc 6= 0 Pt, Px, Q1 1, 2

vt = [(u+ c
b
v)v]xx + v(2a− bu− cv)

2. ut = [(1 + b
a
u+ c

a
v)u]xx + u(a− bu− cv) abc 6= 0 Pt, Px, Q2 1, 2

vt = [(2 + b
a
u+ c

a
v)v]xx − v(a+ bu+ cv)

3. ut = [(d11u+ d12v)u]xx − u(b1u+ c1v) b21 + c21+ Pt, Px, D1 3, 4, 10

vt = [(d21u+ d22v)v]xx − v(b2u+ c2v) b22 + c22 6= 0

4. ut = [(d11u+ d12v)u]xx + a1u a1 6= a2 Pt, Px, D2 3, 4

vt = [(d21u+ d22v)v]xx + a2v

5. ut = [(d1 + v)u]xx + u(a1 − c1v) d21 + d22 6= 0 Pt, Px, u∂u 1, 2

vt = [(d2 + d22v)v]xx + v(a2 − c2v)

6. ut = [(d1 + v)u]xx − b1u
2 d21 + d22 6= 0 Pt, Px, D3 1, 2,

vt = [(d2 + d22v)v]xx − b2uv 9

7. ut = d12[uv]xx + u(a1 − b1u) Pt, Px, D4 1, 2,

vt = [v2]xx + v(a2 − b2u) 3, 4

8. ut = [(u+ d12v)u]xx + au a 6= 0 Pt, Px, 1, 2

vt = [(u+ d12v)v]xx + 2av D2, Q3

9. ut = [(1 + v)u]xx + u(a1 − cv) Pt, Px, 1, 2,

vt = [(1 + v)v]xx + v(a2 − cv) u∂u, Q4 5, 6, 8

10. ut = d12[uv]xx + u(a1 − c1v) a2 6= 0 Pt, Px, 1, 2,

vt = [v2]xx + v(a2 − c2v) c1 6= c2 u∂u, Q5 3, 4

11. ut = d12[uv]xx + u(a1 − c1v) c1 6= c2 Pt, Px, 1, 2,

vt = [v2]xx − c2v
2 u∂u, D5 3, 4

12. ut = d12[uv]xx − b1u
2 Pt, Px, 1, 2, 3,

vt = [v2]xx − b2uv D1, D4 4, 9, 10

13. ut = [uv]xx + u(a1 − cv) a2c 6= 0 Pt, Px, 1, 2, 7

vt = [v2]xx + v(a2 − cv) u∂u, Q4, Q5

14. ut = [uv]xx + u(a1 − cv) c 6= 0 Pt, Px, 1, 2, 7

vt = [v2]xx − cv2 u∂u, D5, Q6

15. ut = d12[uv]xx + a1u a2 6= 0 Pt, Px, 1, 2

vt = [v2]xx + a2v d12 6= 1 u∂u, D4, Q5

16. ut = [uv]xx + a1u a2 6= 0 Pt, Px, u∂u 1, 2, 8

vt = [v2]xx + a2v D4, Q4, Q5
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(the rate of the birth (or mortality) for species/cells). We also note that some parameters in the
systems listed in Table 1 can be reduced to ±1 by scaling (see substitutions 2 and 10 in (40)).

Remark 2 In Tables 1–3, the following designations for the Lie symmetry operators are in-
troduced:

D0 = 2t∂t + x∂x;
D1 = t∂t − (u∂u + v∂v);
D2 = x∂x + 2(u∂u + v∂v);
D3 = 2t∂t + x∂x − 2u∂u;
D4 = x∂x + 2v∂v;
D5 = t∂t + a1tu∂u − v∂v;
D6 = t∂t − u∂u;
Q1 = e−at(∂t + a(u− c

b
v)∂u + 2av∂v);

Q2 = e−at(∂t + 2au∂u + a(a
c
− b

c
u+ v)∂v);

Q3 = e−at(∂t + a(u− d12v)∂u + 2av∂v);
Q4 = e(a1−a2)tv∂u;
Q5 = e−a2t(∂t + a1u∂u + a2v∂v);
Q6 = ea1tv∂u;

R = t∂t +
(

5d2−4d1
3(d1−d2)

u+ 2d1−d2
3(d1−d2)

v − 2d1−d2
3

)

∂u +
(

4d2−5d1
3(d1−d2)

v + d1−2d2
3(d1−d2)

u+ d1−2d2
3

)

∂u;

Z1 =
ex

u−v
(∂u − ∂v) , Z2 =

e−x

u−v
(∂u − ∂v) ;

Z3 =
cos x
u−v

(∂u − ∂v) , Z4 =
sinx
u−v

(∂u − ∂v) ;

Z5 =
x

u−v
(∂u − ∂v) , Z6 =

1
u−v

(∂u − ∂v) .

Now we examine system (3) under the condition d1 = d2 = d11 = d22 = 0, which reduces
the system to the form

ut = d12[uv]xx + u(a1 − b1u− c1v),

vt = d21[uv]xx + v(a2 − b2u− c2v).
(41)

Assuming d12d21 6= 0, we transform (41) to the form

ut = [uv]xx + u(a1 − b1u− c1v),

vt = [uv]xx + v(a2 − b2u− c2v)
(42)

by the simple transformation

u∗ = d21u, v∗ = d12v (43)

(in system (42), stars next to u and v are skipped). In the case of the coefficients arising
in system (42) the system of DEs (11)—(27) takes an essentially different form. As a result,
equation (36) is not obtainable. An analysis of the system of DEs is omitted here. The final
result can be formulated as follows.
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Table 2: MAIs of system (42)

Systems Restrictions Basic operators Substitution

of MAI from (44)

1. ut = [uv]xx − u(b1u+ c1v) b21 + c22 6= 0 Pt, Px, D1 1

vt = [uv]xx − v(b2u+ c2v)

2. ut = [uv]xx + a1u a1 6= a2 Pt, Px, D2

vt = [uv]xx + a2v

3. ut = [uv]xx − uv Pt, Px, D1, 1, 2

vt = [uv]xx − uv Z1, Z2

4. ut = [uv]xx + uv Pt, Px, D1, 1, 2

vt = [uv]xx + uv Z3, Z4

Theorem 2 All possible MAIs (up to representations generated by transformations of the form
(44)) of system (42) with non-vanish reaction term(s) are presented in Table 2. Any other
system of the form (42), which is invariant w.r.t. the three- and higher-dimensional Lie algebra
is reduced by a substitution of the form

1. t∗ = 1
a
eat, u∗ = e−atu, v∗ = e−atv.

2. t∗ = bt, x∗ =
√
bx, b > 0

(44)

(a and b are arbitrary non-zero constants) to one of those given in Table 2.

Finally, we examine system (3) without reaction terms, i.e., the cross-diffusion system

ut = [(d1 + d11u+ d12v)u]xx,

vt = [(d2 + d21u+ d22v)v]xx.
(45)

It is worth to note that system (45) with arbitrary coefficients is invariant under the three-
dimensional trivial algebra spanned by the basic operators Pt, Px andD0. All possible extensions
of this trivial algebra admitting by (45) are presented in the following statement.

Theorem 3 All possible MAIs (up to equivalent representations generated by transformations
of the form (46)) of system (45) are presented in Table 3. Any other system of the form
(45) which is invariant w.r.t. the four- and higher-dimensional Lie algebra is reduced by a
substitution of the form

t∗ = α1t, u∗ = α2 + α3u+ α4v, v∗ = α5 + α6u+ α7v (46)

to one of those given in Table 3 (constants αi are determined by the system in question).
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Table 3: MAIs of system (45)

Systems Restrictions Basic operators Substitution

of MAI from (47)

1. ut = [(d11u+ d12v)u]xx (d11 − d21)
2 + (d12 − d22)

2 6= 0 Pt, Px, D0, D1 1, 2

vt = [(d21u+ d22v)v]xx d211 + d221 6= 0
d212 + d222 6= 0

2. ut = [(d1 + d11u)u]xx d11 6= 1 Pt, Px, D0, v∂v 1, 3

vt = [(d2 + u)v]xx d1 6= 2d2d11
3. ut = [(d1 + u+ v)u]xx d1 6= d2 Pt, Px, D0, R 4

vt = [(d2 + u+ v)v]xx
4. ut = d11[u

2]xx d11 6= 1 Pt, Px, D0 1, 7

vt = [uv]xx v∂v , D6

5. ut = [(1 + u)u]xx Pt, Px, D0, 1, 5, 6

vt = [(1 + u)v]xx v∂v , u∂v

6. ut = [u2]xx Pt, Px, D0, D6, 1, 5, 7

vt = [uv]xx v∂v , u∂v

7. ut = [uv]xx Pt, Px, D0, 4

vt = [uv]xx D1, Z5, Z6

12



In Table 3, the following substitutions are used:

1. u∗ = v, v∗ = u;
2. u∗ = u, v∗ = v + d1

d12
;

3. u∗ = d21u, v∗ = v;
4. u∗ = d11u, v∗ = d12v;
5. t∗ = d1t, d1u

∗ = d11u+ d12v, v∗ = v;
6. t∗ = (2d2 − d1)t, (2d2 − d1)u

∗ = d11u+ d1 − d2, v∗ = v;
7. u∗ = d1 + d21u, v∗ = v.

(47)

It should be stressed that MAIs of the nonlinear systems

ut = [uv]xx + buv,

vt = [uv]xx + buv
(48)

(b = ±1 in the cases 3 and 4 of Table 2 and b = 0 in the case 7 of Table 3) contain the Lie
symmetry operators, which are nonlinear w.r.t. to the dependent variables u and v. It is new
property of RD systems with cross-diffusion, which not occurs for the standard RD systems
(see Lie symmetries in [21, 30, 31] and papers cited therein).

Remark 3 System (48) can be simplified as follows

ut = [(u− w)u]xx + bu(u− w),

wt = 0
(49)

by the transformation w = u−v. The symmetry operators mentioned above will be transformed
to those, which are again nonlinear w.r.t. the depended variable(s).

3 Example of exact solutions

Here we consider the systems

ut = [uv]xx − uv,

vt = [uv]xx − uv
(50)

and

ut = [uv]xx + uv,

vt = [uv]xx + uv
(51)

from cases 3 and 4 of Table 2, which admit the most nontrivial algebras of invariance and are
important subcases (up to local transformations) of the SKT system (3).
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Let us construct exact solutions of the nonlinear systems (50) and (51) using the Lie sym-
metries X1 = λ1Z1+λ2Z2 and X2 = λ1Z3+λ2Z4, respectively (hereafter λ1 and λ2 are arbitrary
constants, λ2

1 + λ2
2 6= 0).

It is well-known that Lie symmetry operators with a complicated structure can be used
for finding nontrivial solutions from the very simple ones (probably the first examples for RD
systems were presented in [32], see also [30]). Here we show how it can be realize for the
nonlinear system (50) (exact solutions of (51) can be obtained in a quite similar way).

Operator X1 generates the one-parameter Lie group:

u∗ = u+v
2

+ 1
2

√

(u− v)2 + 4p(λ1ex + λ2e−x) ,

v∗ = u+v
2

− 1
2

√

(u− v)2 + 4p(λ1ex + λ2e−x),
(52)

when u ≥ v;

u∗ = u+v
2

− 1
2

√

(u− v)2 + 4p(λ1ex + λ2e−x) ,

v∗ = u+v
2

+ 1
2

√

(u− v)2 + 4p(λ1ex + λ2e−x) ,
(53)

when u < v (here p is an arbitrary parameter).
In order to construct a nontrivial solution (u∗, v∗) of system (50), one needs to know a

simple exact solution, which can be easily derived by setting ux = vx = 0. It means that the
ODE system

ut = −uv,

vt = −uv

is obtained instead of (50) and its general solution is

u = α1e
α1t

α2+eα1t
,

v = − α1α2

α2+eα1t
,

(54)

where α1 and α2 are arbitrary constants. Thus, solution (54) of system (50) can be generalized
via transformations (52)–(53) to the five-parameter family of solutions

u(t, x) = α1e
α1t−α1α2

2(α2+eα1t)
± 1

2

√

α2
1 + 4p(λ1ex + λ2e−x) ,

v(t, x) = α1e
α1t−α1α2

2(α2+eα1t)
∓ 1

2

√

α2
1 + 4p(λ1ex + λ2e−x) .

(55)

Using the same algorithm, the following family of exact solutions of system (51) was derived:

u(t, x) = α1+α1α2e
α1t

2(1−α2e
α1t)

± 1
2

√

α2
1 + 4p(λ1 cosx+ λ2 sin x) ,

v(t, x) = α1+α1α2e
α1t

2(1−α2e
α1t)

∓ 1
2

√

α2
1 + 4p(λ1 cosx+ λ2 sin x) .

(56)

Notably, one may set α2 = ±1 in the solutions (55)–(56) without losing a generality while
the case α2 = 0 leads to steady-state solutions.
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Remark 4 All possible steady-state solutions of the nonlinear systems (50) and (51) can be
easily derived. As a result one obtains

u(x) = f(x)
g(x)

, v(x) = g(x) 6= 0,

u(x) = h(x), v(x) = 0,
u(x) = 0, v(x) = h(x),

(57)

where g(x) and h(x) are arbitrary smooth functions, while the function f(x) is the general
solution of the linear ODE f ′′ ∓ f = 0. Obviously, transformations (52)–(53) do not generate
new solutions from (57).

It should be emphasized that each solution of the form (56) satisfy the zero flux conditions
on a correctly-specified space interval. For example, the exact solution with λ2 = 0 satisfy the
zero Neumann conditions

ux|x=0 = 0, vx|x=0 = 0, ux|x=π = 0, vx|x=π = 0 (58)

at the interval (0, π). This property is important for possible applications because zero flux at
boundary is a typical requirement for biologically motivated models. It should be also noted
that systems (50) and (51) are two canonical forms of a more general system. In fact, the
substitution

t∗ =
ln t

ab
, x∗ =

x√
b
(a 6= 0, b > 0), u∗ =

atu

d2
, v∗ =

atv

d1

transforms systems (50) and (51) to the form

u∗
t∗ = d1[u

∗v∗]x∗x∗ + u∗(ab+ b1v
∗),

v∗t∗ = d2[u
∗v∗]x∗x∗ + v∗(ab+ b2u

∗),
(59)

where b1 = ±bd1, b2 = ±bd2. Now one realizes that system (59) involves the logistic type terms,
which are very common in the mathematical biology models.

Finally, we present an example for deriving exact solutions via the most common procedure,
which is often called the Lie symmetry reduction. Let us take a linear combination of the Lie
symmetries Px, Z3 and Z4, i.e.,

X = ∂x +
λ1 cos x+ λ2 sin x

u− v
(∂u − ∂v). (60)

Obviously, (60) is again a Lie symmetry, which produces the ansatz

u =
ϕ1(t)±

√
ϕ2

1
(t)+4ϕ2(t)+4(λ1 sinx−λ2 cos x)

2
,

v =
ϕ1(t)∓

√
ϕ2

1
(t)+4ϕ2(t)+4(λ1 sinx−λ2 cos x)

2
,

(61)
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where ϕ1(t) and ϕ2(t) are new unknown functions. Formally speaking, one should take the
upper signs if u ≥ v, otherwise the lower signs should be used, however it is not essential
because system (51) is invariant under the discrete transformation u → v, v → u.

Ansatz (61) reduces the nonlinear system (51) to the ODE system

ϕ′
1 + 2ϕ2 = 0,

ϕ1ϕ
′
1 + 2ϕ′

2 = 0.
(62)

In contrast to (51), system (62) is integrable because is equivalent to the system

ϕ2 = −1
2
ϕ′
1,

ϕ′
1 =

1
2
ϕ2
1 + β,

(63)

in which the general solution of the second equation is well-known. Thus, having the general
solution of the reduced system (63) and using ansatz (61), three different solutions (depending
on the sign of the constant β) of system (51) were found:

u = −1
t
±

√
λ1 sin x− λ2 cosx,

v = −1
t
∓

√
λ1 sin x− λ2 cosx,

u = α1 tan(α1t)±
√

λ1 sin x− λ2 cosx− α2
1,

v = α1 tan(α1t)∓
√

λ1 sin x− λ2 cosx− α2
1,

u = α1
1+α2e

2α1t

1−α2e
2α1t

±
√

λ1 sin x− λ2 cosx+ α2
1,

v = α1
1+α2e

2α1t

1−α2e
2α1t

∓
√

λ1 sin x− λ2 cos x+ α2
1,

(64)

where α1 = ±
√

|β|
2

and α2 is an arbitrary constant. Notably, the last solution from (64) is a

particular case of (56).

4 Conclusions

In this paper, the Lie symmetry classification problem of the Shigesada–Kawasaki–Teramoto
system is completely solved. Solution of this problem was initiated in [13], however, the result
derived therein is not complete because essential restriction on coefficients were applied, as a
result all the symmetries derived in [13] can be extracted from Table 1. Here it is proved that the
SKT system (3) admits a wide range of Lie symmetries depending on 12 coefficients arising in
the system (see Tables 1–3). From the applicability point of view, the most interesting systems
occur in Tables 1 and 2. For example, the systems listed in cases 1–4 have a quite general
structure and one may expect that some SKT models with the correctly-specified coefficients
(which are chosen from experimental data) are equivalent to these systems. One may note that
several systems in Table 1 (cases 5–7, 9–16) contain the cross-diffusion term in the first equation
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only. Such systems occurs when one of the cross-diffusion coefficients is much larger than the
other (see the pioneering paper [9] for detail). They are called triangular and are extensively
studied during the last decade (see [10] and references therein).

From the Lie symmetry point of view the most interesting systems occur in Tables 2 and 3.
In particular, the Lie symmetry operators with highly unusual structure are unveiled for the
nonlinear systems listed in cases 3–4 of Table 2 and in case 7 of Table 3. In fact, operators
Z1, . . . , Z6 are nonlinear w.r.t. the dependent variables u and v because they involve
coefficients of the form f(x)

u−v
(f(x) is a correctly-specified function). To the best of our knowledge,

this is the first time when nonlinear Lie symmetry operators are found for RD systems. In the
case of RD systems without cross-diffusion, all possible Lie symmetry operators are known
(see [21] and references therein) and they are always linear w.r.t. the dependent variables.
In the case of RD systems involving cross-diffusion, there is no a complete description of all
possible Lie symmetry operators at the present time. However, the results obtained in [33] (the
case of constant cross-diffusion), [34] (power-law coefficients of cross-diffusion), [35] (diffusion
and cross-diffusion in the first equation and no any diffusion in the second) and [36] (Galilei-
invariant systems with cross-diffusion) show that all Lie symmetries of RD systems found
therein are linear w.r.t. to unknown functions. We foresee that new nonlinear Lie symmetry
operators will be found for suitable generalizations of the SKT system (3). Notably, nonlinear
Lie symmetry operators do not occur in the case of any single RD equation [37], however it
was recently established that the RD equation with a correctly-specified gradient-dependent
diffusivity and an arbitrary reaction term admits such operators and is linearizable [38] (see
Theorem 1 therein).

Finally, the Lie symmetry classification is applied for finding exact solutions of the nonlin-
ear systems, which are invariant under the operators mentioned above. Our purpose was to
show how highly non-trivial Lie symmetries generate exact solutions, which may be useful in
applications. In particular, we have shown that some exact solutions satisfy zero flux boundary
conditions, which are typical requirements for solutions of biologically motivated models.
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