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emerging near symmetry-preserving Hopf bifurcations in a time-delayed fully-connected
N-node PLL network. The study of this type of systems which includes the time delay be-
tween connections has attracted much attention among researchers mainly because the
delayed coupling between nodes emerges almost naturally in mathematical modeling in
many areas of science such as neurobiology, population dynamics, physiology and engi-
neering. In a previous work it has been shown that symmetry breaking and symmetry
preserving Hopf bifurcations can emerge in the parameter space. We analyze the stabil-
ity along branches of periodic solutions near fully-synchronized Hopf bifurcations in the
fixed-point space, based on the reduction of the infinite-dimensional space onto a two-

Stability dimensional center manifold in normal form. Numerical results are also presented in order
to confirm our analytical results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Networks of oscillators have been studied for decades because their models can represent dynamics in a very wide range
of fields as astronomy, biology, neurology, economics, population dynamics, and the stock market (see [1-7] and references
therein). Much of the research has focused into understand the influence that changes in the parameter space have over
the dynamics. We are interested in studying the influence of the lag between nodes in the stability of the network syn-
chronization. There is a considerable body of literature on time-delayed networks, for example: in [3] and [8] are explored
conditions for the global exponential stability; in [9] is addressed an statistical approach including analysis of noise influ-
ence in linearly-coupled oscillators, in [10] are studied Hopf and Bogdanov-Takens bifurcations in a small neural network;
in [11] different kind of solutions including amplitude death, spatiotemporal, phase-locked, standing-waves and synchro-
nized oscillations are studied considering the time-delay along with a distance-dependent coupling, in [12] is addressed a
comparative study of three different models for a fully-connected N-node network and it is also shown the existence of
multiple eigenvalues forced by symmetry, in [13] is presented a stability criterion for the synchronization in a two-node
network.
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In this contribution we delve in the study of the full-fase model presented in [12], specifically we focus on the stabil-
ity along branches of small-amplitude periodic solutions near symmetry-preserving Hopf bifurcations for a N-node Phase-
Locked-Loop (PLL) network using the time-delay between nodes as bifurcation parameter (the existence of these solutions
was proved in [12]). We analyze the stability of the branches in the parameter space (i, t) for the non degenerative case (K
> 1) applying the center manifold theorem extended to functional differential equations and the normal form in the center
space to reduce the order of the infinite-dimensional system.

It is important to note that when the lag between the nodes in a network is considered the ordinary differential equation
(ode) system which describe the network dynamics becomes a delayed differential equation (dde) system. Solutions for
a dde system lie in the function space and its characteristic equation has infinitely many roots, this particular kind of
functional differential equations appear in many engineering problems [14-16].

The main approach used for our analysis is the decomposition of the infinite-dimensional space into to two subspaces,
a two-dimensional center space spanned by the eigenvectors corresponding to the simple imaginary eigenvalues A = +iw,
w > 0, and an infinite-dimensional space “orthogonal” to the first one (the orthogonality condition will be defined below).
We will follow closely the theory and procedures presented in [14,17-20].

2. The full phase model

The general model for a N-node, fully-connected, second-order oscillator network in terms of the i-th node output phase

¢i(t), is:

N
O+ 1 (©) — - D F@ ) =0, =1 N (1)

i#
j=1

where the sumatory term represents the coupling function and the remaining terms represent the local inner second-order
dynamics in each node. The coupling function for a PLL oscillator is given by:

(@i, @;) =sin(@(t —T) — p;(t)) +sin(P;(t — T) + @i (t)), (2)
we consider that all signals coming from the other N — 1 nodes are affected by a lag 7; thus, f: RxR - R; u,K, 7 € RT

are parameters, and N e N — {1}.
The equilibria ¢*, in Eq. (1), are:

1 . 1
¢t(n) == (arcsm (——) + 2n71>
2 K
1 1 ’ (3)
¢~ (n) = E(n — arcsin (fk) + Znn)
n e Z, K> 1. For our analysis, we consider three main assumptions:
(a) The critical eigenvalue A of the linearization of (1) at equilibria crosses the imaginary axis with non vanishing velocity,
i.e. Re(A'(¢*)) # 0.
(b) The purely imaginary eigenvalue A = iw is simple.

(c) The linearization of (1) at equilibria has no eigenvalues of the form ikw, k € Z — {1, —1}.

The Taylor expansion of (1) at equilibria is:

. . Kpn &1 B \
36+ b~ 57 0 {7 (05 + 80 55 ) F@nd} ., =0 ()
]jf{ r=1 ! JT ¥ =%
where ¢;; := ¢;(t — 7). Truncate the series up to the third-order term:
" . Kkn & .
G+ 1= 55 2| (61 = 91) + (940 + 90) cos 2
i (5)

_%(¢jr +¢,’)2 sin2¢* — %I:(¢ﬂ— - ¢1)3 + ((ij + ¢,’)3 cos Z(ﬁi]},

i=1,...,N, here for the sake of notation we changed §¢; — ¢;.
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The vector field form x = G(x;, x; 1), G : R2N x R2N x R? — R2N_ can be obtained by choosing xgi) =¢; and xg) = ¢;, then
the restriction G|; or X = G® (x;, xD; n) gives:

20— x0
() o, ke § 1,00 v ) _ L) o 0\ it
X = —pxy +HZ{(—1 + 05 2¢%)x" + (1 + cos 2¢*)x{)) — i(x” +x{") sin2¢
J 6)
—% [(ngf) - x%”)3 + (ngr) + x§i>)3 cos 2¢>i] }
i=1,...,N.

Following [17,21], we can represent the dynamics in (6) by the abstract differential equation:

D xe@) = AX(@®) + Fx(d). ). ™)

We define X :=C([—7,0],R?N) the Banach space of continuous functions from [—7,0] into R2N equipped with the usual
norm

91 = sup [9(0)]. ¥ ec(-7.0]).

—-7<0<0

Xt, in (7), lies in X and satisfies (T(t)¢)(0) = (x:(¢))(0) = x(t +6), T(t) is a semigroup of family of operators, 6 € [-7, 0],
and 7 is a vector of parameters. The linear operator A(n) € Mat(2N) is:

a0
AGD) = {89(9) —T<0=0 (8)
AoV (0) +A: (M (-1) .,0=0
where Ag(n) := g—ﬂq)i, A () == aaTG,|¢i and,
%(9) —71<6<0
(F(x))(0) = {ae TEET R 9)
F(x(0),x(-7).n) .0=0

N
. . . . . K 1 . N 1 . .\ 3
F=(fD, . fT  fO— (O Dy fD_0 and fP= Nifﬂl Z { - 5(xgjr) +x§’)) sin2¢* — 6[(2{5? —x%”)
j
. N3
+ <x§]r) +x§’)) cos 2¢i] }
In order to build the decomposition of the infinite-dimensional space we need two tools: the adjoint operator associated

to the linear part of the linearization, and an inner product via a bilinear form. Associated to the linear part of (7) the
formal adjoint equation is

d
G (€)= AF Y (. m) + ALY (E + ). (10)
The strongly continuous semigroup (T*(t)y)(0) = (y:(¥))(0) =y(t + ), defines the infinitesimal generator:
oy
(A*(n)llf)={89(0) 0=0=7, )
Ac'Y (0) +A ('Y (r) .0=0

such that %T*(t)w =AT*(t)¥, ¥ € &* :=C([0, T]. R2N). The natural inner product has the form [22]:

0
(x.y) = & (0)y(0) + / & (5 + T)A ()Y (s)ds.

X € X and y € X*; thus, we have [17]:

1. A is an eigenvalue of A(n) if and only if X is and eigenvalue of A*(n).
2. If ¢q,.... ¢, is a basis for the eigenspace of A(n) and vq,..., ¥y is a basis for the eigenspace of A*(n), construct the
matrices ® = (¢q,...¢4) and ¥ = (Y, ..., ¥y). Define the bilinear form:

(W, d) = 1. (12)
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3. The fixed point space Sy

Due to the Sy-symmetry of (1) the space where solutions ¢; lie can be decomposed into the fixed point subspace where
symmetry-preserving solutions emerge and a subspace with symmetry-breaking solutions, this was shown in [12]. We an-
alyze stability of the small-amplitude periodic solutions near Hopf bifurcations in the fixed point space, these bifurcations
satisfy assumptions (a)-(c) for K > 1. In this subspace Eq. (6) has the form:

Xl =X

Xy = —uxy + K (=1 + cos 2¢*)x, +Ku{(1 +C0S2¢% )X — %(xlr +X1)?sin2¢* (13)
1
—5l (e =x1)? + (i +x1)* cos 2¢>*]},

then matrices Ag(n) and A-(n) in (11) become:

0 1
Aol = (Ku(—l +cos2¢) —u)’ ()

0 0
A:(n) = , 15
o (K,u(l + cos2¢*) 0) (1)
and F in (9) takes the form F = (f; f>)T with f; =0 and f,:
ol ) = Kpe[ = 5 Gove 3077 sin 29 — €[ (xae = x0)° + (e + 30 cos 26 |. (16)

We need the complex eigenfunctions As() = iws(¢}), A*n(8) = iwn(0), associated to the critical eigenvalues A = iw, and
A = —iw with s(9) = s1(9) +isy () and n(0) = ny(0) + iny (0). These eigenfunctions can be computed solving the boundary
value problem %31_2 = Fws; 1(V), and %”1,2 = +wn, 1(0), which after substituting the operator A(n) becomes:

A)s1(0) +Ac ()1 (-7) = ~ws(0) (17
Ao(1)$2(0) +Ar ()s2(~=7) = ws1(0)

and
AF(mMn1(0) +AT(mni(-7) =  @ny(0) (18)
Ay(mna(0) +AL(mMna(-1) = - (0),

with general solutions:
s1(9) = cos(wd)cy —sin(w?)cy
(1) = sin(wd)cy + cos(wt)cy (19)
n(@) = cos(wh)d; —sin(wh)d,
n(0) = sin(wh)d; + cos(wh)d,.

The coefficients ¢; = [c11 ¢12]7, ¢ =[ca1 ¢22]T, dy =[dq; d12]7. dy =[dyy dyz]T can be obtained by considering the boundary
conditions

(Ao(n) + cos(@T)Ar (n))T (a) .
ol + sin(wt)A; () oy

AT(n) + cos(@DAT () (d1) _
( 2 ol — sin(w1)AT () ) (dl) =0, (20)

the “orthonormality” condition (s, n) = I, and setting c;; = 1 and cy; = 0, see [14,23] for more details.

It is also possible to decompose the solution x¢(9) to Eq. (7) into x; (1) = y1 (t)s1 () + y2(t)so (¥) +we (), where y; and
¥, lie in the center subspace, such that y; ,(t) = (n72(0),x:(0)), and w in the infinite-dimensional component subspace,
thus, we have

3:/1 = wy, +nl(0)F 21)
y2 = —wy;+n(0)F
W =A(M)W¢ + F(x, ) — nl (0)Fsy — nl (0)Fs,, (22)

where

fo 9 el-1,0)
d ‘{ FO1 (051(0) +¥:(0)5:(0) + W(t) () .9 =0. (23)
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3.1. The center manifold

Following [14,18,24] we know that w(8) can be approximated by the second-order expansion:

w1, y2)(?) = %(h1 ()y3 + 2ha(9)y1y2 + hs (9)y3). (24)
thus, by differentiating and substituting Eq. (22) keeping up to second order terms, we obtain:
W = —whyyt + w(hy — h3)y1y; + ohyys + 0(y?). (25)
and from Eq. (22),
dw
a = A()We + F(W 4 Y181 +Y252) — (d1281 + d228$2) fo. (26)

From the definition of A(n), equivalent to (11), we see that

1 . . .

5 (i +2hoyrys +hay3) 0 €[-7.0)

Ao(mMw(0) +A: (Mw(-7) U =0,

then, from Eqs. (24) to (27) we can obtain the unknown coefficients hy, hy, and hs solving:

hy = 2(-why+ f2%(disi (9) + das2 (1)),
hy = (i —h3) + f}' (disi(§) + daas2 (D)), (28)
hs 2(why +f§)2(d1251(19)+d2252(l9))),

A(mw = (27)

and,

Ag(mh1(0) +A; (Mhi(=7) =
2(—wh3(0) + f3°(d1251 (0) + d2252(0))).
Ao(n)ha(0) +Achy(-7) =
w(hy(0) — h3(0)) + f11(d1251(0) + d325,(0))),

Ao(mh3(0) + A (mhs(-1) =
2(wh3(0) + f92(d1251(0) + d2352(0))),

(29)

192 9°f 0%f 192 9°f
where f20 = m_ ,and f02 =
I7=3 2 9y19y2 lo =3 9y lo
Eq. (28) is wrltten as the inhomogeneous differential equation:

dh

dv

= Ch + pcos(w®?) + qsin(w?) (30)

where
hy 0 -2 O
I

hs 0 21
f2po f2%q0

211p0 ’ 2 QO
22 po foz%

._ diz . dx
Po-= szdzz > o= _C22d12

with general solution:
h(®) = e’ K + Mcos(w??) + Nsin(w1?). (31)

After substituting the general solution into (30) we solve for M and N, and then from the boundary value problem we
solving for K,

(o)) --() g

Ph(0) +Qh(-t)=p-r, (33)

6x6

=
I
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Ab 0 O
P={0 A 0])-C
0 0 A

+ 0 0
Q=10 A 0], (34)
0 0 A

andr:i=(0 f22 o f' o f2).
The expressions for w{(0) and wq (—7), necessary in (23), are:

1
Wi = 5 (M + Ky +2(M3 + Ka)yay + (Ms -+ K5)y3).

1 .
wi(-1) = §<(e_ch|1 + Mj cos(wt) — N; sm(a)t))y% (35)
+2(e K|35 4+ M3 cos(wT) — N3 sin(wt))y1¥2

+(e "K|5 + M5 cos(wt) — Ns sin(a)r))yﬁ),

note that we only need w4(9) since the nonlinear function in (16) only depends on x;; then by substituting (35) into (21) we
obtain:

}:/1 = wyr +81(y1,y2: 1) (36)
Ya= —wy1+&W1Yysn)
or
Y1 = wyz + azo}’% +anyiy2 + aozy§ + a3o}’? +axyiy2 + am’ﬂ’% + 003}’3,
Y2 = —wy1 + baoy] + buyiya + boays + bsoy; + bary1ya + biay1y3 + bosy;. (37)
In [20] is computed the coefficient a which determines stability of the normal form (37),
1 1
0 =gl g e ) [ (e ) b (e + ) - g+ | (38)
where g“,j = 8"5?:;y2 gr(0,0). Periodic orbits near Hopf bifurcation at the critical eigenvalue A = iw will be stable if a < 0 and

unstable if a > 0.
4. Numerical results

We reproduce some of the computations for the Hopf bifurcations curves in the fixed point space for the case K >
1 presented in [12] in order to compute the coefficient a for small-amplitude periodic solutions near these bifurcation
curves using results obtained in the previous section. Fig. 1 shows the symmetry-preserving Hopf bifurcation curves in the
parameter space (u, 7) for K = 1.05 for both cases: bifurcations with Re(A’) > 0 (black curves), and with Re(1’) < 0 (red

Fig. 1. Symmetry-preserving bifurcation curves in Fix(Sy) for K = 1.05. In black Hopf bifurcations with Re(A’) > 0, and in red Hopf bifurcations with Re(A")
< 0.



72 D.P. Ferruzzo Correa et al./Commun Nonlinear Sci Numer Simulat 45 (2017) 66-74

(a) (b)

Fig. 2. Coefficient a (Eq. (38)) computed for the Hopf bifurcation curves in Fix(Sy) for K = 1.05 (see Fig. 1). Figure (a): curves in plane (u, a), figure (b):
curves for a in the parameter space (i, 7).

x5

1,23,

Y R T

(b) (¢)

Fig. 3. (a) Branch of periodic solutions emerging from point A= (i, 1) = (0.15,7.46197). (b) Periodic solution profile at p© =0.15, T =7.5315, T =
12.0364 seg, (point psol). (c) Floquet multipliers for the periodic solution psol.

curves). These curves correspond to the equilibrium ¢~ (n) in Eq. (3), and each lobe correspond to a different value of n € N.
We choose three testing point for numerical simulation A = (u, t) = (0.15,7.46), B= (0.3,11), and C = (0.421, 7.10).

Fig. 2a shows the coefficient a computed using Eq. (38) in the parameter space (u, 7) for K = 1.05 related to the Hopf
bifurcations curves shown in Fig. 1; the black curves correspond to stability of periodic orbits near Hopf bifurcations with
Re(A') > 0, as we can see also in Fig. 2b all these curves are under the plane a = 0, therefore, all these periodic solutions
are stable; the red curves correspond to stability of periodic orbits near Hopf bifurcations with Re(1’) < 0, these periodic
orbits are unstable for u < pu¢(n), and stable for © > u.. Fig. 2a also shows points A, B, and C; small amplitude periodic
orbits are stable at points A and C whilst at point B they are unstable.

In order to confirm our results we computed branches of periodic solutions near the Hopf bifurcations points A, B,
and C using DDE-BIFTOOL [25,26] along with the Floquet multipliers for a specific periodic solution chosen in the branch
(Figs. 3-5).
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025,

max x1(t) — min 2 ()

‘psol
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i Wz e e e Wz 22
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(b) (c)

Fig. 4. (a) Branch of periodic solutions emerging from point B = (x, 7) = (0.3, 11.001518). (b) Periodic solution profile at © =0.3, v =11.3744, T =
12.8506 seg, (point psol). (c) Floquet multipliers for the periodic solution psol.

ooss-

psol

o025

o015

max z1(t) — min z(f)
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300
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9 *)( X
*x
A TR

(b) ()

Fig. 5. (a) Branch of periodic solutions emerging from point C = (u, 7) = (0.421,7.101329). (b) Periodic solution profile at © =0.421, T =7.00, T =
8.8704 seg, (point psol). (c) Floquet multipliers for the periodic solution psol.

Fig. 3 -(a) shows a branch of periodic solutions with small amplitude emerging from the Hopf bifurcation point
A= (u, 1) =(0.15,7.46); Fig. 3-(b) shows the periodic solution profile psol at T = 7.5315; Fig. 3-(c) shows the Floquet mul-
tipliers related to psol. It is clear that this periodic solution is stable since there is no Floquet multiplier outside the unity
circle.
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For the point B = (i, t) = (0.3, 11), the branch of periodic solutions is shown in Fig. 4-(a), Fig. 4-(b) shows the profile of
the periodic solution psol chosen at t = 11.3744, this solution is unstable because there is a Floquet multiplier outside the
unity circle, see Fig. 4-(c).

Finally, the branch of periodic solutions near the Hopf bifurcation point C = (i, 7) = (0.421, 7.10) is shown in Fig. 5-(a);
the periodic solution chosen in the branch is at T = 7.00, its profile is shown in Fig. 5-(b); all the Floquet multipliers shown
in Fig. 5-(c) are within the unity circle, therefore the solution is stable.

5. Conclusions

The reduction of the infinite-dimensional space onto the center manifold in normal form was applied to the fixed point
space for the full phase model in order to analyze the stability of small-amplitude periodic orbits near simple Hopf bifurca-
tions. For the case Re(1’) > 0 we found that stable (a < 0) periodic orbit can emerge, and for the case Re(A’) < 0 unstable
(a > 0) periodic orbits can emerge for u < puc(n), and stable (a < 0) periodic orbits for . > pc(n). The numerics show that
our analytical results are correct.

Although we computed the coefficient a for a specific value of K the procedure shown is valid for all the parameter space
where simple Hopf bifurcations emerge.

Finally, it is important to spotlight some points for further research: First, analyze the nature of the solutions at the
special point u = uc(n) at which the coefficient a changes sign. Second, analyze the case K = 1, degenerate Hopf bifurca-
tions codimension 2 may appear (pure imaginary and zero eigenvalue), where fold-Hopf and Bautin bifurcations (generalized
Hopf bifurcations) could emerge; and third, the stability of the symmetry-breaking degenerate Hopf bifurcations which have
multiplicity N — 1.
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