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Abstract

We address the issue of model selection in beta regressions with varying dispersion. The model consists of two

submodels, namely: for the mean and for the dispersion. Our focus is on the selection of the covariates for each

submodel. Our Monte Carlo evidence reveals that the joint selection of covariates for the two submodels is not

accurate in finite samples. We introduce two new model selection criteria that explicitly account for varying dispersion

and propose a fast two step model selection scheme which is considerably more accurate and is computationally less

costly than usual joint model selection. Monte Carlo evidence is presented and discussed. We also present the results

of an empirical application.

Keywords: beta regression, model selection criteria, Monte Carlo simulation, varying dispersion.

1 Introduction

Regression analysis is used for modeling the behavior of a random variable (response, dependent variable) when

such a behavior is influenced by other variates (known as regressors, covariates or independent variables). The

normal linear regression is the most commonly used regression model. It is not, however, useful for modeling data

that assume values in the standard unit interval, (0,1), such as rates and proportions, since it may yield predictions

outside the interval. A common practice used to be to transform the data so that they assume values on the real

line and then use the transformed response in linear regression analysis. One of the pitfalls of such an approach

is that the model parameters can no longer be interpreted in terms of the mean response; their interpretation now

involves the mean of the transformed response, which is not of interest. Additionally, rates and proportions are usually

asymmetrically distributed and display a particular kind of heteroskedastic behavior. The usual linear regression is

thus not appropriate for modeling such data.

Several practitioners have modeled data that assume values in the standard unit interval (Brehm and Gates, 1993;

Kieschnick and McCullough, 2003; Smithson and Verkuilen, 2006; Zucco, 2008; Verhaelen et al., 2013; Whiteman

et al., 2013; Hallgren et al., 2013). Ferrari and Cribari-Neto (2004) proposed a regression model that was specifically
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tailored for modeling such data: the beta regression model. The underlying assumption is that the response (y) is

beta-distributed, i.e., it follows the beta law. The beta distribution is quite flexible for modeling rates and proportions

since its density can have different shapes depending on the values of its two parameters, mean (µ) and precision

(φ ) (Ferrari and Cribari-Neto, 2004).

In the beta regression model the mean response µ is related to a linear predictor that includes covariates and

unknown regression parameters through a link function in similar fashion to generalized linear models (GLMs) (Mc-

Cullagh and Nelder, 1989). In its original formulation, the precision parameter φ was taken to be constant. We note

that efficiency loss takes place when the precision parameter is incorrectly taken to be constant. This fact can be seen

in Figure 1, which presents the estimated densities of maximum likelihood estimates of the slope parameter (β2 = 1.5)

in a single covariate model under varying dispersion. The density estimates were constructed from a Monte Carlo

simulation with five thousand replications. The data generating process is logit(µt) = β1 +β2xt with precision given

by log(φt) = γ1 + γ2xt . The two densities correspond to the situations in which dispersion was incorrectly taken to be

fixed (‘fixed disp.’) and properly modeled (‘variable disp.’). Notice that the variance is considerably larger when the

dispersion is not modeled. Additionally, disperion modelling may be of direct interest since it allows the statistician

to identify the sources of data variability (Smyth and Verbyla, 1999; Wu and Li, 2012).
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Figure 1: Estimated densities of the slope parameter estimator under varying dispersion, with (continuous line) and
without (dashed line) the variations in the precision parameter taken into account.

Figure 1 shows that efficient parameter estimation in regression model depends on the correct modeling of the

dispersion. In the class of GLMs, Smyth (1989), Nelder and Lee (1991) and Smyth and Verbyla (1999) define a joint

generalized linear model, which allows the joint modeling of the response mean and variance. In this perspective,

Smithson and Verkuilen (2006), Espinheira (2007) and Simas et al. (2010) suggest the beta regression model with
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varying dispersion. This model can be seen as a natural extension of the model introduced by Ferrari and Cribari-Neto

(2004). The precision parameter now relates to a set of covariates and parameters through a link function. The model

thus includes two submodels: one for the mean response and another one for the precision.

Our goal in this paper is threefold. First, we present several model selection criteria and propose two new criteria

that explicitly account for varying dispersion. Second, we perform a Monte Carlo simulation study to compare the

finite sample performances of the traditional and new model selection criteria. The numerical evidence shows that the

joint selection of the regressors in both submodels can be quite unreliable. Thirdly, we then propose a fast two step

procedure that works better in finite samples and is computationally less costly than the joint covariates selection.

Our proposal is to perform model selection for the mean submodel taking the precision to be constant and only in a

second step to carry out model selection for the precision submodel. The likelihood of finding the correct model is

increased and the computational cost is greatly reduced when the proposed two step procedure is used.

The paper unfold as follows. In the next section we present the varying dispersion beta regression model. In

Section 3 we describe different model selection strategies, including our proposed fast two step model selection

scheme. Section 4 presents numerical evidence from Monte Carlo simulations and a guideline for choose model

selection criteria. The evidence favours the model selection scheme proposed in this paper. Section 5 contains an

empirical application. Finally, concluding remarks are offered in Section 6.

2 The model and parameter estimation

Let y be a random variable that follows the beta law with parameters µ and φ . In what follows we use an alternative

parametrization, namely: σ2 = 1/(1+φ). Both parameters (µ and σ ) assume values in the standard unit interval.1

Thus,

E(y) = µ,

var(y) =V (µ)σ2. (1)

Additionally, the density of y can be written as

f (y; µ,σ) =
Γ

(
1−σ 2

σ 2

)
Γ

(
µ

(
1−σ 2

σ 2

))
Γ

(
(1−µ)

(
1−σ 2

σ 2

))y
µ

(
1−σ2

σ2

)
−1

(1− y)
(1−µ)

(
1−σ2

σ2

)
−1

, 0 < y < 1, (2)

where 0 < µ < 1 and 0 < σ < 1.

Let y1, . . . ,yn be independent random variables, each yt , t = 1, . . . ,n, having density (2) with mean µt and disper-

1Notice that σ is a dispersion, not precision, parameter.
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sion σt . The beta regression model with varying dispersion can be written as

g(µt) =
r

∑
i=1

xtiβi = ηt ,

h(σt) =
s

∑
i=1

ztiγi = νt , (3)

where β = (β1, . . . ,βr)
> and γ = (γ1, . . . ,γs)

> are unknown parameters. Additionally, xt1, . . . ,xtr and zt1, . . . ,zts are

independent variables (r+ s = k < n). When intercepts are included in both submodels we have that xt1 = zt1 = 1,

t = 1, . . . ,n. Finally, g(·) and h(·) are the strictly monotonic and twice differentiable link functions that map (0,1)

into R. Commonly used link functions are logit, probit, log-log, complement log-log and Cauchy. Note that under the

current parametrization the same link functions that are used in the mean submodel can also be used in the dispersion

submodel. This is the parametrization also used by Cribari-Neto and Souza (2012).

Estimation of β and γ can be carried out by maximum likelihood. The log-likelihood function is

`(β ,γ) =
n

∑
t=1

`t(µt ,σt),

where

`t(µt ,σt) = logΓ

(
1−σ2

t

σ2
t

)
−logΓ

(
µt

(
1−σ2

t

σ2
t

))
−logΓ

(
(1−µt)

(
1−σ2

t

σ2
t

))
+

[
µt

(
1−σ2

t

σ2
t

)
−1
]

logyt +

[
(1−µt)

(
1−σ2

t

σ2
t

)
−1
]

log(1− yt).

Details on the score function U(β ,γ), Fisher’s information matrix K(β ,γ), and large sample inferences can be found

in Cribari-Neto and Souza (2012).

It is noteworthy that it is possible to test whether dispersion is constant, i.e., test the null hypothesis

H0 : σ1 = σ2 = · · ·= σn = σ ,

or, equivalently,

H0 : γi = 0, i = 2, . . . ,s,

for the model given in (3) with zt1 = 1, t = 1, . . . ,n. The score statistic is

S = Ũ>(s−1)γ K̃−1
(s−1)(s−1)Ũ(s−1)γ ,

where Ũ>(s−1)γ is the vector with the s− 1 final elements of the score function for γ under H0 and K̃−1
(s−1)(s−1) is

the (s− 1)× (s− 1) matrix that contains the last s− 1 rows and the last s− 1 columns of the inverse of Fisher’s

information matrix evaluated at the restricted maximum likelihood estimator. Under the usual regularity conditions

4



and under H0, S converges in distribution to χ2
(s−1). The null hypothesis is thus rejected if S > χ2

1−α,s−1, where

χ2
1−α,s−1 is the 1−α χ2

s−1 upper quantile, α being the test nominal level.

3 Model selection criteria

Model selection in regression analysis is of paramount importance. Three important decisions are typically made:

(i) assuming a response distribution; (ii) selection the link functions to be used and (iii) choosing which regressions

are to included in the linear predictor(s). The beta distribution is typically adequate for modeling continuous random

variables that assume values in (0,1). We also note that the correct specification of the link function(s) can be assessed

using the misspecification test proposed in Pereira and Cribari-Neto (2014). It remains to address the decision outlined

in item (iii), i.e., covariates selection. We shall do so in what follows.

Several model selection criteria were proposed for the linear regression model. The first widely used criterion was

the adjusted R2. It penalizes the coefficient of determination (R2) whenever more regressors are added to the model.

Other commonly used model selection criteria are the AIC (Akaike, 1973, 1974), Mallows’s Cp (Mallows, 1973),

the BIC (Akaike, 1978) or SIC (Schwarz, 1978), and the HQ (Hannan and Quinn, 1979). Some of these criteria

are also used in the class of generalized linear models. Hu and Shao (2008) introduced a class of consistent criteria

based on a modification of the R2 statistic. A good reference on model selection in linear regression is McQuarrie

and Tsai (1998). We note that a selection criterion is consistent when it identifies the finite dimension correct model

asymptotically with probability one (McQuarrie and Tsai, 1998) provided that the true model is among the candidate

models.

To the best of our knowledge there are no results in the literature on model selection criteria in the class of beta

regression with varying dispersion. We note, however, that several of the usual model selection criteria can be used

in such a class of models. In what follows we shall review them. Nevertheless, in a different sense, an alternative

to our approach is presented in Shou and Smithson (2013). The authors compare two measures for simultaneously

evaluating the relative importance of predictors in location and dispersion submodels in beta regression, but without

focusing on model selection.

3.1 Usual model selection criteria

At the outset, we introduce a penalized version of the beta regression pseudo-R2 used in Ferrari and Cribari-Neto

(2004). This pseudo-R2 is defined as the square of the sample coefficient of correlation between g(y) and η̂ = X β̂ ,

where β̂ denotes the maximum likelihood estimator of β and X is the n× r matrix of covariates used in the mean

submodel. We penalize their pseudo-R2 so that it includes a penalty term that takes into account the model dimension.
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The penalized pseudo-R2 criterion is given by

R̄2
FC = 1− (1−R2

FC)
(n−1)
(n− k)

,

where R2
FC is the pseudo-R2 proposed in Ferrari and Cribari-Neto (2004) and k = r+ s is the number of estimated

parameters of the model.

Let Lfit and Lnull denote, respectively, the maximized log-likelihood functions of the beta regression model and of

the model without covariates (with only the intercepts included in the two submodels). Following Nagelkerke (1991)

and Long (1997), a measure of goodness-of-fit can be written as

R2
LR = 1−

(
Lnull

Lfit

)2/n
.

We penalize this quantity and define the following model selection criterion:

R̄2
LR = 1− (1−R2

LR)
(n−1)
(n− k)

. (4)

The proposal of an R2 measure for GLMs can be found in Hu and Shao (2008). Using this measure of goodness-

of-fit, they proposed a model selection criterion, which is given by

R̄2
HS = 1− n−1

n−λnk
∑

n
t=1(yt − µ̂t)

2

∑
n
t=1(yt − ȳ)2 ,

where ȳ = 1
n ∑

n
t=1 yt and µ̂t = g−1(η̂t). If λn = 1, then R̄2

HS reduces to the modified R2 given in Mittlböck and

Schemper (2002). Additionally, if λn = o(n) and λn→ ∞ when n→ ∞, then the criterion is consistent (Hu and Shao,

2008). The authors recommend using λn = 1, λn = log(n) or λn =
√

n.

The model selection criteria presented so far are based on measures of goodness-of-fit. The best model is thus that

which maximizes the criterion. An alternative is to define criteria that must be minimized (rather than maximized)

when searching for the model that best fits the data. A well known example is the Akaike information criterion (AIC)

(Akaike, 1973, 1974):

AIC =−2`(β̂ , γ̂)+2k,

where β̂ and γ̂ are the maximum likelihood estimators of the β and γ , respectively.

Assume that the true model has infinite dimension and that the set of candidate models does not contain the true

model. According to Shibata (1980), a model selection criterion is said to be asymptotically efficient if, in large

samples, it selects the model that minimizes the mean squared difference between µ and µ̂ = g−1(η̂). The AIC, for

instance, is asymptotically efficient. Recall, nonetheless, that it was derived as an asymptotically unbiased estimator

of the Kullback-Leibler distance (Kullback and Leibler, 1951) between the true model and the candidate (estimated)
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model (Akaike, 1973; Bengtsson and Cavanaugh, 2006). It is thus based on a large sample approximation and may not

deliver accurate model selection when the sample size is small. Sugiura (1978) introduces an unbiased estimator for

the Kullback-Leibler distance in linear regressions: the AICc. Hurvich and Tsai (1989) generalize AICc to nonlinear

regressions and autoregressive models, showing that it is asymptotically equivalent to the AIC but delivers more

reliable model selection in finite samples. The AICc is defined as

AICc =−2`(β̂ , γ̂)+
2nk

n− k−1
.

Using a Bayesian approach, Akaike (1978) and Schwarz (1978) introduced a consistent model selection criterion

for the linear regression model. The Schwarz information criterion (SIC), also known as the Bayesian information

criterion (BIC), is given by

SIC =−2`(β̂ , γ̂)+ k log(n).

McQuarrie (1999) derived a version of the SIC that includes a small sample correction, namely: the SICc. Like

the SIC, the SICc is consistent. It is given by

SICc =−2`(β̂ , γ̂)+
nk log(n)
n− k−1

.

Another consistent criterion is the HQ criterion, which was proposed by Hannan and Quinn (1979) for autore-

gressive model selection:

HQ =−2`(β̂ , γ̂)+2k log(log(n)).

A variant of the HQ that incorporates a finite sample correction was proposed by McQuarrie and Tsai (1998) and is

given by

HQc =−2`(β̂ , γ̂)+
2nk log(log(n))

n− k−1
.

3.2 Model selection criteria under varying dispersion

The usual model selection criteria do not explicitly account for varying dispersion. They typically use the distance

between y and µ̂ as a goodness-of-fit measure to be penalized by the inclusion of extra covariates in the model. We

shall now propose two new model selection criteria that take into account the information that precision is not constant

and is modeled alongside with the mean.

The inclusion of covariates in the mean and dispersion submodels may impact the goodness-of-fit in different

ways. In order to account for that, we introduce, based on R2
LR, the weighted R̄2

LR, given by

R̄2
LRw = 1− (1−R2

LR)

(
n−1

n− (1+α)r− (1−α)s

)δ

,
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where 0 ≤ α ≤ 1 and δ > 0. We note that when α = 0 and δ = 1 the above criterion reduces to R̄2
LR given in (4).

The latter is thus a particular case of the former. Our Monte Carlo evidence in Section 4 will sheds some light on the

choice of values for α and δ .

A second model selection criterion we introduce for covariates selection under varying dispersion is based on a

convex combination of the mean and dispersion goodness-of-fit measures both penalized by the respective number of

regressors. From (1), var(yt) = σ2
t µt(1−µt), i.e., σ2

t = var(yt)/µt(1−µt). We note that var(yt) can be approximated

by (yt − µ̂t)
2, and define σ∗t =

√
(yt−µ̂t )2

µ̂t (1−µ̂t )
. Based on R̄2

HS (Hu and Shao, 2008), we then propose the following model

selection criterion for varying dispersion models:

R̄2
D=α

[
1− n−1

n−λnr
∑

n
t=1(yt − µ̂t)

2

∑
n
t=1(yt − ȳ)2

]
+(1−α)

[
1− n−1

n−δns
∑

n
t=1(σ

∗
t − σ̂t)

2

∑
n
t=1(σ

∗
t − σ̄∗)2

]
,

where σ̄∗ = (1/n)∑
n
t=1 σ∗t , 0≤ α ≤ 1 and δn, as well as λn for R̄2

HS, is a function of n, such as, for example, δn = 1,

δn = log(n) and δn =
√

n.

3.3 Proposed fast two step model selection scheme

The criteria presented so far are typically used for the joint selection of the mean and dispersion regressors. However,

the numerical results presented in Section 4 show that such a joint selection may be quite inaccurate in finite samples.

Furthermore, it can computationally unfeasible even when the number of candidate covariates is moderate. In what

follows we propose a two-step model selection scheme, which is more accurate and more computationally efficient

that joint covariates selection.

In order to reduce the varying dispersion beta regression model selection computational cost and motivated by the

fact that the criteria that perform well for covariates selection in the mean submodel may not perform equally well

when the focus lies in selection regressors for the dispersion submodel, we introduce a model selection strategy that

consists of two steps, which are performed sequentially. The scheme can be outlined as follows:

(1) assuming constant dispersion, select regressors for the mean submodel;

(2) assuming that the mean submodel selected in Step (1) is adequate, use a model selection criterion to select

regressors for the dispersion submodel.

The proposed scheme has the advantage being computationally less costly than the joint model selection. Suppose

there are m candidate regressors for the mean and dispersion submodels. Joint model selection of the two submodels

entails the estimation (2m +1)2 different models. The proposed fast scheme requires estimation of only 2× (2m +1)

models. The ratio of these figures is

(2m +1)2

2(2m +1)
=

(2m +1)
2

≈ 2m−1.
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The proposed method is thus approximately 2m−1 times less computationally intensive than the usual approach.

For instance, consider m = 10 (ten candidate covariates for the two submodels). Joint model selection of the

mean and dispersion submodels requires one to estimate (210 + 1)2 = 1050625 beta regressions whereas our model

selection strategy only entails the estimation of 2× (210 + 1) = 2050 models. The computational efficiency factor

thus equals 512.5 ≈ 210−1 = 512. Suppose that it takes one second to fit a beta regression model. The joint scheme

would then run for 12 days whereas our scheme would only take 34 minutes.

In the Section 4, we present Monte Carlo evidence on the proposed model selection scheme. We used different

combinations of criteria in Steps (1) and (2), based on some numerical evidences.

4 Numerical evaluation

We shall now report the results of a set of Monte Carlo simulations that were carried out to assess the relative merits

of the different model selection criteria in varying dispersion beta regressions. All simulations were performed using

the statistical computing environment R (version 2.9) (R Development Core Team, 2009). Parameter estimation was

performed using the GAMLSS package (Stasinopoulos and Rigby, 2007). An implementation of our two-step scheme in

R language is available at http://www.ufsm.br/bayer/auto-beta-reg.zip. This file contains model selection

computer code and also the dataset used in the empirical application presented in Section 5.

The beta regression model used as data generating process is

g(µt) = β1 + xt2β2 + xt3β3 + xt4β4 + xt5β5, (5)

h(σt) = γ1 + zt2γ2 + zt3γ3 + zt4γ4 + zt5γ5, (6)

t = 1, . . . ,n, where (5) is the mean submodel, (6) is the dispersion submodel and xti = zti, i = 2, . . . ,5 and ∀t. We

used different values for the parameter vector θ = (β1,β2,β3,β4,β5,γ1,γ2,γ3,γ4,γ5)
> and also four different sample

sizes: n = 25,50,100,200. The parameter values are presented in Table 1. The number of Monte Carlo replications

was 5,000. All covariate values were obtained as random draws from the standard uniform distribution U (0,1) and

were kept fixed throughout the experiment.

Table 1: Parameter values using in the data generating process.
Models β1 β2 β3 β4 β5 γ1 γ2 γ3 γ4 γ5

Model 1 1.5 −1 −1 0 0 −1 −1 −1 0 0

Model 2 −1.5 1 1 0 0 −1 −1.25 −1/2 −1/4 0

Model 3 1 −3/4 −1/4 0 0 −1 −1 −1 0 0

Model 4 −1 3/4 1/4 0 0 −1 −1.25 −1/2 −1/4 0

Model 1 is easily identifiable since all slopes have the same value. In Model 2, the mean submodel is easily

identifiable and the dispersion submodel is weakly identifiable. Weak identifiability happens when γi approaches

9
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zero as i grows. Here, the covariates influence the mean response with different intensities. In Model 3, the mean

submodel is weakly identifiable and the dispersion submodel is easily identifiable. Finally, both submodels of Model

4 are weakly identifiable. For details on such a model identifiability concept, see McQuarrie and Tsai (1998), Caby

(2000) and Frazer et al. (2009). We emphasize that it differs from the usual concept of model identifiability, which

relates to the uniqueness of the model for a given set of parameter values (Paulino and Pereira, 1994; Rothenberg,

1971).

In each Monte Carlo simulation, we generated the responses from the beta distribution with parameters µt and σt ,

which are given in (5) and (6), respectively. We used the logit link in both submodels. The data generating process

used in our simulations is

µt =
exp(β1 +∑

5
i=2 xtiβi)

1+ exp(β1 +∑
5
i=2 xtiβi)

, σt =
exp(γ1 +∑

5
i=2 ztiγi)

1+ exp(γ1 +∑
5
i=2 ztiγi)

.

The set of candidate models includes all models with intercepts that are particular cases of the above model. Since

there are four regressors in the mean submodel its total number of candidate models is (24 + 1) = 17; likewise for

the dispersion submodel. If we take the two submodels together, then there are 17×17 = 289 candidate models that

need to be considered. For performance evaluation of the model selection criteria, we consider the methodology used

in Hannan and Quinn (1979); Hurvich and Tsai (1989); Shao (1996); McQuarrie et al. (1997); McQuarrie and Tsai

(1998); Pan (1999); Shi and Tsai (2002); Shang and Cavanaugh (2008); Hu and Shao (2008); Liang and Zou (2008).

We compute and report the frequency with which each criterion was able to identify the true model. That is, we report

the percentages of the 5,000 Monte Carlo replications in which the criteria selected the true model.

The following approaches were considered in our numerical evaluation:

1. we used the model selection criteria to jointly select the regressors of both submodels (i.e., mean and dispersion

submodels);

2. the mean submodel was correctly specified and we focused on selecting the covariates that should be included

in the dispersion submodel;

3. the dispersion submodel was correctly specified and the model selection criteria were used to select independent

variables for the mean submodel;

4. we assumed that the dispersion parameter was constant and only selected regressors for the mean submodel.

5. based on the first four approaches results, we propose a two-step model selection strategy.

The frequencies (%) of correct model selection for the five approaches listed above are given in Tables 2, 3, 4, 5 and

6, respectively. All entries are percentages and the figure corresponding to the best performer is displayed in boldface.

The criterion R̄2
HS was used with λn = 1, λn = log(n) and λn =

√
n. We shall only present the results obtained

using λn = log(n) since this choice led to the most accurate model selections. Additionally, the criteria discussed in
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Table 2: Frequencies (%) of correct joint model selection (jointly selecting regressors for both submodels).

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

AIC 4.9 24.0 42.9 49.3 1.2 4.4 11.3 24.2 2.3 14.5 39.6 49.1 0.7 2.9 10.0 23.6

AICc 3.9 27.2 49.0 53.0 0.6 3.2 10.8 23.9 1.4 15.4 43.8 52.5 0.3 2.0 9.5 23.6

SIC 3.8 24.6 64.4 89.5 0.7 1.4 3.7 10.4 1.6 10.2 47.8 88.0 0.4 0.5 2.8 8.9

SICc 1.4 20.0 63.5 91.3 0.2 0.6 2.2 8.8 0.3 6.2 44.4 89.4 0.1 0.1 1.8 7.5

HQ 4.7 26.3 58.7 73.5 1.1 3.0 8.0 19.8 2.2 14.5 49.4 72.4 0.6 1.9 6.9 18.6

HQc 3.2 26.5 62.6 76.7 0.5 1.5 6.3 18.5 0.9 12.4 51.6 75.5 0.2 0.8 5.3 17.3

R̄2
FC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 f ive0.0

R̄2
LR 4.2 14.7 19.8 22.0 1.5 5.4 11.5 17.7 2.2 10.5 19.8 21.8 0.9 4.2 10.9 18.8

R̄2
HS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R̄2
D1 4.4 15.4 36.5 58.7 0.3 0.7 2.2 6.8 1.9 7.4 29.7 60.8 0.2 0.5 1.9 7.7

R̄2
D2 6.0 17.9 46.4 73.9 0.3 0.8 2.7 8.7 1.5 6.3 34.0 74.0 0.1 0.4 2.0 8.7

R̄2
D3 14.7 23.6 35.1 40.0 4.9 9.3 16.7 27.3 3.7 8.0 26.3 40.0 1.1 3.7 12.2 28.4

R̄2
D4 12.8 22.1 32.3 37.6 4.6 8.8 15.2 25.4 4.0 8.0 24.7 37.6 1.3 4.0 11.7 27.2

R̄2
LRw1 3.3 26.5 60.3 70.5 0.6 1.9 7.6 21.0 1.0 12.8 50.4 69.1 0.2 0.9 6.3 20.0

R̄2
LRw2 4.9 25.9 45.5 51.0 0.9 3.8 11.1 24.0 2.2 15.2 41.7 50.6 0.5 2.6 9.8 23.7

R̄2
LRw3 5.1 21.9 33.7 36.9 1.2 5.1 11.7 22.6 2.6 14.0 31.8 35.9 0.7 3.5 11.1 23.1

R̄2
LRw4 5.0 13.5 17.3 18.5 3.2 9.1 15.5 22.3 2.4 9.0 16.5 18.1 1.7 6.5 14.7 22.6

R̄2
LRw5 8.0 28.4 40.5 43.3 3.2 8.6 19.0 32.5 2.5 13.8 35.4 42.5 1.2 5.2 16.1 32.8

Section 3.2 were implemented as follows:

R̄2
D1: uses α = 0.4, λn = log(n) and δn = log(n);

R̄2
D2: uses α = 0.6, λn = log(n) and δn = log(n);

R̄2
D3: uses α = 0.6, λn = log(n) and δn = 1;

R̄2
D4: uses α = 0.5, λn = log(n) and δn = 1;

R̄2
LRw1: uses α = 0 and δ = 3;

R̄2
LRw2: uses α = 0 and δ = 2;

R̄2
LRw3: uses α = 0 and δ = 1.5;

R̄2
LRw4: uses α = 0.4 and δ = 1;

R̄2
LRw5: uses α = 0.4 and δ = 2.

The choice of values for α , δ , λn and δn used in the variations of R̄2
D and R̄2

LRw was based on numerical results

obtained from pilot simulations. Notice that when the value of α is greater than 0.5 in R̄2
D we give more weight to

the dispersion submodel fit. Likewise, values of δ greater than one make R̄2
LRw penalize more heavily the inclusion

of new covariates in the model, the inclusion of new regressors in the mean submodel being more heavily penalized

when α > 0.

The figures in Table 2 show that joint selection of the regressors in both submodels is typically not accurate

when the sample size is small and/or the dispersion submodel is weakly identifiable. Notice, for instance, the small
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Table 3: Frequencies (%) of correct dispersion submodel selection when the mean submodel is correctly specified.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

AIC 10.9 38.7 64.1 70.5 4.5 7.4 17.2 34.8 11.0 38.3 64.4 70.6 4.4 7.4 16.9 34.8

AICc 6.2 37.5 68.0 73.4 1.2 4.4 15.0 33.3 6.9 38.3 67.1 72.8 1.4 4.5 14.6 33.5

SIC 6.9 29.4 70.5 94.5 1.7 1.9 4.1 11.0 7.6 28.8 69.0 94.0 2.0 1.8 3.8 9.5

SICc 1.9 22.0 67.4 95.2 0.2 0.7 2.4 9.2 2.0 20.9 66.4 94.6 0.3 0.5 2.5 7.8

HQ 9.8 36.2 72.4 86.1 3.5 4.2 10.1 23.3 10.0 36.7 71.1 85.6 3.6 4.2 9.6 22.3

HQc 4.6 32.8 73.6 87.7 0.8 2.0 7.5 21.3 5.0 32.2 72.2 87.5 0.8 2.1 7.2 20.3

R̄2
FC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R̄2
LR 13.1 33.7 45.1 46.9 6.9 13.2 25.1 40.4 13.4 33.6 45.0 47.4 7.0 13.8 25.4 40.9

R̄2
HS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R̄2
D1 7.0 20.4 51.4 81.3 0.4 1.0 3.3 9.6 7.2 20.1 52.0 81.5 0.6 1.3 3.1 9.5

R̄2
D2 7.0 19.8 51.3 81.3 0.3 0.9 3.1 9.5 7.4 19.4 51.4 81.3 0.5 1.1 3.0 9.4

R̄2
D3 17.4 26.2 38.5 43.9 6.0 10.2 18.6 30.1 17.3 26.1 39.0 43.7 5.1 10.7 18.8 30.6

R̄2
D4 16.9 26.2 38.3 43.8 6.3 10.5 18.6 30.2 17.0 26.0 38.9 43.7 5.8 10.9 18.8 30.8

R̄2
LRw1 5.1 33.3 73.0 84.4 1.0 2.4 9.3 25.4 5.7 33.2 71.7 84.0 1.1 2.5 8.7 24.4

R̄2
LRw2 9.4 38.6 65.7 71.8 2.7 5.8 16.3 34.0 9.5 38.6 65.7 71.7 2.8 6.0 15.8 34.2

R̄2
LRw3 11.4 38.8 57.4 61.2 4.5 9.0 20.4 37.9 11.6 38.3 57.4 60.8 4.4 9.4 20.4 38.4

R̄2
LRw4 11.6 25.6 31.0 32.1 10.2 17.1 27.0 38.7 12.2 24.9 30.6 32.1 10.2 17.5 27.5 39.0

R̄2
LRw5 12.4 35.9 50.4 53.3 6.0 11.2 23.2 39.6 12.5 36.1 50.7 53.0 5.9 11.7 23.1 40.0

frequency of correct model selection when n = 25, especially in Models 2 and 4. Model selection based on R̄2
D3 works

well in small sample in all models. In Models 1 and 3 (dispersion submodel is easily identifiable) the SIC achieves

reliable model selection. R̄2
LRw5 also delivers accurate model selection in some situations. The criteria R̄2

D3 and R̄2
LRw5

display good performance under weak identifiability of the mean submodel and in small samples; however, their

performances are poor otherwise. Model selection via the SIC is accurate when in large samples and when the mean

submodel is easily identifiable; otherwise, it does not perform well. Overall, the best performer is the HQ criterion.

It delivers reliable model selection in nearly all scenarios, thus having a well balanced performance.

Figure 2 displays the frequencies of correct model selection achieved by the R̄2
D3, R̄2

LRw5, SIC and HQ criteria.

The top performers when the dispersion submodel is weakly identifiable are R̄2
D3 and R̄2

LRw5. In Models 1 and 3 and

when n = 100,200, the SIC delivers the most accurate model selection, being closely followed by HQ. We note that

HQ also displays good performance in Models 2 and 4. We thus recommend that joint selection of the regressors in

the two submodels be based on R̄2
D3 or R̄2

LRw5 when n≤ 50 and on HQ for larger samples.

Notice that the finite sample performances of the different model selection criteria for the joint selection of the

regressors of both submodels are heavily dependent on the identifiability of such submodels. It is also noteworthy

that the best joint model selection strategies are not necessarily the most accurate when model selection focuses on

one of the submodels; see the results in Tables 3 and 4.

Table 3 presents the simulation results obtained when the mean submodel is correctly specified and we focus on

the dispersion model selection. The best performer in Models 2 and 4 (dispersion submodel is weakly identifiable) is

R̄2
LRw4. When Models 1 and 3 (dispersion submodel is easily identifiable) are used as data generating processes, the
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Table 4: Frequencies (%) of correct mean submodel selection when the dispersion submodel is correctly specified.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

AIC 51.1 62.6 67.1 69.5 43.9 61.6 67.4 68.9 25.1 39.8 61.8 69.8 21.1 40.6 62.2 68.7

AICc 73.6 73.2 72.4 71.8 68.0 74.3 73.7 71.6 23.9 41.8 65.3 72.2 20.6 43.1 66.2 71.5

SIC 67.4 85.1 91.6 95.0 58.3 83.9 91.7 94.5 23.6 36.7 70.0 93.6 21.1 37.3 72.6 94.0

SICc 83.4 92.2 94.1 96.1 75.7 92.3 94.6 95.9 14.0 30.0 67.9 94.4 12.5 30.3 70.8 94.8
HQ 56.3 73.4 81.4 85.3 48.5 72.7 81.6 85.3 25.2 40.7 69.7 85.0 21.2 42.1 71.0 85.3

HQc 78.6 83.1 85.7 87.4 72.2 83.7 85.9 87.4 21.1 39.2 71.8 86.7 18.5 39.1 72.7 86.9

R̄2
FC 68.5 57.6 62.4 63.0 65.9 57.9 60.3 61.0 33.0 38.5 54.4 60.0 31.1 36.6 52.9 61.4

R̄2
LR 38.9 44.0 45.1 47.0 34.7 42.8 45.4 44.7 22.3 33.1 42.6 46.4 20.4 32.9 44.0 45.9

R̄2
HS 0.7 2.1 0.0 0.0 0.0 4.0 0.0 0.0 0.2 15.2 28.7 16.5 0.0 9.0 31.5 22.2

R̄2
D1 33.2 67.1 69.6 72.1 20.1 55.8 65.5 70.6 19.9 32.1 57.1 74.4 15.2 29.3 57.7 79.3

R̄2
D2 66.7 89.0 89.6 90.9 47.6 84.7 86.5 89.3 23.4 32.6 67.0 91.2 18.5 29.8 65.1 92.1

R̄2
D3 77.7 91.1 90.9 91.7 66.7 88.7 89.0 90.5 23.5 32.3 67.5 91.7 19.0 28.8 65.5 92.6

R̄2
D4 64.9 86.6 85.4 85.4 52.6 82.2 82.1 83.8 23.4 32.7 64.5 86.2 18.3 30.2 63.9 88.6

R̄2
LRw1 74.5 81.2 82.8 83.5 66.9 81.3 83.1 83.3 22.0 39.5 70.5 82.7 19.5 40.1 71.9 83.3

R̄2
LRw2 61.6 67.4 69.5 70.5 54.9 67.2 70.1 70.2 25.9 40.7 63.4 70.7 22.2 42.0 64.1 70.0

R̄2
LRw3 51.6 56.9 59.7 60.7 46.0 57.7 60.0 59.0 25.8 38.6 55.3 59.3 21.7 39.5 55.8 59.9

R̄2
LRw4 49.7 55.0 57.2 58.3 43.6 54.9 57.4 56.6 25.7 38.1 53.6 57.2 22.2 38.7 53.6 57.5

R̄2
LRw5 72.7 79.2 80.9 81.3 64.6 78.9 81.2 81.7 23.3 40.4 69.6 80.9 21.0 41.2 70.9 81.4

Table 5: Frequencies (%) of correct mean submodel selection when the dispersion was taken to be constant.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

AIC 70.8 68.4 73.2 74.0 66.5 66.0 70.4 72.8 32.3 40.5 63.8 71.1 30.8 37.9 61.6 73.4

AICc 83.2 76.1 76.9 75.7 80.5 74.3 73.8 74.6 31.4 40.3 66.6 72.7 29.4 38.2 63.7 74.9

SIC 83.2 89.4 94.6 96.7 80.9 87.3 93.6 96.9 28.3 31.8 64.4 91.7 26.6 29.4 63.8 91.1
SICc 89.2 93.1 95.8 97.2 88.0 92.2 95.2 97.3 20.1 28.2 63.2 91.7 19.3 25.3 62.2 91.0

HQ 75.0 79.4 85.9 89.1 71.4 77.6 84.8 88.4 32.0 39.2 68.9 85.8 30.8 36.2 67.4 86.9

HQc 86.1 85.9 88.7 90.1 83.8 83.5 87.5 89.5 28.5 37.2 69.2 87.2 26.6 34.1 68.1 87.9

R̄2
FC 54.4 45.7 50.3 49.2 49.8 44.3 48.7 49.0 30.5 32.8 45.3 48.2 29.1 31.6 43.7 50.0

R̄2
LR 54.3 46.8 50.1 50.7 49.7 44.7 48.5 50.0 30.6 33.2 46.0 48.4 29.5 32.6 44.6 50.7

R̄2
HS 8.3 0.6 0.0 0.0 6.1 0.2 0.0 0.0 11.6 15.4 27.6 20.4 11.2 15.1 29.5 20.6

R̄2
D1 85.4 92.3 91.4 90.9 84.1 90.4 89.3 91.1 20.2 27.5 61.0 87.9 19.1 24.2 57.8 86.3

R̄2
D2 89.0 94.6 95.3 96.2 87.5 93.4 94.5 96.2 18.4 26.0 59.8 90.1 18.5 23.7 59.2 89.4

R̄2
D3 89.2 94.6 95.4 96.2 87.6 93.5 94.5 96.2 18.4 26.0 59.7 90.2 18.4 23.5 59.1 89.5

R̄2
D4 88.3 94.0 94.0 94.4 86.8 92.7 92.9 94.8 18.7 26.7 60.6 89.5 18.5 23.6 58.8 88.7

R̄2
LRw1 85.8 85.3 86.7 87.1 83.3 82.9 85.4 86.2 27.0 37.2 69.0 84.0 25.6 34.0 67.7 85.0

R̄2
LRw2 76.6 71.9 74.7 74.9 72.9 70.2 72.0 73.6 32.8 40.6 65.2 71.8 31.2 38.2 62.6 74.4

R̄2
LRw3 68.1 61.4 64.6 64.7 63.7 59.4 62.6 63.6 33.3 39.5 57.9 62.0 31.5 37.1 55.8 64.2

R̄2
LRw4 67.5 59.8 62.6 62.7 63.1 57.7 60.3 61.5 33.6 39.0 56.3 60.1 31.8 36.9 54.3 61.7

R̄2
LRw5 85.5 84.1 84.9 85.6 83.3 81.6 84.0 84.3 28.0 38.3 69.2 82.2 26.4 35.2 67.6 83.5
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best performer is R̄2
LRw3 when n = 50; when n = 100, the best performer is the HQc; when n = 200, the winner is the

SICc. The figures in Table 3 show that the AIC delivers reliable model selection since it is always among the best

performers.

We now move to the situation in which the dispersion submodel is correctly specified and model selection takes

place in the mean submodel. The corresponding numerical results are presented in Table 4. The best performer

when the mean submodel is easily identifiable (Models 1 and 2) is the SICc. When the mean submodel is weakly

identifiable (Models 3 and 4) the most accurate model selection was achieved using R̄2
FC when n = 25, AICc when

n = 50, HQc when n = 100, and SICc when n = 200. We note that R̄2
D3 performed well in all scenarios. Overall, the

most reliable criteria here are R̄2
D3, SICc and HQc.

Our next set of Monte Carlo results were obtained by taking dispersion to be constant and focusing on selecting

covariates for the mean submodel. The results are presented in Table 5. It is interesting to note that in some cases mean

submodel selection is more accurate when dispersion is taken to be constant than when the dispersion submodel is

correctly specified, especially when the sample size is small (n = 25,50) and the model is easily identifiable (Models

1 and 2). Compare, for instance, the frequencies of correct model selection for Model 2 with n = 25 in Tables 4 and

5. The SIC frequency of correct model selection when dispersion is taken to be constant is nearly 15% larger than

when the dispersion submodel is correctly identified (88.0% vs. 75.7%). Overall, the frontrunners are the SICc, R̄2
D3

and R̄2
LRw2. We also note that the HQc performed well in several scenarios.

The results presented so far indicate that the best performing model selection criteria for selecting regressors for

the mean and dispersion submodels do not typically coincide. That is, the best modeling strategies for the mean

submodel are not the best ones when it comes to selecting covariates for the dispersion submodel. This fact may

explain the poor performances of the different model selection criteria when used to jointly select regressors for both

submodels; see Table 2. It is also noteworthy that some of the criteria perform quite well when one takes dispersion

to be constant and focuses on selecting covariates for the mean submodel. Based on such evidence, the proposed fast

two step model selection procedure, presented in Section 3.3, arises naturally.

We shall now present Monte Carlo evidence on the proposed model selection scheme. We used different combi-

nations of criteria in Steps (1) and (2), based on the numerical evidence already presented. The following implemen-

tations of the proposed scheme (PS) were considered:

PS1: SICc is used in Step (1) and R̄2
LRw4 is used in Step (2);

PS2: SICc is used in Step (1) and R̄2
D3 is used in Step (2);

PS3: SICc is used in Step (1) and SICc is used in Step (2);

PS4: HQc is used in Step (1) and HQc is used in Step (2);

PS5: AIC is used in Step (1) and R̄2
LRw4 is used in Step (2);

PS6: R̄2
LRw4 is used in Step (1) and R̄2

D3 is used in Step (2);
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Table 6: Frequencies (%) of correct model selected using the proposed two step scheme.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

PS1 10.5 24.2 29.6 31.2 9.0 15.6 25.7 37.7 2.4 7.0 19.7 29.5 1.7 5.2 16.6 35.5
PS2 15.8 24.6 36.7 42.5 5.2 9.5 17.7 29.5 2.8 6.3 24.2 40.2 1.0 2.9 11.5 27.9

PS3 1.6 20.7 64.6 92.5 0.2 0.6 2.3 8.9 0.2 5.0 40.8 86.8 0.0 0.1 1.6 7.1

PS4 3.8 28.4 65.4 79.1 0.6 1.6 6.6 18.9 1.1 11.4 49.9 76.2 0.2 0.7 5.1 17.6

PS5 8.5 17.6 22.5 24.0 6.7 11.4 19.1 28.6 4.0 10.2 20.1 22.7 3.2 7.1 16.6 28.8

PS6 12.8 15.9 23.6 27.6 3.9 6.2 11.4 19.3 5.3 9.7 21.8 26.0 1.4 4.2 10.5 19.2

PS7 10.9 30.9 42.9 45.6 4.9 9.3 19.6 33.4 3.4 13.5 35.3 43.2 1.4 4.0 15.8 33.5

PS7: R̄2
LRw5 is used in Step (1) and R̄2

LRw5 is used in Step (2).

Monte Carlo results are presented in Table 6. By comparing these results to those reported in Tables 6 and 2 we

note that the proposed model selection scheme is more accurate in nearly all scenarios. The frequencies of correct

model selection of the two best performers in each case (proposed scheme and joint model selection) are displayed in

Figure 3. Among all considered implementations of the PS, the scheme PS1 is the best performer when the dispersion

submodel is weakly identifiable (Models 2 and 4). When it is easily identifiable (Models 1 and 3), the most accurate

model selection scheme is: PS6 for n = 25, PS7 for n = 50, PS3 for n = 100 and PS4 for n = 200.

4.1 Final discussion and guideline for choose model selection criteria

As a final remark, we emphasize that correct specification of the dispersion submodel is the most critical step in

varying dispersion beta regression model selection. Notice, for instance, that the frequencies of correct model se-

lection are considerably lower in Models 2 and 4 (dispersion submodel weakly identifiable) than in Models 1 and 3

(dispersion submodel easily identifiable); see Table 6. The identifiability of the model and the sample size directly

influence in performances of the model selection criteria.

The proposed two step model selection scheme is computationally more efficient than the usual approach and

performs equally well or even better. Additionally, based on our numerical results, we suggest the use of the following

criterion:

1. In small samples (n≤ 50): use PS1 or PS5;

2. In large samples (n > 50): use PS4.

In addition to using our model selection scheme, we recommend that practitioners check whether the selected

model is correctly specified. To that end, we recommend that they use the misspecification test introduced by Pereira

and Cribari-Neto (2014).
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5 An empirical application

In what follows we shall present the results of an empirical application. We use data from a study of reading ability

in a group of 44 Australian children that attended primary school (Pammer and Kevan, 2004). These data were

also analyzed by Smithson and Verkuilen (2006) and Ferrari et al. (2011). The response (y) are reading accuracy

indices of such children. The independent variables are: nonverbal IQ converted to z-scores (x2) and dyslexia versus

non-dyslexia status (x3). The participants (19 dyslexics and 25 controls) were students from primary schools in

the Australian Capital Territory. Their ages range from eight years five months to twelve years three months. The

covariate x3 is a dummy variable, which equals 1 if the child is dyslexic and −1 otherwise. As in Smithson and

Verkuilen (2006) and Ferrari et al. (2011), the observed scores were linearly transformed from their original scale to

the open unit interval (0,1). Computer code for two-step model selection and the data used in this application are

available at http://www.ufsm.br/bayer/auto-beta-reg.zip.

In Smithson and Verkuilen (2006), the authors consider a third covariate (x4), namely: the interaction between

x2 and x3, that is, x4 = x2 × x3. At the outset, the authors estimate linear regression models and then estimate a

fixed dispersion beta regressions. However, they conclude that the inferential results may be inaccurate given that

dispersion is not constant. They then estimate a varying dispersion beta regression model.

We consider a varying dispersion beta regression model with logit links in the two submodels. In addition to the

covariates described above, we also consider x5 = x2
2 and x6 = x3× x5. Since there are five candidate covariates, we

need to consider 2× (25 +1) = 66 models in the model selection procedure proposed in this paper and (25 +1)2 =

1089 candidate models when carrying out joint model selection.

We start by testing the null hypothesis of constant dispersion using a score test; see Section 2 for details on

such a test. The mean submodel includes the following covariates: x2, x3 and x4. The null hypothesis under test

is H0 : γ2 = γ3 = γ4 = 0, where logit(σt) = γ1 + γ2x2 + γ3x3 + γ4x4. The score test statistic equals 18.069, the test

p-value being 0.0004. We thus reject the null hypothesis of constant dispersion at the usual nominal levels.

Notice that the sample size is close to 50 and that our numerical evidence indicates that for this sample size the

best performing model two step selection schemes are PS1 and PS5. When the PS1 scheme is used we arrive at

a model that only includes one covariate in the mean and dispersion submodels, namely: x3. Standard diagnostic

analysis, however, indicates that the model is not correctly specified. Using PS5, with AIC in step (1) and R̄2
LRw4

in step (2), we arrive at a beta regression model that uses x3, x5 and x6 as mean covariates and x2, x3 x4 and x5 as

dispersion covariates. All covariates are statistically significant at the usual nominal levels; see Table 7.

It is noteworthy that R2
FC and R2

LR differ considerably: R2
FC = 0.63 and R2

LR = 0.88. This happens because R2
FC

is less sensitive to the dispersion model specification, unlike R2
LR, which assumes significantly larger values when the

dispersion submodel is correctly selected. The two measures tend to assume similar values in constant dispersion

beta regressions. We recommend the use of R2
LR in varying dispersion models.
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Table 7: Parameter estimates of the beta regression model with varying dispersion; reading ability data.

Parameter Estimate Std. error z stat p-value
Submodel of µ

β1 (Constant) 1.0494 0.1605 6.539 0.0000
β3 (Dyslexia) −0.8587 0.1587 −5.411 0.0000
β5 (IQ2) 0.4524 0.0580 7.804 0.0000
β6 (Dyslexia×IQ2) −0.3866 0.0576 −6.720 0.0000

Submodel of σ

γ1 (Constant) −1.0072 0.1828 −5.509 0.0000
γ2 (IQ) −0.9259 0.1498 −6.180 0.0000
γ3 (Dyslexia) −0.9047 0.1603 −5.645 0.0000
γ4 (Dyslexia×QI) −0.8559 0.2633 −3.251 0.0025
γ5 (IQ2) −1.1005 0.2065 −5.328 0.0000

R2
FC = 0.63

R2
LR = 0.88

The beta regression model whose parameter estimates are presented in Table 7 differs from the model used in

Smithson and Verkuilen (2006). The authors model the precision parameter φ (and not the dispersion parameter σ )

using as link function −ln(·). Their mean submodel uses as regressors x2, x3 and x4 and their precision submodel

includes x2 and x3 as covariates. Indeed, these are the same covariates for the selected model using the two step

scheme considering only x2, x3 and x4 as candidate covariates. However, the diagnostic analysis of this model, as

shown in Cribari-Neto and Queiroz (2014), evidences some problems and its R2
FC and R2

LR measures are considerably

smaller than those of our selected model in Table 7. In Cribari-Neto and Queiroz (2014), bootstrap-based testing

inferences also suggested that IQ2 must be included in the model.

6 Conclusions

This paper addressed the issue of model selection in varying dispersion beta regressions. We presented several

model selection criteria that can be used in beta regression modeling and proposed two new model selection criteria

that explicitly account for varying dispersion. We also proposed a fast two step model selection procedure that

outperforms joint model selection, i.e., the joint selection of the covariates that must enter the mean and dispersion

submodels. The proposed model selection scheme is also much less costly from a computational viewpoint than

the joint model selection. We have also presented the results of extensive Monte Carlo simulations and guidelines

for choosing a model selection criteria in Section 4.1. The results show that the finite sample performances of the

different model selection approaches are typically strongly dependent on the model identifiability. We also argue that

it is more appropriate to use R2
LR as a pseudo-R2 measure in varying dispersion beta regressions than R2

FC since the

former is more sensitive to the specification of the dispersion submodel. Finally, we an empirical application was

performed.
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(d) Model 4

Figure 2: Frequencies (%) of correct joint model selection: the top four performers.
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Figure 3: Frequencies (%) of correct model selection: proposed two step and joint model selection.
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