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Model selection criteria in beta regression with varying dispersion

Fébio M. Bayer* Francisco Cribari Neto!

Abstract

We address the issue of model selection in beta regressions with varying dispersion. The model consists of two
submodels, namely: for the mean and for the dispersion. Our focus is on the selection of the covariates for each
submodel. Our Monte Carlo evidence reveals that the joint selection of covariates for the two submodels is not
accurate in finite samples. We introduce two new model selection criteria that explicitly account for varying dispersion
and propose a fast two step model selection scheme which is considerably more accurate and is computationally less
costly than usual joint model selection. Monte Carlo evidence is presented and discussed. We also present the results
of an empirical application.
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1 Introduction

Regression analysis is used for modeling the behavior of a random variable (response, dependent variable) when
such a behavior is influenced by other variates (known as regressors, covariates or independent variables). The
normal linear regression is the most commonly used regression model. It is not, however, useful for modeling data
that assume values in the standard unit interval, (0, 1), such as rates and proportions, since it may yield predictions
outside the interval. A common practice used to be to transform the data so that they assume values on the real
line and then use the transformed response in linear regression analysis. One of the pitfalls of such an approach
is that the model parameters can no longer be interpreted in terms of the mean response; their interpretation now
involves the mean of the transformed response, which is not of interest. Additionally, rates and proportions are usually
asymmetrically distributed and display a particular kind of heteroskedastic behavior. The usual linear regression is
thus not appropriate for modeling such data.

Several practitioners have modeled data that assume values in the standard unit interval (Brehm and Gates [1993;
Kieschnick and McCullough, |2003; |Smithson and Verkuilen, 2006} |Zuccol 2008 |Verhaelen et al.l 2013} |Whiteman

et al.| 2013} Hallgren et al.,|2013). |[Ferrari and Cribari-Neto| (2004) proposed a regression model that was specifically
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tailored for modeling such data: the beta regression model. The underlying assumption is that the response (y) is
beta-distributed, i.e., it follows the beta law. The beta distribution is quite flexible for modeling rates and proportions
since its density can have different shapes depending on the values of its two parameters, mean (i) and precision
(¢) (Ferrari and Cribari-Netol 2004).

In the beta regression model the mean response u is related to a linear predictor that includes covariates and
unknown regression parameters through a link function in similar fashion to generalized linear models (GLMs) (Mc-
Cullagh and Nelder, [1989). In its original formulation, the precision parameter ¢ was taken to be constant. We note
that efficiency loss takes place when the precision parameter is incorrectly taken to be constant. This fact can be seen
in Figure which presents the estimated densities of maximum likelihood estimates of the slope parameter (3, = 1.5)
in a single covariate model under varying dispersion. The density estimates were constructed from a Monte Carlo
simulation with five thousand replications. The data generating process is logit(i) = B + B> with precision given
by log(¢:) = 71 + v2x:. The two densities correspond to the situations in which dispersion was incorrectly taken to be
fixed (‘fixed disp.”) and properly modeled (‘variable disp.”). Notice that the variance is considerably larger when the
dispersion is not modeled. Additionally, disperion modelling may be of direct interest since it allows the statistician

to identify the sources of data variability (Smyth and Verbyla, 1999; Wu and Li, |2012).
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Figure 1: Estimated densities of the slope parameter estimator under varying dispersion, with (continuous line) and
without (dashed line) the variations in the precision parameter taken into account.

Figure [T shows that efficient parameter estimation in regression model depends on the correct modeling of the
dispersion. In the class of GLMs, |Smyth/(1989), |[Nelder and Lee|(1991) and |Smyth and Verbylal (1999) define a joint
generalized linear model, which allows the joint modeling of the response mean and variance. In this perspective,

Smithson and Verkuilen| (2006), |[Espinheiral (2007)) and [Simas et al.| (2010) suggest the beta regression model with



varying dispersion. This model can be seen as a natural extension of the model introduced by [Ferrari and Cribari-Neto
(2004). The precision parameter now relates to a set of covariates and parameters through a link function. The model
thus includes two submodels: one for the mean response and another one for the precision.

Our goal in this paper is threefold. First, we present several model selection criteria and propose two new criteria
that explicitly account for varying dispersion. Second, we perform a Monte Carlo simulation study to compare the
finite sample performances of the traditional and new model selection criteria. The numerical evidence shows that the
joint selection of the regressors in both submodels can be quite unreliable. Thirdly, we then propose a fast two step
procedure that works better in finite samples and is computationally less costly than the joint covariates selection.
Our proposal is to perform model selection for the mean submodel taking the precision to be constant and only in a
second step to carry out model selection for the precision submodel. The likelihood of finding the correct model is
increased and the computational cost is greatly reduced when the proposed two step procedure is used.

The paper unfold as follows. In the next section we present the varying dispersion beta regression model. In
Section 3] we describe different model selection strategies, including our proposed fast two step model selection
scheme. Section [d] presents numerical evidence from Monte Carlo simulations and a guideline for choose model
selection criteria. The evidence favours the model selection scheme proposed in this paper. Section [5] contains an

empirical application. Finally, concluding remarks are offered in Section [6]

2 The model and parameter estimation

Let y be a random variable that follows the beta law with parameters ¢ and ¢. In what follows we use an alternative
parametrization, namely: o2 = 1 /(1+ ¢). Both parameters (1 and o) assume values in the standard unit intervalﬂ

Thus,

E(y) =u,
var(y) =V (u)o?. ey
Additionally, the density of y can be written as
F(lig2> 1-¢2 1-02
-1 1—p) (=8~ ) -1
rosno) = e )y mE) T
r(u(t5#))r(0-m (%))
where 0 < u <land0< o < 1.
Lety;,...,yn be independent random variables, each y;, 7 = 1,...,n, having density (Z) with mean p; and disper-

INotice that ¢ is a dispersion, not precision, parameter.



sion o;. The beta regression model with varying dispersion can be written as

g() = thiﬁi ="M,
i=1

N
h(or) = ZZtiYi =V (3)
i=1
where 8 = (By,... ,ﬁ,)T and y= (}/1,...,%)—r are unknown parameters. Additionally, x;1,...,x, and z,. ..,z are

independent variables (r +s = k < n). When intercepts are included in both submodels we have that x;; =z =1,
t =1,...,n. Finally, g(-) and A(-) are the strictly monotonic and twice differentiable link functions that map (0, 1)
into R. Commonly used link functions are logit, probit, log-log, complement log-log and Cauchy. Note that under the
current parametrization the same link functions that are used in the mean submodel can also be used in the dispersion
submodel. This is the parametrization also used by |Cribari-Neto and Souza (2012).

Estimation of 8 and ¥ can be carried out by maximum likelihood. The log-likelihood function is

UB.y) = ift(.utyo't)a

t=1

where

1-o02 1-o0? 1— o2
1) =logI' L) —logD’ — L)) —logI'( (1— !
+(W,0;) = log ( s > og (ﬂt( P >) og <( #t)( o2 ))
1—o? 1—o?
+{u,< zt)—l}logy,—i—{(l—,ut)( 2t>—1}10g(1—y,).
o; O;

Details on the score function U (3, y), Fisher’s information matrix K(f,7), and large sample inferences can be found

in Cribari-Neto and Souzal(2012).

It is noteworthy that it is possible to test whether dispersion is constant, i.e., test the null hypothesis

or, equivalently,

J0:%=0, i=2,...,s,

for the model given in (B) with z;; = 1,7 =1,...,n. The score statistic is

—7r 1 ~
= U(S—I)YK(sfl)(sfl)U(xfl)yv

7T
where U(S_ 1y

the (s — 1) x (s — 1) matrix that contains the last s — 1 rows and the last s — 1 columns of the inverse of Fisher’s

is the vector with the s — 1 final elements of the score function for y under %) and E(; 11) (s-1) is

information matrix evaluated at the restricted maximum likelihood estimator. Under the usual regularity conditions



and under .77j, S converges in distribution to x(ZFU. The null hypothesis is thus rejected if S > %%—aﬁs—l’ where

)5127 os—1 isthel —a 753,27 | upper quantile, @ being the test nominal level.

3 Model selection criteria

Model selection in regression analysis is of paramount importance. Three important decisions are typically made:
(i) assuming a response distribution; (ii) selection the link functions to be used and (iii) choosing which regressions
are to included in the linear predictor(s). The beta distribution is typically adequate for modeling continuous random
variables that assume values in (0, 1). We also note that the correct specification of the link function(s) can be assessed
using the misspecification test proposed in|Pereira and Cribari-Neto|(2014). It remains to address the decision outlined
in item (iii), i.e., covariates selection. We shall do so in what follows.

Several model selection criteria were proposed for the linear regression model. The first widely used criterion was
the adjusted R2. It penalizes the coefficient of determination (R2) whenever more regressors are added to the model.
Other commonly used model selection criteria are the AIC (Akaike| [1973| [1974), Mallows’s Cp (Mallows| |1973),
the BIC (Akaike, [1978) or SIC (Schwarz, |1978), and the HQ (Hannan and Quinn} [1979). Some of these criteria
are also used in the class of generalized linear models. |Hu and Shao| (2008) introduced a class of consistent criteria
based on a modification of the R? statistic. A good reference on model selection in linear regression is McQuarrie
and Tsai1 (1998). We note that a selection criterion is consistent when it identifies the finite dimension correct model
asymptotically with probability one (McQuarrie and Tsai, |1998) provided that the true model is among the candidate
models.

To the best of our knowledge there are no results in the literature on model selection criteria in the class of beta
regression with varying dispersion. We note, however, that several of the usual model selection criteria can be used
in such a class of models. In what follows we shall review them. Nevertheless, in a different sense, an alternative
to our approach is presented in [Shou and Smithson| (2013). The authors compare two measures for simultaneously
evaluating the relative importance of predictors in location and dispersion submodels in beta regression, but without

focusing on model selection.

3.1 Usual model selection criteria

At the outset, we introduce a penalized version of the beta regression pseudo-R> used in |Ferrari and Cribari-Neto
(2004). This pseudo-R? is defined as the square of the sample coefficient of correlation between g(y) and 7§ = X ﬁ ,
where E denotes the maximum likelihood estimator of 8 and X is the n X r matrix of covariates used in the mean

submodel. We penalize their pseudo-R? so that it includes a penalty term that takes into account the model dimension.



The penalized pseudo-R? criterion is given by

(n—1
(n—k

~—

Ric=1-(1-Ri¢)

)

N

where R%C is the pseudo-R? proposed in [Ferrari and Cribari-Neto| (2004) and k = r + s is the number of estimated
parameters of the model.

Let Lg; and L,y denote, respectively, the maximized log-likelihood functions of the beta regression model and of
the model without covariates (with only the intercepts included in the two submodels). Following [Nagelkerke|(1991)

and|Long| (1997)), a measure of goodness-of-fit can be written as

We penalize this quantity and define the following model selection criterion:

n—1
n—k

—
~—

Rig=1-(1-Rig) 4

—
~

The proposal of an R2 measure for GLMs can be found in|Hu and Shao|(2008). Using this measure of goodness-

of-fit, they proposed a model selection criterion, which is given by

n—1 Z;l:1()’t —ﬁt)2

Ro=1-— ,
hs n—nk Y7 (yi —9)?

where j = %Z;’:] yr and [l = g~ (7). If A, = 1, then RZ reduces to the modified R> given in |Mittlbock and
Schemper|(2002). Additionally, if A, = o(n) and A,, — e when 1 — oo, then the criterion is consistent (Hu and Shaol
2008). The authors recommend using 4, = 1, A, =log(n) or A, = \/n.

The model selection criteria presented so far are based on measures of goodness-of-fit. The best model is thus that
which maximizes the criterion. An alternative is to define criteria that must be minimized (rather than maximized)
when searching for the model that best fits the data. A well known example is the Akaike information criterion (AIC)
(Akaikel 1973} {1974):

AIC = —20(B,7) + 2,

where B and 7 are the maximum likelihood estimators of the 8 and 7, respectively.

Assume that the true model has infinite dimension and that the set of candidate models does not contain the true
model. According to |Shibatal (1980), a model selection criterion is said to be asymptotically efficient if, in large
samples, it selects the model that minimizes the mean squared difference between p and i = g~ (7). The AIC, for
instance, is asymptotically efficient. Recall, nonetheless, that it was derived as an asymptotically unbiased estimator

of the Kullback-Leibler distance (Kullback and Leibler, |[1951) between the true model and the candidate (estimated)



model (Akaikel 1973} Bengtsson and Cavanaughl |2006). It is thus based on a large sample approximation and may not
deliver accurate model selection when the sample size is small. |[Sugiura (1978) introduces an unbiased estimator for
the Kullback-Leibler distance in linear regressions: the AICc. |Hurvich and Tsai| (1989) generalize AICc to nonlinear
regressions and autoregressive models, showing that it is asymptotically equivalent to the AIC but delivers more

reliable model selection in finite samples. The AICc is defined as

2nk

AICc = —20(B o
e=20B. N+~

Using a Bayesian approach, |Akaike| (1978) and |Schwarz| (1978)) introduced a consistent model selection criterion
for the linear regression model. The Schwarz information criterion (SIC), also known as the Bayesian information
criterion (BIC), is given by

SIC = —20(B,7) +klog(n).

McQuarrie| (1999) derived a version of the SIC that includes a small sample correction, namely: the SICc. Like

the SIC, the SICc is consistent. It is given by

= nklog(n)
ICc = -2¢ —_—.
SICe = —20(B, 1)+ —— =

Another consistent criterion is the HQ criterion, which was proposed by [Hannan and Quinn| (1979) for autore-

gressive model selection:

HQ = —2¢(B,7) + 2klog(log(n)).

A variant of the HQ that incorporates a finite sample correction was proposed by McQuarrie and Tsaif (1998)) and is
given by

HQc = —20(B,7) + 72"k’;(:gl(cligl(")) .

3.2 Model selection criteria under varying dispersion

The usual model selection criteria do not explicitly account for varying dispersion. They typically use the distance
between y and [I as a goodness-of-fit measure to be penalized by the inclusion of extra covariates in the model. We
shall now propose two new model selection criteria that take into account the information that precision is not constant
and is modeled alongside with the mean.

The inclusion of covariates in the mean and dispersion submodels may impact the goodness-of-fit in different

ways. In order to account for that, we introduce, based on R%R, the weighted R%R, given by

_ 8
R%Rw =1 7(17R%‘R) (n—(l -}—(,Xl)l‘l (1 —05)5) '



where 0 < o¢ < 1 and 6 > 0. We note that when o¢ = 0 and 6 = 1 the above criterion reduces to R%R given in .
The latter is thus a particular case of the former. Our Monte Carlo evidence in Section[d] will sheds some light on the
choice of values for @ and 8.

A second model selection criterion we introduce for covariates selection under varying dispersion is based on a
convex combination of the mean and dispersion goodness-of-fit measures both penalized by the respective number of
regressors. From (T)), var(y,) = 62 (1 — 1), i.e., 67 = var(y,) /i (1 — ;). We note that var(y,) can be approximated
by (v — ﬁ,)z, and define ¢, = Q%E’ﬁ)f) Based on I?%_,S (Hu and Shao, 2008), we then propose the following model

e (
selection criterion for varying dispersion models:

n—1 Z?:l (yz - ﬁz)z
n—2nr Y (v —3)?

n—1 Y, (o - G,)*
n—_G8s Yt (of —6%)2|’

Ry =a {1—

+(1—a){1—

where 6* = (1/n)Y)_,0;,0 < a < 1 and §,, as well as A, for RIZ_IS, is a function of n, such as, for example, §, = 1,

S, =log(n) and &, = v/n.

3.3 Proposed fast two step model selection scheme

The criteria presented so far are typically used for the joint selection of the mean and dispersion regressors. However,
the numerical results presented in Section ] show that such a joint selection may be quite inaccurate in finite samples.
Furthermore, it can computationally unfeasible even when the number of candidate covariates is moderate. In what
follows we propose a two-step model selection scheme, which is more accurate and more computationally efficient
that joint covariates selection.

In order to reduce the varying dispersion beta regression model selection computational cost and motivated by the
fact that the criteria that perform well for covariates selection in the mean submodel may not perform equally well
when the focus lies in selection regressors for the dispersion submodel, we introduce a model selection strategy that

consists of two steps, which are performed sequentially. The scheme can be outlined as follows:
(1) assuming constant dispersion, select regressors for the mean submodel;

(2) assuming that the mean submodel selected in Step (1) is adequate, use a model selection criterion to select

regressors for the dispersion submodel.

The proposed scheme has the advantage being computationally less costly than the joint model selection. Suppose
there are m candidate regressors for the mean and dispersion submodels. Joint model selection of the two submodels
entails the estimation (2 + 1) different models. The proposed fast scheme requires estimation of only 2 x (2" + 1)

models. The ratio of these figures is

m+1)2 (2"+1)

. ~ 2m71

2(2m+1) 2



The proposed method is thus approximately 2”1 times less computationally intensive than the usual approach.

For instance, consider m = 10 (ten candidate covariates for the two submodels). Joint model selection of the
mean and dispersion submodels requires one to estimate (2!° 4-1)> = 1050625 beta regressions whereas our model
selection strategy only entails the estimation of 2 x (2!9 4- 1) = 2050 models. The computational efficiency factor
thus equals 512.5 ~ 2!9~1 = 512. Suppose that it takes one second to fit a beta regression model. The joint scheme
would then run for 12 days whereas our scheme would only take 34 minutes.

In the Section ] we present Monte Carlo evidence on the proposed model selection scheme. We used different

combinations of criteria in Steps (1) and (2), based on some numerical evidences.

4 Numerical evaluation

We shall now report the results of a set of Monte Carlo simulations that were carried out to assess the relative merits
of the different model selection criteria in varying dispersion beta regressions. All simulations were performed using
the statistical computing environment R (version 2.9) (R Development Core Team) 2009). Parameter estimation was
performed using the GAMLSS package (Stasinopoulos and Rigby,2007). An implementation of our two-step scheme in
R language is available athttp://www.ufsm.br/bayer/auto-beta-reg.zip. This file contains model selection
computer code and also the dataset used in the empirical application presented in Section 5]

The beta regression model used as data generating process is

g(te) = B +x2B2 +x1383 + x4 B4 + x5 Bs, 5)

(1) =Y+ 200 + 23V +24Va + 25 Y5, (6)

t=1,...,n, where (3) is the mean submodel, (6) is the dispersion submodel and x;; = z;;, i = 2,...,5 and V¢. We
used different values for the parameter vector 6 = (B4, B2, B3, B4, Bs, Y1, %2, 73, %4, ¥5) | and also four different sample
sizes: n = 25,50,100,200. The parameter values are presented in Table The number of Monte Carlo replications
was 5,000. All covariate values were obtained as random draws from the standard uniform distribution %/ (0, 1) and

were kept fixed throughout the experiment.

Table 1: Parameter values using in the data generating process.

Models Bi B B B B Y % v uoo%
Model 1 1.5 —1 —1 0 0 -1 -1 -1 0 0
Model2 —15 1 1 0 0 -1 —125 —1/2 —1/4 0
Model 3 1 —3/4 -1/4 0 0 -1 -1 -1 0 0
Model 4 -1 3/4 1/4 0 0 -1 —1.25 —1/2 —1/4 0

Model 1 is easily identifiable since all slopes have the same value. In Model 2, the mean submodel is easily

identifiable and the dispersion submodel is weakly identifiable. Weak identifiability happens when % approaches


http://www.ufsm.br/bayer/auto-beta-reg.zip

zero as i grows. Here, the covariates influence the mean response with different intensities. In Model 3, the mean
submodel is weakly identifiable and the dispersion submodel is easily identifiable. Finally, both submodels of Model
4 are weakly identifiable. For details on such a model identifiability concept, see McQuarrie and Tsai| (1998)), |Caby’
(2000) and [Frazer et al.[(2009). We emphasize that it differs from the usual concept of model identifiability, which
relates to the uniqueness of the model for a given set of parameter values (Paulino and Pereiral |1994} Rothenberg,
1971).

In each Monte Carlo simulation, we generated the responses from the beta distribution with parameters y,; and o;,
which are given in (3) and (6), respectively. We used the logit link in both submodels. The data generating process

used in our simulations is

~exp(Bi+ X3, %) o exp(n + X, wik)
1 — ) T — .
1+exp(Bi + X3, xiBi) 1+exp(n + X35 2i%)

The set of candidate models includes all models with intercepts that are particular cases of the above model. Since
there are four regressors in the mean submodel its total number of candidate models is (2* + 1) = 17, likewise for
the dispersion submodel. If we take the two submodels together, then there are 17 x 17 = 289 candidate models that
need to be considered. For performance evaluation of the model selection criteria, we consider the methodology used
in [Hannan and Quinn| (1979); Hurvich and Tsai (1989)); [Shao| (1996); McQuarrie et al.| (1997); IMcQuarrie and Tsai
(1998); [Pan| (1999)); |Shi and Tsai| (2002); Shang and Cavanaugh|(2008)); Hu and Shaol| (2008)); Liang and Zou| (2008)).
We compute and report the frequency with which each criterion was able to identify the true model. That is, we report
the percentages of the 5,000 Monte Carlo replications in which the criteria selected the true model.

The following approaches were considered in our numerical evaluation:

1. we used the model selection criteria to jointly select the regressors of both submodels (i.e., mean and dispersion

submodels);

2. the mean submodel was correctly specified and we focused on selecting the covariates that should be included

in the dispersion submodel;

3. the dispersion submodel was correctly specified and the model selection criteria were used to select independent

variables for the mean submodel;
4. we assumed that the dispersion parameter was constant and only selected regressors for the mean submodel.
5. based on the first four approaches results, we propose a two-step model selection strategy.

The frequencies (%) of correct model selection for the five approaches listed above are given in Tables 2] [B] [ [5] and
[é] respectively. All entries are percentages and the figure corresponding to the best performer is displayed in boldface.
The criterion RIZ_IS was used with A, = 1, A, = log(n) and A4, = v/n. We shall only present the results obtained

using A, = log(n) since this choice led to the most accurate model selections. Additionally, the criteria discussed in

10



Table 2: Frequencies (%) of correct joint model selection (jointly selecting regressors for both submodels).

Model 1 Model 2 Model 3 Model 4
n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
AIC 49 240 429 493 1.2 44 113 242 | 23 145 39.6 49.1 0.7 29 10.0 23.6
AICc 39 272 490 530 | 0.6 32 10.8 239 14 154 438 525 03 20 9.5 23.6
SIC 38 246 644 895 0.7 1.4 3.7 10.4 1.6 102 478 8.0 | 04 0.5 2.8 8.9
SICc 14 200 635 913 | 02 0.6 2.2 8.8 0.3 62 444 894 | 0.1 0.1 1.8 7.5
HQ 47 263 587 735 1.1 3.0 8.0 19.8 2.2 145 494 724 | 06 1.9 6.9 18.6
HQc 32 265 626 767 | 05 1.5 6.3 18.5 0.9 124 516 755 02 038 53 17.3
R3¢ 0.0 0.0 0.0 00 | 0.0 00 0.0 0.0 | 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0  five0.0
R} 4.2 14.7 19.8  22.0 1.5 54 11.5 17.7 2.2 10.5 19.8  21.8 09 42 10.9 18.8
R 0.0 0.0 0.0 00 | 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
R, 4.4 154 365 587 | 03 0.7 2.2 6.8 1.9 74 297  60.8 02 05 1.9 7.7
R, 6.0 179 464 739 | 03 0.8 2.7 8.7 1.5 63 340 740 | 0.1 0.4 2.0 8.7
R, 147 236 35.1 40.0 | 49 93 16,7 273 3.7 8.0 263 40.0 1.1 3.7 12.2 28.4
R, 12.8 22.1 323 376 | 46 88 152 254 | 40 8.0 247 376 1.3 4.0 11.7 27.2
R 33 265 603 705 0.6 1.9 7.6  21.0 1.0 12.8 504  69.1 02 09 6.3 20.0
R 49 259 455 510 | 09 338 11.1 240 | 2.2 152 417 506 | 05 26 9.8 23.7
R 5.1 219 337 369 1.2 5.1 11.7 226 | 2.6 14.0 31.8 359 0.7 35 11.1 23.1
Rpa 5.0 13.5 17.3 18.5 32 9.1 155 223 24 9.0 16.5 18.1 1.7 65 14.7 22.6
Rs 8.0 284 405 433 32 86 190 325 | 25 13.8 354 425 1.2 52 161 328

Section @ were implemented as follows:
R2,: uses o = 0.4, A, = log(n) and &, = log(n);
R2,: uses @ = 0.6, A, = log(n) and &, = log(n);
R%,: uses a0 = 0.6, A, =log(n) and §, = 1;
R2,: uses ¢ =0.5, A, = log(n) and §, = 1;
RI%RWI: uses @ =0and § =3;
R%szs uses ¢« =0and § =2;
R?..5iuses @ =0and § = 1.5;
RI%RW4: uses @ =0.4and 6 = 1;
R?, s uses @ =04 and § =2.

The choice of values for «, 8, A,, and 0, used in the variations of I% and RI%RW was based on numerical results
obtained from pilot simulations. Notice that when the value of ¢ is greater than 0.5 in R% we give more weight to
the dispersion submodel fit. Likewise, values of § greater than one make R%RW penalize more heavily the inclusion
of new covariates in the model, the inclusion of new regressors in the mean submodel being more heavily penalized
when a > 0.

The figures in Table [2] show that joint selection of the regressors in both submodels is typically not accurate

when the sample size is small and/or the dispersion submodel is weakly identifiable. Notice, for instance, the small

11



Table 3: Frequencies (%) of correct dispersion submodel selection when the mean submodel is correctly specified.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
AIC 109  38.7 64.1 70.5 4.5 7.4 172 348 11.0 383 o644 70.6 4.4 7.4 16.9 3438
AICc 6.2 375 680 734 1.2 4.4 150 333 69 383 67.1 72.8 14 4.5 146 335

SIC 69 294 705 945 1.7 1.9 4.1 11.0 76 288 69.0 94.0 2.0 1.8 3.8 9.5
SICc 1.9 220 674 952 0.2 0.7 2.4 9.2 20 209 664 946 0.3 0.5 2.5 7.8
HQ 9.8 362 724 86.1 35 4.2 10.1 233 10.0 367 711 85.6 3.6 4.2 9.6 223
HQc 46 328 736 817 0.8 2.0 75 213 50 322 722 815 0.8 2.1 72 203
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ry 13.1 337 451 469 69 132 251 404 134 336 450 474 7.0 13.8 254 409
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R, 70 204 514 813 0.4 1.0 33 9.6 72 20.1 520 815 0.6 1.3 3.1 9.5
R, 70 198 513 813 0.3 0.9 3.1 9.5 74 194 514 813 0.5 1.1 3.0 9.4

R, 174 262 385 439 | 60 102 186 301 | 17.3 261 390 437 | 51 107 188 306
R, 169 262 383 438 | 63 105 186 302 | 170 260 389 437 | 58 109 188 3038
R | 51 333 730 84 | 10 24 93 254 | 57 332 717 80 | L1 25 87 244
Rpn | 94 386 657 718 | 27 58 163 340 | 95 386 657 717 | 28 60 158 342
Ry | 114 388 574 612 | 45 90 204 379 | 11.6 383 574 608 | 44 94 204 384
R | 116 256 310 321 | 102 171 270 387 | 122 249 306 321 | 102 175 275 390
Rps | 124 359 504 533 | 60 112 232 396 | 125 361 507 530 | 59 117 231 400

frequency of correct model selection when n = 25, especially in Models 2 and 4. Model selection based on RIZD3 works
well in small sample in all models. In Models 1 and 3 (dispersion submodel is easily identifiable) the SIC achieves

reliable model selection. R?

. . . . . . . -2 —2
7 Rws also delivers accurate model selection in some situations. The criteria Rpy; and Ry g, 5

display good performance under weak identifiability of the mean submodel and in small samples; however, their
performances are poor otherwise. Model selection via the SIC is accurate when in large samples and when the mean
submodel is easily identifiable; otherwise, it does not perform well. Overall, the best performer is the HQ criterion.
It delivers reliable model selection in nearly all scenarios, thus having a well balanced performance.

Figure [2| displays the frequencies of correct model selection achieved by the 1?12)3, R%RWS’ SIC and HQ criteria.
The top performers when the dispersion submodel is weakly identifiable are R%n and R%Rws. In Models 1 and 3 and
when n = 100,200, the SIC delivers the most accurate model selection, being closely followed by HQ. We note that
HQ also displays good performance in Models 2 and 4. We thus recommend that joint selection of the regressors in
the two submodels be based on R2D3 or RI%RWS when n < 50 and on HQ for larger samples.

Notice that the finite sample performances of the different model selection criteria for the joint selection of the
regressors of both submodels are heavily dependent on the identifiability of such submodels. It is also noteworthy
that the best joint model selection strategies are not necessarily the most accurate when model selection focuses on
one of the submodels; see the results in Tables [3]and [d]

Table E] presents the simulation results obtained when the mean submodel is correctly specified and we focus on
the dispersion model selection. The best performer in Models 2 and 4 (dispersion submodel is weakly identifiable) is

R%Rw4. When Models 1 and 3 (dispersion submodel is easily identifiable) are used as data generating processes, the
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Table 4: Frequencies (%) of correct mean submodel selection when the dispersion submodel is correctly specified.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
AIC 51.1 62.6  67.1 69.5 | 439 616 674 689 25.1 39.8  61.8 69.8 21.1 40.6 622  68.7
AlCc 73.6 732 724 718 68.0 743 737 716 239 418 653 722 | 206 431 662 715
SIC 67.4  85.1 91.6 950 | 583 839 91.7 945 236 367 70.0 93.6 | 21.1 373 72,6 94.0
SICc 834 922 941 96.1 757 923 946 959 140 30.0 679 944 125 303 70.8 948
HQ 563 734 814 853 | 485 727 81.6 853 252 407  69.7 85.0 | 21.2 421 71.0 853
HQc 78.6  83.1 857 874 | 722 837 859 874 21.1 392 718 86.7 185  39.1 7277 869
R 68.5 576 624 63.0 | 659 579 603 610 | 33.0 385 544 600 | 311 36.6 529 614
R, 38.9 440 451 47.0 | 347 428 454 447 223 331 426 464 | 204 329 440 459

R 0.7 2.1 0.0 0.0 0.0 4.0 0.0 0.0 0.2 152 287 16.5 0.0 9.0 315 222
R, 332 67.1 69.6  72.1 20.1 558 655 70.6 199 321 57.1 74.4 152 293 577 793

R, 66.7 89.0 89.6 909 | 47.6 847 865 893 234 326 67.0 912 185 298 651 921
R, 717  91.1 909 91.7 | 66.7 887 89.0 90.5 235 323 675 917 190 288 655 926
R, 649 86.6 854 854 | 526 822 821 83.8 | 234 327 645 862 183 302 639 88.6
R 745 812 828 835 | 669 813 83.1 83.3 220 395 705 827 195 40.1 719 833
R 61.6 674 695 705 | 549 672 70.1 702 | 259 407 634 70.7 | 222 420 64.1 70.0
R 516 569 597 60.7 | 46.0 577 60.0 59.0 | 258 386 553 593 | 21.7 395 558 59.9
R | 497 550 572 583 | 436 549 574 566 | 257 381 536 572 | 222 387 536 575
Rs 727 792 809 813 | 646 789 812 81.7 | 233 404 69.6 809 | 21.0 412 709 814

Table 5: Frequencies (%) of correct mean submodel selection when the dispersion was taken to be constant.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
AIC 70.8 684 732 740 | 665 660 704 728 323 405 638 71.1 308 379 61.6 734
AICc 832 76.1 769 757 80.5 743 738 746 314 403 66.6 727 294 382 637 749
SIC 832 894 946 96.7 809 873 936 969 283 31.8 644 917 | 266 294 638 911
SICc 892 931 958 972 | 88.0 922 952 973 20.1 282 632 917 193 253 622 910
HQ 750 794 859  89.1 714 776 848 884 320 392 689 858 308 362 674 869
HQc 86.1 859 887 90.1 83.8 835 875 895 285 372 692 872 | 266 34.1 68.1 879
R 544 457 503 492 | 498 443 487 49.0 | 305 328 453 482 | 29.1 31.6 437  50.0
R, 543 46.8  50.1 50.7 | 49.7 447 485 500 | 30.6 332 460 484 | 295 326 446 50.7

R 8.3 0.6 0.0 0.0 6.1 0.2 0.0 0.0 11.6 154 276 204 112 151 295 20.6
R, 854 923 914 909 | 8.1 904 893 9l 202 275 61.0 879 19.1 242 578 863
R, 89.0 946 953 962 | 875 934 945 96.2 184 26.0 59.8 90.1 185 237 592 894

R, 892 946 954 962 | 87.6 935 945 96.2 184 260 597 902 184 235 59.1 89.5
R, 883 940 940 944 | 8.8 927 929 948 187 2677 60.6 89.5 185 236 588 887
R 858 853 86.7 87. 833 829 854 862 | 270 372 690 840 | 256 340 677 850
Rrs 76.6 719 747 749 | 729 702 720 73.6 | 328 406 652 71.8 | 312 382 626 744
Rrs 68.1 614 646 647 | 637 594 626 636 | 333 395 579 620 | 315 371 558 642
R s 67.5 598 626 627 | 63.1 577 603 615 | 336 390 563  60.1 318 369 543 617
R s 855 84.1 849 856 | 833 8l1.6 84.0 843 28.0 383 692 822 | 264 352 67.6 835
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best performer is R%R% when n = 50; when n = 100, the best performer is the HQc; when n = 200, the winner is the
SICc. The figures in Table [3] show that the AIC delivers reliable model selection since it is always among the best
performers.

We now move to the situation in which the dispersion submodel is correctly specified and model selection takes
place in the mean submodel. The corresponding numerical results are presented in Table [d] The best performer
when the mean submodel is easily identifiable (Models 1 and 2) is the SICc. When the mean submodel is weakly
identifiable (Models 3 and 4) the most accurate model selection was achieved using R%C when n = 25, AICc when
n =50, HQc when n = 100, and SICc when n = 200. We note that I?%B performed well in all scenarios. Overall, the
most reliable criteria here are R2D3, SICc and HQc.

Our next set of Monte Carlo results were obtained by taking dispersion to be constant and focusing on selecting
covariates for the mean submodel. The results are presented in Table[3] It is interesting to note that in some cases mean
submodel selection is more accurate when dispersion is taken to be constant than when the dispersion submodel is
correctly specified, especially when the sample size is small (n = 25,50) and the model is easily identifiable (Models
1 and 2). Compare, for instance, the frequencies of correct model selection for Model 2 with n = 25 in Tables [ and
[Bl The SIC frequency of correct model selection when dispersion is taken to be constant is nearly 15% larger than
when the dispersion submodel is correctly identified (88.0% vs. 75.7%). Overall, the frontrunners are the SICc, R%)s
and R%sz. We also note that the HQc performed well in several scenarios.

The results presented so far indicate that the best performing model selection criteria for selecting regressors for
the mean and dispersion submodels do not typically coincide. That is, the best modeling strategies for the mean
submodel are not the best ones when it comes to selecting covariates for the dispersion submodel. This fact may
explain the poor performances of the different model selection criteria when used to jointly select regressors for both
submodels; see Table[2} It is also noteworthy that some of the criteria perform quite well when one takes dispersion
to be constant and focuses on selecting covariates for the mean submodel. Based on such evidence, the proposed fast
two step model selection procedure, presented in Section[3.3] arises naturally.

We shall now present Monte Carlo evidence on the proposed model selection scheme. We used different combi-
nations of criteria in Steps (1) and (2), based on the numerical evidence already presented. The following implemen-

tations of the proposed scheme (PS) were considered:
PS;: SICc is used in Step (1) and R%RM is used in Step (2);
PS;: SICc is used in Step (1) and Ré3 is used in Step (2);
PS;3: SICc is used in Step (1) and SICc is used in Step (2);
PS4: HQc is used in Step (1) and HQc is used in Step (2);
PSs5: AIC is used in Step (1) and RI%RW4 is used in Step (2);

PS¢: R%Rw4 is used in Step (1) and R%B is used in Step (2);
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Table 6: Frequencies (%) of correct model selected using the proposed two step scheme.

Model 1 Model 2 Model 3 Model 4

n 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
PS; 105 242 296 312 | 90 156 257 377 | 24 7.0 19.7 295 1.7 52 166 355
PS, 158 246 367 425 52 9.5 17.7 295 2.8 6.3 242 402 1.0 29 1.5 279
PS; 1.6 207 646 925 | 0.2 0.6 2.3 89 | 0.2 50 408 868 | 0.0 0.1 1.6 7.1
PS4 38 284 654 79.1 0.6 1.6 6.6 18.9 1.1 114 499 762 | 02 0.7 5.1 17.6
PSs 8.5 176 225 240 | 6.7 11.4 19.1 28.6 | 4.0 102 20.1 22.7 32 71 166 288
PS¢ 12.8 159 236 276 39 6.2 11.4 19.3 53 9.7 218 26.0 14 42 10.5 19.2
PS, 109 309 429 456 | 49 9.3 19.6 334 34 135 353 432 14 40 15.8 335

PS7: R%RWS is used in Step (1) and R%ij is used in Step (2).

Monte Carlo results are presented in Table[6] By comparing these results to those reported in Tables [6]and 2] we
note that the proposed model selection scheme is more accurate in nearly all scenarios. The frequencies of correct
model selection of the two best performers in each case (proposed scheme and joint model selection) are displayed in
Figure[3] Among all considered implementations of the PS, the scheme PS is the best performer when the dispersion
submodel is weakly identifiable (Models 2 and 4). When it is easily identifiable (Models 1 and 3), the most accurate

model selection scheme is: PS¢ for n = 25, PS7 for n = 50, PS5 for n = 100 and PS4 for n = 200.

4.1 Final discussion and guideline for choose model selection criteria

As a final remark, we emphasize that correct specification of the dispersion submodel is the most critical step in
varying dispersion beta regression model selection. Notice, for instance, that the frequencies of correct model se-
lection are considerably lower in Models 2 and 4 (dispersion submodel weakly identifiable) than in Models 1 and 3
(dispersion submodel easily identifiable); see Table[6] The identifiability of the model and the sample size directly
influence in performances of the model selection criteria.

The proposed two step model selection scheme is computationally more efficient than the usual approach and
performs equally well or even better. Additionally, based on our numerical results, we suggest the use of the following

criterion:
1. In small samples (n < 50): use PS; or PSs;
2. Inlarge samples (n > 50): use PS4.

In addition to using our model selection scheme, we recommend that practitioners check whether the selected
model is correctly specified. To that end, we recommend that they use the misspecification test introduced by |Pereira

and Cribari-Neto|(2014).
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S An empirical application

In what follows we shall present the results of an empirical application. We use data from a study of reading ability
in a group of 44 Australian children that attended primary school (Pammer and Kevan, 2004). These data were
also analyzed by Smithson and Verkuilen| (2006) and |Ferrar1 et al.| (2011). The response (y) are reading accuracy
indices of such children. The independent variables are: nonverbal 1Q converted to z-scores (x,) and dyslexia versus
non-dyslexia status (x3). The participants (19 dyslexics and 25 controls) were students from primary schools in
the Australian Capital Territory. Their ages range from eight years five months to twelve years three months. The
covariate x3 is a dummy variable, which equals 1 if the child is dyslexic and —1 otherwise. As in |Smithson and!
Verkuilen| (2006) and |Ferrari et al.|(2011), the observed scores were linearly transformed from their original scale to
the open unit interval (0,1). Computer code for two-step model selection and the data used in this application are
available at http://www.ufsm.br/bayer/auto-beta-reg.zip,

In |Smithson and Verkuilen| (2006), the authors consider a third covariate (x4), namely: the interaction between
xp and x3, that is, x4 = xp X x3. At the outset, the authors estimate linear regression models and then estimate a
fixed dispersion beta regressions. However, they conclude that the inferential results may be inaccurate given that
dispersion is not constant. They then estimate a varying dispersion beta regression model.

We consider a varying dispersion beta regression model with logit links in the two submodels. In addition to the
covariates described above, we also consider x5 = x% and xg = x3 X x5. Since there are five candidate covariates, we
need to consider 2 x (2° + 1) = 66 models in the model selection procedure proposed in this paper and (25 + 1) =
1089 candidate models when carrying out joint model selection.

We start by testing the null hypothesis of constant dispersion using a score test; see Section [2| for details on
such a test. The mean submodel includes the following covariates: x», x3 and x4. The null hypothesis under test
is 1 =1 = v =0, where logit(c;) = ¥1 + 12x2 + 13x3 + Yax4. The score test statistic equals 18.069, the test
p-value being 0.0004. We thus reject the null hypothesis of constant dispersion at the usual nominal levels.

Notice that the sample size is close to 50 and that our numerical evidence indicates that for this sample size the
best performing model two step selection schemes are PS; and PSs. When the PS; scheme is used we arrive at
a model that only includes one covariate in the mean and dispersion submodels, namely: x3. Standard diagnostic
analysis, however, indicates that the model is not correctly specified. Using PS5, with AIC in step (1) and R%szt
in step (2), we arrive at a beta regression model that uses x3, x5 and xg as mean covariates and xp, x3 x4 and xs as
dispersion covariates. All covariates are statistically significant at the usual nominal levels; see Table[7]

It is noteworthy that R%C and R%R differ considerably: R%C =0.63 and R%R = 0.88. This happens because R%C
is less sensitive to the dispersion model specification, unlike R%R, which assumes significantly larger values when the
dispersion submodel is correctly selected. The two measures tend to assume similar values in constant dispersion

beta regressions. We recommend the use of R% r in varying dispersion models.
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Table 7: Parameter estimates of the beta regression model with varying dispersion; reading ability data.

Parameter Estimate  Std. error zstat  p-value
Submodel of u

B1 (Constant) 1.0494 0.1605 6.539  0.0000

B3 (Dyslexia) —0.8587 0.1587 —5.411 0.0000

Bs 1Q%) 0.4524 0.0580 7.804  0.0000

B (Dyslexia xIQ?)  —0.3866 0.0576  —6.720 0.0000
Submodel of ¢

71 (Constant) —1.0072 0.1828 —5.509  0.0000
7 (IQ) —0.9259 0.1498  —6.180  0.0000
75 (Dyslexia) —0.9047 0.1603 —5.645  0.0000
% (Dyslexiax QD) —0.8559 0.2633  —3.251  0.0025
¥ (1Q?) —1.1005 0.2065 —5.328  0.0000
RZ-=0.63
R, =0.88

The beta regression model whose parameter estimates are presented in Table [/| differs from the model used in
Smithson and Verkuilen| (2006). The authors model the precision parameter ¢ (and not the dispersion parameter o)
using as link function —In(-). Their mean submodel uses as regressors x», x3 and x4 and their precision submodel
includes x, and x3 as covariates. Indeed, these are the same covariates for the selected model using the two step
scheme considering only x;, x3 and x4 as candidate covariates. However, the diagnostic analysis of this model, as
shown in|Cribari-Neto and Queiroz (2014)), evidences some problems and its R%C and R%R measures are considerably
smaller than those of our selected model in Table In |Cribari-Neto and Queiroz| (2014), bootstrap-based testing

inferences also suggested that IQ? must be included in the model.

6 Conclusions

This paper addressed the issue of model selection in varying dispersion beta regressions. We presented several
model selection criteria that can be used in beta regression modeling and proposed two new model selection criteria
that explicitly account for varying dispersion. We also proposed a fast two step model selection procedure that
outperforms joint model selection, i.e., the joint selection of the covariates that must enter the mean and dispersion
submodels. The proposed model selection scheme is also much less costly from a computational viewpoint than
the joint model selection. We have also presented the results of extensive Monte Carlo simulations and guidelines
for choosing a model selection criteria in Section 4.1} The results show that the finite sample performances of the
different model selection approaches are typically strongly dependent on the model identifiability. We also argue that
it is more appropriate to use R%R as a pseudo-R? measure in varying dispersion beta regressions than R%C since the
former is more sensitive to the specification of the dispersion submodel. Finally, we an empirical application was

performed.
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Figure 2: Frequencies (%) of correct joint model selection: the top four performers.
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Figure 3: Frequencies (%) of correct model selection: proposed two step and joint model selection.
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